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To attain knowledge, add things every day.
To attain wizdom, remove things every day.
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Abstract

The problem of automated theorem finding proposed by Wos asks for criteria that an
automated reasoning program can use to find new and interesting theorems, in contrast
Lo proving conjectured theorems supplied by the user. This paper discusses the logical
basis of automated theorem finding from the viewpoint of relevant logic. The paper
points out why classical mathematical logic and/or ils various extensions are not
suitable logical tools for solving the problem, and shows that paradox-free relevant
logics are more hopeful candidates for the purpose. The paper also presents some
results of our experiments on automated theorem finding in NBG set theory with
EnCal, an entailment calculus system we are developing.

1. Introduction

Reasoning is the process of drawing new and valid conclusions logically from some
premises which are known facts and/or assumed hypothesis. Automated reasoning is concerned
with the execution of computer programs that assist in solving problems requiring reasoning.
Wos 1988 proposed 33 open research problems in automated reasoning [12]. The thirty-first of
these problems is the problem of automated theorem finding (ATF for short) which is the main
subject we wanlt to investigate in this paper. The question is as follows:

The problem of ATF [11,13] : What properties can be identified to permit an automated reasoning
program to find new and interesting theorems, as opposed to proving conjectured theorems?

The problem of ATF, of course, is still open until now [13]. The most important and
difficult requirement of the problem is that, in contrast to proving conjectured theorems supplied
by the user, it asks for criteria that an automated reasoning program can use to find some theorems
in a field that must be evaluated by theorists of the field as new and interesting theorems. The
significance of solving the problem is obvious because an automated reasoning program satisfying
the requirement can provide great assistance for scientists in various fields.

* This work was partly supported by the Ministry of Education, Science and Culture of Japan under Grant-in-Aid for
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On the other hand, it is probably difficult, if not impossible, to find a sentence form in
various scientific publications which is more generally used to describe various definitions,
pmpositions and theorems than the sentence form of "if ... then ... ." A sentence of the form "if

.. then ..." is usually called a conditional which states that there exists a conditional and/or causal
relatmnsh]p between "if part” and "then part” of the sentence. Scientists always use conditionals
in their descriptions of various definitions, propositions, and theorems to connect a concept, fact,
situation or conclusion and its sufficient conditinns‘ Indeed, a major work of almost all, if not all,
scientists is to discover some conditional and/or causal relationships between various phenomena,
data, and laws in their research areas.

In logic, the notion abstracted from various conditionals is called "entailment.” In general,
an entailment, for instance, "A entails B" or "if A then B," must concerns two propositions which
are called the antecedent and the consequent of that entailment, respectively. The truth and/or
validity of an entailment depends not only on the truths of its antecedent and consequent but also
more essentially on a necessarily relevant, conditional, andfor causal relation between its
antecedent and consequent. As a result, the notion of entailment plays the most essential role in
human logical thinking because any reasoning must invoke it. Therefore, it is historically always
the most important subject studied in logic and is regarded as the heart of logic [1].

From the viewpoint of logic, there are at least two kinds of entailments. One kind is
empirical entailments and the other kind is logical entailments. The truth and/or validity of an
empirical entailment is dependent on the contents of its antecedent and consequent. In contrast, the
truth and/or validity of a logical entailment depends only on its abstract form but not on the
contents of its antecedent and consequent, and therefore, it is considered to be universally true
andfor valid. Indeed, the most intrinsic difference between some different logic systems is to
regard which entailments as logical entailments [5,6].

This paper discusses the logical basis of ATF from the viewpoint of relevant logic. The
paper points out why classical mathematical logic and/for its various extensions are not suitable
logical tools for solving the problem of ATF, and shows that paradox-free relevant logics are more
hopeful candidates for the purpose. The rest of the paper is organized as follows: Section 2
defines terminology used in this paper. Section 3 discusses the problem that what logic can be
used to underlie ATF. Section 4 proposes our relevant logic approach to ATF. Section 5 presenis
some results of our experiments with EnCal, an entailment calculus tool we are developing.
Finally, some concluding remarks are given in Section 6..

2. Terminology
We now define terminology here for discussing our subject formally.

Definition 2.1 Let L be a logic, "I- " be the proof-theoretical consequence relation of L, Th(L)
be the set of all logical theorems of L, and P be a non-empty set of formulas of L. A formal
theory with premises P based on L, denoted by Ty (P), is defined as follows: Tp(P) =4 Th(L) v
T18(P) where T %(P) =g; [A I P |- A and A¢ Th(L)} where Th(L) and Ty %(P) is called the logical
part and the empirical part of the formal theory, respectively, and any element of Ty &(P) is called
an empirical theorem of the formal theory.

Fig. 1 shows the relationship between the logical part and empirical part of a formal theory.

In general, if logic L is adequately strong, then a formal theory Ty (P) based on L is an
infinite set of formulas, even though P is a finite set of formulas. Obviously, for any given set of
formulas as premises, we can obtain different formal theory based on different logic. However,
as we will discuss in Section 3, not all logic systems can serve well as the fundamental logic

underlying ATF.



TL(P:l:dfTh{L] U TL‘E{P)
Fig. 1 The relationship between the logical part and empirical part of a formal theory

Definition 2.2 - A formal theory TL(P) is said to be directly inconsistent if and only if there
exists a formula A of L such that both AP and —AeP hold. A formal theory Ty (P) is said to be
indirectly inconsistent if and only if there exists a formula A of L such that any of the following
three conditions holds: (1) AeP, —~AgP, and A€ T (P), (2) —A<P, A¢P, and Ae T (P), and (3)
AgP, -AeP, Ae T (P), and —AeTL(P). A formal theory T (P) is said to be consistent if and
only if it is neither directly inconsistent nor indirectly inconsistent.

In general, a formal theory constructed as a purely deductive science (e.g., classical
mathematical logic and its various extensions) is consistent. However, almost all, if not all,
formal theories constructed based on an empirical and/or experiential science is generally indirectly
mconsistent. :

Definition 2.3 A formal theory Ty (P) is said to be meaningless or explosive if and only if
Ae Ty (P) for arbitrary formula A of L.

Obviously, a meaningless or explosive formal theory is not useful at all.
Now, in our terminology, the problem of ATF can be said as "for any given premises P,
how to construct a meaningful formal theory Ty (P) and then find new and inieresting theorem in

Ty %(P) automatically?" Since we investigate the problem of ATF from the viewpoint of logic, we
have an additional problem as "what logic system can underlie reasoning in ATF?" In the rest of
this paper, we want to give primary answers for the problems.

3. On the Logical Basis of ATF

An obvious candidate for the logic to be used to underlie ATF is classical mathematical
logic (CML for short) where the notion of entailment is represented by the extensional notion of
material implication, denoted by — here. However, the logic is not a suitable fundamental tool for
ATF because of the well-known "implicational paradox problem.”

10



According to the extensional and truth-functional semantics of the material implication, the
truth of the formula "A—B" depends only on the truths of A and B, though there could exist no
necessarily relevant, conditional, and/or causal relation between A and B. As a result, for
example, formulas "snow is white — 1+1=2," "snow is black — 1+1=2," and "snow is black —
1+1=3" are all true in the logic. However, if we read "—" as "if ... then ....," then "if snow is
white then 1+1=2," "if snow is black then 1+1=2." and "if snow is black then 1+1=3" are all false
in human logical thinking because there is no necessarily relevant, conditional, and/or causal
relation between the if-part and the then-part of each sentence. Obviously, in semantics the notion
of entailment used in human logical thinking is intrinsically different from the notion of material
implication in CML. Using the material implication as the entailment is problematical in
pragmatics. The "implicational paradox problem" is that if one regards the matenal implication as
the entailment and every logical theorem of CML as a valid reasoning form in human logical
thinking, then some logical axioms or theorems of the logic, such as "A—(B—A),"
"B—(—AvA)," "mA—(A—B)," "(mAAA)—=B," "(A—=B)w(—A—B)," "(A—=B)v(A——-B),"
"(A=B)v(B—A)," "((AAB)—=C)—={((A—=>C)v(B—(C))," and so on, present some paradoxical
properties and therefore they have been referred to in the literature as "implicational paradoxes”
[1,2,9,10]. For example, in terms of CML, formulas "A—(B—A)" and "B—(—AvA)" mean "a
true proposition is implied by anything"; formulas "—A—(A—B)" and "(—=AAA)—B" mean "a
false proposition implies anything"; formula "(A—B)v(B—A)" means "for any two propositions
A and B, A implies B or B implies A." However, it is obvious that we cannot say "if B then A"
for a true proposition A and an arbitrary proposition B, "if A then B" for a false proposition A and
an arbitrary proposition B, and "if A then B or if B then A" for any two irrelevant propositions A
and B.

According to Definition 2.1, for any formal theory Tepmy(P), all implicational paradoxes
are logical theorems of Tepmp(P). As a result, for a conclusion of a deduction from P based on
CML, we cannot directly accept it as a valid conclusion in the sense of entailment, even if each of
given premises P is valid. For example, from any given premise "A", we can infer "B—A,"
"C—A," ... where B, C, ... are arbitrary formulas, by using logical axiom "A—(B—A)" of CML
and Modus Ponens for material implication, i.e., B2Ae Temu(P), C—Ae Temu(P), ... for any
AePUTemL(P). However, from the viewpoint of human logical thinking, this reasoning is not
necessarily regarded as valid in the sense of entailment because there may be no necessarily
relevant, conditional, and/or causal relation between B, C, ... and A and therefore we cannot say
“if B then A," "if C then A,"” and so on.

There is another more serious problem as follows if we use CML to underlie ATF. Since
paradox (AA—A)—B is a logical theorem of CML, by Modus Ponens, Be Tewmy(P) for arbitrary
formula B if Temy (P) is directly or indirectly inconsistent. Therefore, if a formal theory T (P)
is directly or indirectly inconsistent, then it must be meaningless or explosive. This fact shows
that CML is not a suitable fundamental tool for ATF in empirical and/or experiential sciences
because almost all, if not all, formal theories constructed based on an empirical and/or experiential
science is generally indirectly inconsisient. This proposition is also true for any of various
extensions of CML where paradox (AA—A)—B is accepted as a logical theorem and Modus
Ponens serves as an inference rule.

Note that all of those logic systems (including modal logic systems, intuitionistic logic, and
those logic systems developed in recent years for nonmonotonic reasoning) where the entailment is
directly or indirectly represented by the material implication have the similar implicational paradox
problem as that in CML. Therefore, in order to find a right fundamental logic to underlie ATF,
we have 1o investigate some "implicational-paradox-free” logic systems and discuss the validity of
reasoning based on them in the sense of the entailment.

Relevant logics are constructed during the 1950s~1970s in order to find a mathematically
satisfactory way of grasping the notion of entailment [1,2,9,10]. The first one of such logics is
Ackermann's logic system []'. Ackermann introduced a new primitive connective, called
"rigorous implication," which is more natural and stronger than the material implication, and
constructed the calculus [' of rigorous implication which provably avoids those implicational
paradoxes. Anderson and Belnap modified and reconstructed Ackermann's system into an
equivalent logic system, called "system E of entailment." Belnap proposed an implicational
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relation, called "relevant implication," which is stronger than the material implication but weaker
than the rigorous implication, and constructed a calculus called "system R of relevant implication."
E has something like the modality structure of classical modal logic 84, and therefore, E differs
primarily from R in that E is a system of strict and relevant implication but R is a system of only
relevant implication. Another important relevant logic system is "system T of ticket entailment” or
"system T of entailment shorn of modality" which is motivated by Anderson and Belnap. A major
feature of these relevant logics is that they have a primitive intensional connective to represent the
entailment and their logical theorems include no implicational paradoxes [1,2,9,10].

However, although the relevant logics have rejected those implicational paradoxes, there
still exist some logical axioms or theorems in the logics which are not natural in the sense of
entailment. Such logical axioms or theorems, for instance, are "(AAB)=A," "(AAB)=B,"
"(A=B)=((AAC)=B)," "A=(AvB)," "B=(AvB)," "(A=B)=(A=(BvC())" and so on, where
"=" is the primitive intensional connective in the logics to represent the notion of entailment. The
present author named these logical axioms or theorems “cﬂnjun{:tiﬂn—imiljcational paradoxes” and
"disjunction-implicational paradoxes" [4-6]. Similar to the case of CML, according to Definition
2.1, for any formal theory Tp(P), Te(P) or Tr(P), all conjunction-implicational and disjunction-
implicational paradoxes are theorems of Ty(P), Tg(P) or Tr(P). As a result, for a conclusion of a
deduction from P based on T, E or R, we cannot directly accept it as a valid conclusion in the
sense of entailment, even if each of given premises P is valid. For example, from any given
premise "A=B", we can infer "(AAC)=B," "(AACAD)=B," and so on by using logical theorem
"(A=B)=((AAC)=B)" of T,E and R and Modus Ponens for entailment, i.e.,
(AAC)=Be Ttgr(P), (AACAD)=Be Trgr(P), ... for any A=Be PUTTgr(P). However,
from the viewpoint of human logical thinking, this reasoning is not necessarily regarded as valid in
the sense of entailment because there may be no necessarily relevant, conditional, and/or causal
relation between C, D, ... and B and therefore we cannot say "if A and C then B," "if A and C and
D then B," and so on, Therefore, in order to find a right fundamental logic to underlie ATF, we
have to investigate some logic systems which are free of not only implicational paradexes but also
conjunction-implicational and disjunction-implicational paradoxes.

Recently, the present author proposed two new relevant logics, named Ec and Re, for
conditional relation representation and reasoning [7,8]. As a modification of E and R, Ec and Re
rejects all conjunction-implicational paradoxes and disjunction-implicational paradoxes in E and R,
respectively, and therefore, they are free of implicational, conjunction-implicational, and
disjunction-implicational paradoxes.

Using paradox-free relevant logic systems Ec and Re as the fundamental logic to underlie
ATF, we can avoid those problems in using CML, various extensions of CML, and relevant
logics E and R. In the following discussion, we will use Ec as our fundamental logic to underlie
ATF.

4. ATF by Entailment Calculus

Since a formal theory Tg(P) based on Ec is generally an infinite set of formulas, even
though premises P are finite, we have to find some method to limit the range of candidates for
“new and interesting theorems" to a finite set of formulas. The strategy the present author adopted
is to sacrifice the completeness of ATF to get the finite set of candidates. This is based on the
present author's conjecture that almost all "new and interesting theorems" of a theory can be
deduced from the premises of that theory by finite inference steps concerned with finite number of
low degree (will be defined below) logical entailments.

Definition 4.1 A formula A is a zero degree formula if and only if no entailment connective
occurs in it.

Definition 4.2 A formula in the form of A=B is a first degree formula (also called a first
degree entailment) if and only if both A and B are zero degree formulas. A formula in the form
of —A is a first degree formula if and only if A is a first degree formula. A formula in the form of
AAB is a first degree formula if and only if any of the following holds: (1) both A and B are first
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degree formulas, (2} A is a first degree formula and B is a zero degree formula, and (3) A is a zero
degree formula and B is a first degree formula.

Definition 4.3 Let k be a natural number. A formula in the form of A=B is a kth degree
formula (also called a kth degree entailment) if and only if any of the following holds: (1) both
A and B are (k-1)th degree formulas, (2) A is a (k—1)th degree formula and B is a jth (j<k—1)
degree formula, and (3) A is a jth (j<k—1) degree formula and B is a (k—1)th degree formula. A
formula in the form of —A is a kth degree formula if and only if A is a kth degree formula. A
formula in the form of AAB is a kth degree formula if and only if any of the following holds: (1)
both A and B are kih degree formulas, (2) A is a kth degree formula and B is a jth (j<k) degree
formula, and(3) A is a jth (j<k) degree formula and B is a kth degree formula.

Definition 4.4 Let L be a logic and k be a natural number. A kth degree formula A is a kth
degree logical theorem of L if and only if |- A.

Definition 4.5 Let L be a logic and k be a natural number. The kth degree fragment of L,
denoted by LK, is a set of logical theorems of L such that for any formula A, Ae Lk if and only if
(1) Ais an axiom of L, or (2) -1 * A and A is a jth (j<k) degree logical theorem of L.

Note that the kth degree fragment of logic L not necessarily include all kth degree logical
theorems of L because it is possible for L that deductions of some kth degree logical theorems of L.
must invoke those logical theorems whose degrees are higher than k. On the other hand,
according to Definition 4.5, the following holds obviously:

[cllc .. -tk Lkl .,

Definition 4.6 Let L be a logic and k be a natural number. A formula A is said to be k-
deducible from P based on L if and only if P I~ | * A holds but P - 1! A does not hold.

Note that the notion of k-deducible can be used as a metric to measure the difficulty of
deducing an empirical theorem from given premises P based on logic L. The difficulty is relative
to the complexity of problem being investigated as well as the strength of underlying logic L.

Based on the above discussion, we have an important result as follows.

Theorem 4.1 Let Tg(P) be a formal theory. If P is finite, then all empirical theorems of
Tge(P) which are k-deducible from P based on Eck must be finite. This is also true even if Tg(P)
is inconsistent. _

Proof Omitted.

Corollary Let Tgc(P) be a formal theory and k be a natural number. There exists a fixed point
P' such that PP’ and Tgck(P')=P'. This is also true even if Tg(P) is inconsistent.

Proof Omitted.

Note that the proposition that Theorem 4.1 says about relevant logic Ec does not hold for
those paradoxical logics such as classical mathematical logic CML and its various extensions,
relevant logics E and R because these logics accept implicational, conjunction-implicational, or
disjunction-implicational paradoxes as logical theorems.

Definition 4.7 Let Tg.(P) be a formal theory. Ec is said to be kth-degree-complete for
Tge(P) if and only if all empirical theorems of Tg=(P) are deducible from P based on Eck.

Having Ec as the fundamental logic and constructing, say the 3rd degree fragment of Ec
previously, for any given premises P, we can find the fixed point P'=Tgc3(P"). Since the number
of O-deducible, 1-deducible, 2-deducible, and 3-deducible empirical theorems is finite and Ec is
free of implicational, conjunction-implicational, and disjunction-implicational paradoxes, as a
result, we can obtain finite meaningful empirical theorems as candidates for "new and interesting
theorems” of formal theory Tge(P). Moreover, if Ec is 3rd-degree-complete for Tg(P), then we
can obtain all candidates for "new and interesting theorems" of Tg.(P). These are also true even if
Tge(P) is inconsistent. Of course, Ec may not be 3rd-degree-complete for Tge(P). In this case, a
fragment of Ec whose degree is higher than 3 must be used if we want to find those 4-deducible
empirical theorems, 5-deducible empirical theorems, and so on.
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5. Experiments with EnCal

We are developing an entailment calculus system named EnCal which is a general purpose
tool for entailment generation and verification. It can generate the kth degree fragment of a
specified logic, verify whether a formula is a logic theorem of the kth degree fragment of a
specified logic, and generate all k-deducible empirical theorems of a specified formal theory.

Below, we present some current results of our experiments with EnCal.

Table 1 shows a quantitative comparison of logical theorem schemata of 1st, 2nd, and 3rd
degree fragments of various logics, where T—, E=, R—, and CML —, denotes the purely
implicational fragments of relevant logic T, E, and R, and classical mathematical logic CML
respectively, and T— —, E= —, R— —, and CML - — denotes the implication-negation
fragments of T, E, and R, and CML respectively. We can see from the table that an enormous
number of logical theorems of CML are not accepted by relevant logics. This fact also tell us that
the consideration to get non-paradoxical logical theorems by filtering paradoxes from CML is not

practical.

Table 1 A quantitative comparison of logical theorem schemata of various logics

Fragment T—, E— R CML_, T= < E_ R -, CML_,;
axioms o 9 7 5 9 12 o 11

15t degree 0 1] 1] a 0 0 1] 2

2nd degree ] 1] 0 4 2 2 16

3rd degree 2 2 3 43 70 92 375 40941+

Fragment Te Ec Re T E R CML
axioms 12 16 12

1st degree 0 0 0 e oo oo -

2nd degree 7 7 4 o - - oo

3rd degree | 630 835 18097 e o - -

It is well-known that the following relationship holds for three major relevant logics T, E,
and R:

Th(T) = Th(E) < Th(R)
Using EnCal, we have found that the above relationship among fragments of the logics, at lest at
4th degree level, also holds as follows:
T:}.3 L E::-H' = R:}g, T:;q' - E:}“ = R:}’l
T= ,_I3 — Eﬁ,—lj - R:-,—F: T=>,—|4 - E#,—ﬁ L R:},—'l“

At present, it is not know that whether or not the above relationship holds for more higher degree
fragments of the logics.

Since almost all mathematics can be formulated in the language of set theory, the set
has been regarded as the ultimate proving ground for automated theorem proving programs [3,11].
This is also true in ATF. We take set theory as the starting point of our experiments on ATF with
EnCal and are finding "new and interesting theorems" in NBG set theory [3,11] by EnCal. The
underlying logic we adopted is Teqe which is an extension of Tc such that it has quantifier and
equality and relative axiom schemata. por
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Using EnCal, we have found the following: (1) There are 15 1st degree theorems, 46 2nd
degree theorems, and 7 3rd degree theorems which are 1-deducible from Giadel's axioms for NBG
sel theory based on Tege!. (2) There are 116 1st degree theorems, 9 2nd degree theorems, and 0
3rd degree theorems which are 1-deducible from Quaife's axioms for NBG set theory based on
Tcqe!. (3) There are 38 1st degree theorems, 186 2nd degree theorems, and 292 3rd degree
theorems which are 2-deducible from Godel's axioms for NBG set theory based on Teqe?, (4)
There are 220 1st degree theorems, 324 2nd degree theorems, and 432 3rd degree theorems which
are 2-deducible from Quaife's axioms for NBG set theory based on Teqe?. We are continuing the
experiment using the 3rd degree fragment of Tcqe. We are also doing a comparison of the
theorems found by EnCal automatically and the theorems proved by OTTER automatically or
semi-automatically.

6. Concluding Remarks

We have pointed out why classical mathematical logic and its various extensions are not
suitable logical tools for solving the problem of ATF, and shows that paradox-free relevant logics
such as T, Ec, and Rc are more hopeful candidates for the purpose. Based on this observation,
we have proposed a relevant logic approach to ATF and presented some results of our experiments
with EnCal which is a general purpose entailment calculus system.

Although the research presented here is a primary work, it opened a direction for solving
the problem of ATF and provided a conceptional foundation for the further research on this
direction.

There are many interesting and challenging research problems on the relevant logic
approach to ATF presented in this paper. For examples, some important issues are as follows:

(1) Does there exist a decision procedure for the kth-degree-completeness of Te, Ec, or Rc for
any given premises P?

{(2) What strategy we should adopt to deal with inconsistency in a formal theory when it is detected
in empirical theorem deductions?

(3) How can we define that an empirical theorem is "new" and/or "interesting" formally?
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