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Abstract

We have been developing Parallel Inference Fngine PIE64 and its de-
scription language Fleng, aiming at fast execution of large-scale knowl-
edge processing. Fleng is a programming language for fine-grained par-
allel symbolic processing, and it is suitable for highly-parallel processing
of non-uniform problems.

For fine-grained parallel processing, effective load distribution with
small overhead is a crucial issue. In this paper, we describe the Fleng
systemn on PIE64, focusing on its load distribution system. The results
of preliminary evaluation are also presented.

1 Introduction

Parallel processing of uniform problems, such as scientific computation, have been studied
for many years, and many technologies for them have been developed. However, it is dif-
ficult to apply these technologies to non-uniform problems, such as knowledge processing.

We have been developing Parallel Inference Engine PIE64 and its description language
Fleng, aiming at fast execution of large-scale knowledge processing. Fleng is a program-
ming language for fine-grained parallel symbolic processing, and it can realize highly-
parallel processing of non-uniform problems by extracting control concurrency.

The problem of communication and synchronization is known as essential for paral-
lel processing. Besides these issues, parallel management such as load distribution and
scheduling is also important. Overhead of parallel management is relatively small for
coarse-grained parallel processing. However, for fine-grained parallel processing, parallel
management becomes more crucial for efficient execution.

In this paper, we describe the overview of Fleng system on PIE64, focusing on its load
distribution system. Load distribution of PIE64 is handled at three stages: 1) static load
partitioning by the compiler, 2) dynamic load partitioning by the parallel management
kernel, 3) dynamic load assignment by the interconnection network. This combination of
static optimizations and dynamic control enables efficient execution. Moreover, since load
distribution is performed automatically, a programmer need no longer be concerned with
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load distribution, and he can concentrate on extracting as much concurrency as possible.

The problem of load distribution has been well-studied[1]. Much work has been done in
case where program behavior is known. However, since highly-parallel symholic processing
often shows irregular behavior, it is difficult to apply known techniques to it.

A common method for highly-parallel symbolic processing is that programmer designates
a strategy[2][3]. However, a programmer should concentrate on extracting as concurrency
much as possible in order to get sufficiently-high parallelism.

Fleng and PIE64 are described briefly in Section 2 and Section 3, respectively. Fleng
system on PIE64 is described in Section 4. The details of the load distribution system
of PIE64 are described in Section 5. The results of preliminary evaluation are shown in
Section 6. Section T concludes this paper.

2 Committed-Choice Language Fleng

Fleng is a programming language for fine-grained parallel symbolic processing, and is one
of Committed-Choice languages, or parallel logic programming languages. GHC is famous
as one of those languages.

A Fleng program is a set of Horn clauses like:

Head :- Body,, Body,, ..., Body,.

The left side of :- is called head part, and the right side is called body part.

The unit of execution in Fleng is called a goal. Body part of a clause consists of several
body goals, and it can be regarded as invocations of processes.

Figure 1 shows the execution model of Fleng. Execution of a Fleng program begins when
the top query goal is put into the goal pool. An arbitrary goal in the goal pool is selected
and- removed from the pool. Then, the goal is checked if it is unifiable with clauses in
the program (unification). If there is a clause whose head is unifiable with the goal, the
clause is chosen, and the goal is reduced to the body part of the clause (reduction). The
new body goals are added to the goal pool. Execution of Fleng is the repetition of this
process. When the goal pool becomes empty, execution ends.
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@ : GoalPool |
10006.-0 |
Error Waiting for
- Variable Value
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Figure 1: Execution model of Fleng
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A variable in Fleng is a single-assignment variable. A variable is unbound when it is
created, and it can later be bound with a value only once.

Synchronizations between goals are attained by the single-assignment variable. A vari-
able is bound with a value by active unification during the reduction process. If a par-
ticular value of an unbound variable is required during head unification, execution of the
goal is suspended and wait for the variable to be bound. When the variable is bound with
a value by execution of another goal, the suspended goal is re-activated and returned to
the goal pool.

3 Parallel Inference Engine PIE64

PIE64 is a parallel inference machine which is designed to execute Fleng efficiently. It
consists of 64 processing elements called Inference Units(IUs) and two interconnection
networks.

Inference Unit

Figure 2 shows the rough block diagram of an IU. Each IU has three kinds of proces-
sors; UNIRED(Unifier-Reducer) for computation, NIP(Network Interface Processor) for
communication and synchronization, and MP(Management Processor) for management.

Heap memory in each IU can be accessed in a single global address space throughout
all TUs. In other words, PIE64 has distributed shared memory or NUMA (Non-Uniform
Memory Access) architecture. '

inference Unit

UNIRED

Interconnaction

LMEM NIP T Networks

MP
UNIRED: Unifier-Reducer
¥ MIP: Network Interface Processor
¥ MP: Management Frocessor
Host 1/O LMEM: Local Memory

Figure 2: Diagram of the Inference Unit

UNIRED[4] is a dedicated processor for executing Fleng programs. It has a tag architec-
ture and an ordinary RISC instruction set with some dedicated instructions for executing
Fleng programs. Fleng programs are compiled into UNIRED instructions, and unification
and reduction of each goal are performed as a thread in UNIRED. .

NIP[5] is a dedicated processor for communication between IUs and synchronization
among Fleng processes.
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MP performs parallel management. We use SPARC, a general purpose RISC processor,
as MP.

Interconnection Network

The interconnection network[6] is a multi-stage, circuit switching network. The most no-
table feature of the interconnection network is automatic load balancing facility. Each
IU declares its local load level to the interconnection network, and the network can au-
tomatically select the least-loaded IU as the destination IU. As the least load level is fed
back to each 1U, this facility can also be used to observe global load level over the entire
machine. As this facility utilizes unused resources, it yields no overhead.

4 Fleng system on PIE64

For deriving good performance from highly-parallel computers, load distribution and
scheduling are important. To cope with these issues, we have adopted combination of
static optimizations and dynamic control.

The Fleng system consists of a compiler system and a run-time system. In PIE64,
compiled codes executed by UNIREDs and the run-time kernel execnted by MPs cooperate
to execute Fleng programs. The run-time system includes also a Fleng interpreter.

4.1 Fleng compiler system

Figure 3 shows the compiling process of a Fleng program.

_ Lﬂﬂ_nu program
- Static Analyzer ], COTPler Spstem

o b :

— e
3 Fiena program with annotations
3 UNIRED assembly code’
UNIRED Assembler I
3 UNIRED COFF file
Run-time System

Figure 3: The compiling process of a Fleng program

The preprocessor performs load partitioning and scheduling according to the information
obtained by the static analyzer. Decisions made by the preprocessor are added to the Fleng
program as annotations, and the compiler generates UNIRED assembly code according to
the annotations. Finally, UNIRED assembler generates UNIRED instruction codes, and
they are executed by the run-time system. _

The static analyzer, the preprocessor, and the compiler are written in Fleng itself.
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4.2 Execution of Fleng in PTE64

Here we describe how Fleng programs are executed in PIE64.
In PIE64, three kinds of processors in each IU are connected through a high-speed
command bus, and cooperate to execute by exchanging commands, as shown in Figure 4.

Execution of Fleng begins by putting a top query goal into the goal pool. In PIE64, the
goal pool is managed by MP. MP selects an arbitrary goal from the pool for execution,
and provides it to UNIRED by sending reduce. On receiving reduce from MP, UNIRED
starts unification and reduction as a thread, and on termination of the thread, UNIRED
sends endreduce to MP.

When memory reference is required,

e if the mem:ﬁy address is local, UNIRED directly Iéa.ds from the address.

e if the memory address is remote, UNIRED sends read to NIP, and NIP in the
destination IU reads from the address and returns the data.

During the reduction process, new variables, cons cells, vectors, and goals are generated
dynamically.

Generation of new variables, cons cells, and vectors are performed by allocating them
in heap memory. Allocation of heap memory in the local [U can be performed directly
by an instruction of UNIRED. However, in order to allocate heap memory in the remote
IU, UNIRED first creates the data which should be transferred to the remote IU in the
temporary area of the local memory, and then transfers it by sending writelm! to NIP.
In the destination IU, NIP automatically allocates heap memory and writes the received
data there.

New goals generated by reduction are delivered from UNIRED to MP.

o If the goal is to be executed in the local IU, UNIRED sends newgoal to MP, and
MP adds the goal to its goal pool.

¢ To distribute a goal to other IU, UNIRED sends writelm to NIP. In the destination
IU, atter the transfer, NIP sends newload to MP in order to notify arrival of a new
goal.

On reference to an unbound variable during head unification, UNIRED sends suspend
to MP and suspends execution of the goal. MP allocates a suspension record, and sends
suspend to NIP. Then NIP registers the suspension record on the undefined variable.

When the value of the variable is determined, NIP receives bind from UNIRED. Then
NIP binds the variable with the value and sends activate to MP for each of the suspension
records registered on the variable. MP returns the goal to the goal pool. Communications
required during suspension and activation are performed automatically by NIP.

"This command sends data to a designated IU if the destination IU is designated as an operand. If
the destination I is not designated as an operand, it sends to the least-loaded TU, using the automatic
load balancing facility of the interconnection network.
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Figure 4: Cooperative Processing Model in PIE64

5 Load distribution system of PIE64

5.1 Three-stage automatic load distribution
In PIE64, load distribution is automatically handled at three stages as follows:

1. Static Load Partitioning by the compiler.
2. Dynamic Load Partitioning by the parallel management kernel.

3. Dynamic Load Assignment by the interconnection network.

In the first stage, the compiler partitions loads according to the data-dependency. This
optimization is done so as to enhance memory reference locality as far as the maximum
concurrency is maintained.

In the second stage, the parallel management kernel makes an easy decision whether
partitioning should be done or not, according to the global load level at the time. Such
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global information can be collected by the interconnection network without any overhead.
This optimization eliminates excessive concurrency and reduces communication further.

And finally, in the third stage, when partitioning is decided to be done by the parallel
management kernel, the load 1s assigned to the least-loaded IU in order to balance load
among [Us. This assignment is done by the automatic load balancing facility of the
interconnection network. If partitioning is not taken, the load is held in the local 1U.

In PIEG4, load distribution is performed automatically. Thus, a programmer need no
longer be concerned with load distribution, and he can concentrate on extracting as much
concurrency as possible.

5.2 Static load partitioning

In the first stage of three-stage load distribution in PIE64, the compiler statically parti-
tions loads in order to reduce communication and synchronization without loss of concur-
rency.

5.2.1 load partitioning tactics

A point where load partitioning is possible in the program is called a load partitioning
point. We consider two kinds of load partitioning points:

1. Points where heap memory is allocated. (The IU where heap memory is allocated
must be designated.)

2. Points where a goal is generated. (The IU which performs the goal must be desig-
nated.) .

For each load partitioning point in the program, one of the following load partitioning
tactics is selected:

Tactic A: Select the least-loaded IU.
Tactic B: Select the local IU.

Tactic C: Select the IU pointed to by a pointer obtained as an argument of the parent
goal or as an element of a structure in the arguments.

Tactie D: Select the same IU as is selected by an invocation of tactic A at a different load
partitioning point of heap memory allocation within the same clause.

In our compiler system, automatic designation of these load partitioning tactics has
been realized. Load partitioning tactics are expressed by annotations in the form of
‘...@annotation’, and the preprocessor designates load partitioning tactics by adding the
annotations to the Fleng program.

o any(label)
This is an invocation of tactic A.

* local
This is an invocation of tactic B.

o onllabel)
This is for a datum referred to by invocations of tactic C.
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o to(label)
This is an invocation of tactic C or D which refers to on(label) or any (label) with
the same label in the same clause.

Note that these tactics use only relative designation; absolute designation with the
explicit IU number is not used. Thus, the same code can be executed with any number
of IUs, and scalability is guaranteed.

5.2.2 Data-flow analysis

Static load partitioning is performed automatically by the preprocessor. To partition loads
effectively, the preprocessor uses data-dependency information. First, mode analysis is
performed for each clause in the program. And then, the data-flow graph is built according
to the mode information.

The data-flow graph is represented by a directed graph, the nodes of which represent
goals or variables. An Edge from a variable node to a goal node represents that the value
of the variable is required to execute the goal. In other words, the goal has to suspend
until the variable is bound. An Edge from a goal node to a variable node represents that
the goal binds the variable with a value.

Figure 5 shows an example of a Fleng program. It is a part of an n-queens program.
The data-flow graph of the program is shown in Figure 6.

check(P, D, L, [QILp0], Lp, 40, &) :-
ﬂdd(ﬂr D, Sum),
equal(Sum, P, R1),
sub{Q, D, Dif),
equal(Dif, P, R2),
chk(Ri, R2, P, D, L, Lp0, Lp, 40, A).

Figure 5: Sample program _ _
Figure 6: Data-flow graph

The problem of load partitioning can be resolved into partitioning of the data-flow
graph. For any walks in the data-flow graph, any two goals on the walk cannot be
executed simultaneously. For example, add(q,D,Sum) and equal (Sum,P,R1) in Figure 6
cannot be executed simultaneously. These goals can be assigned to the same 1U without
any loss of concurrency.

In this way, the graph in Figure 6 can be divided into two parts and assigned to different
IUs. Figure 7 shows the program after static load partitioning.

Figure 8(a) shows the result of static partitioning, and Figure 8(b) shows the worst
result of naive partitioning; new goals are all distributed to different IUs, while all data
are allocated in the local IU. A large square represents an IU, and a directed edge between
goals and variables represents a memory access.

Static load partitioning reduces the number of remote re;ferenc:es to only one. Note that
concurrency is not reduced by static load partitioning, even though only two IUs are used.
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check(P, D, L, [Q|Lp0], Lp, A0, A) :-
add(Q, D, Sum @ any(1)) @ to(1),
equal(Sum, P, R1 @ to(1)) @ to(1),
sub(Q, D, Dif @ any(2)) @ to(2},
equal(Dif, P, R2 @ to(2)) @ to(2),
chk(R1, R2, P, D, L, LpO, Lp, A0, &) to(2).

Figure 7: Statically partitioned program

IUA IUB wc

o]
AZTRIN
1

ive D IWE IUF
(a) Optimized partitioning (b) Naive partitioning

Figure 8: Results of load partitioning,

5.3 Dynamic load partitioning

Dynamic load partitioning is performed in order to eliminate excessive concurrency and
reduce communication.

Static load partitioning designates load partitioning tactics for each load partitioning
point. However, whether partitioning is actually taken or not depends on the run-time
situation. This decision is made dynamically by the parallel management kernel.

Parallel management kernel

The parallel management kernel is executed by MP in each IU, and it performs low-level
system managements. The most significant function of the kernel is load distribution and
scheduling. The kernel uses global load level over the entire machine obtained from the
interconnection network, in order to determine the best load distribution and scheduling.

When the global load level is low, parallelism is insufficient, and loads should be dis-
tributed in order to increase parallelism immediately. So the loads are distributed accord-
ing to the static tactics.

However, when the load level is high, parallelism is sufficient, and there is no need to
worry about the loss of concurrency. Therefore, load distribution is not taken to reduce
communication.
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Implementation of dynamic load partitioning

Dynamic load partitioning is implemented as follows.

When UNIRED receives reduce form MP, it starts execution of a thread by dispatching
to the corresponding entry-point of the compiled code. Dynamic load partitioning is
implemented by changing the dispatch target of reduce.

First, we prepare two kinds of codes for UNIRED; 1) code which distribute loads (stat-
ically load-partitioned code), 2) code which never distribute loads.

The number of active goals in the goal pool can be regarded as the load level of the IU.
Each IU declares this load level to the interconnection network. Then, as we described
in Section 3, each IU can know the global load level as a feed-back from the network.
MP compares the global load level with a threshold that is specified beforehand, and
sets a flag which indicates whether load level is high or low. When UNIRED receives
reduce form MP, UNIRED checks the flag and changes the dispatch target according to
it. When global load level is low, UNIRED dispatches to the entry-point in the code which
distributes loads. On the other hand, when global load level is high, UNIRED dispatches
to the entry-point in the code which never distribute loads,

A rough diagram of this mechanism is shown in Figure 9.
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Figure 9: Mechanism of dynamic load partitioning

6 Preliminary evaluation

We have done preliminary evaluation on PIE64 to know the effectiveness of our load
distribution system.

The program we used for evaluation is “primes 3k”, which finds all the prime numbers
less than 3000. The program was compiled into UNIRED instruction code and executed
by UNIRED. Since the compiler available now is a relatively-naive one, we used hand-
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optimized codes for evaluation. Conditions for measurements and the kind of measured
data are listed below. The results of measurements are shown in Figure 10 through 12.

e Conditions for measurements:

number of IUs used: 4, 16, 64
whether to perform static load partitioning or not: ON, OFF
dynamic-partitioning threshold level: 1, 2, 3, 4, 6, 8, 10, 12, 16, 32, 64, 128

s Measured data:

UNIRED running time: total time that UNIRED was running without stall.
UNIRED stall time: total time that UNIRED was waiting for a reply from NIP.
NIP running time: total time that NIP was running.

Suspension rate: raie of suspension count against reduction count

Each figure consists of two graphs. The graph on the left side shows the results with
static partitioning off, while the graph on the right side shows the results with static
partitioning on. Thus, the effects of static load partitioning can be known by comparing
the two graphs in each figure. _

Each graph in the figure shows the results measured by changing the threshold level of
dynamic load partitioning, i.e. each graph shows the effects of dynamic load partitioning.
If the global load level is greater than or equal to the threshold level, dynamic load
distribution is not performed, and new goals and data are held in the local 1U. As the
threshold level gets lower, dynamic load partitioning is performed aggressively. Thus,
setting the threshold level high can be regarded as disabling dynamic load partitioning.

Figure 10 shows the results using 4 IUs,
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Figure 10: Effects of load partitioning (4 1Us are used)

Comparing the two graphs in the figure, we can see that UNIRED stall time has been
reduced by the static partitioning, which means that memory reference locality has been

a7



enhanced. The two graphs also show that the running time of NIP has been reduced by
static partitioning, which means that communications between [Us have been reduced.

Each of the two graphs in Figure 10 shows that NIP running time and UNIRED stall
time gets shorter as the dynamic-partitioning threshold level gets lower. Namely, dynamic
partitioning also reduces communications and enhances memory reference locality.

The graph on the left(results without static load partitioning) shows that the running
time of UNIRED becomes longer as the dynamic-partitioning threshold level becomes
lower. The reason is that the suspension rate gets greater and handling of suspension
makes the running time of UNIRED longer.

Figure 11 and 12 show the results using 16 and 64 IUs, respectively.
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Figure 11: Effects of load partitioning (16 IUs are used)
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Figure 12: Effects of load partitioning (64 IUs are used)
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These results also show that static load partitioning reduces communication and en-
hances memory reference locality. However, as the number of used 1Us increases, the
effectiveness of dynamic load partitioning gets smaller. Namely, if the concurrency of the
program is insufficient against the number of processors, dynamic load partitioning shows
little effect and static load partitioning is important.

While our load distribution system does reduce the running time of UNIRED and NIP,
we evaluated only the running time of UNIRED and NIP, and overall execution time was
not evaluated. The reason is that, in the current run-time system on PIE64, overhead
of managements performed by MP is considerably large, and the overall execution time
is dominated mainly by the running time of MP. Thus the improvement in the running
time of UNIRED and NIP have little effect on the overall execution time.

However, a new improved run-time system which decreases the overhead will be available
before long. With the new run-time system, improvement in the running time of UNIRED
and NIP must contribite to the improvement of the overall execution time.

7 Conclusion

This paper presented the overview of the Fleng system on PIE64, focusing on its load
distribution system.

Load distribution in PIE64 is performed by combination of static partitioning, dynamic
partitioning, and dynamic assignment. The results of preliminary evaluation show that:

¢ when there is sufficiently-high concurrency against the number of 1Us,

— static partitioning succeeds in reducing communication,
— dynamic partitioning reduces communication further.

¢ when concurrency is insufficient against the number of [Us,

— static partitioning succeeds in reducing communication without losing concur-
rency,

— dynamic partitioning shows little effect.

From the results, we can conclude that static partitioning is effective in any situations,
especially in low-concurrency situations. On the other hand, dynamic load partitioning is
effective in high-concurrency situations, and the combination of static and dynamic load
partitioning exhibits the best effects in any situations.

For future work, the following points are important:

o Optimizations to reduce suspension,

¢ Fvaluation of the overall execution time on the new run-time system.

As the result of preliminary evaluation shows, increase in the number of suspension may
cancel the effectiveness of load partitioning. Thus, scheduling that causes less suspension
becomes important.
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