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Abatract

Uniform problems, such as scientific computation, can be executed in parallel using parallelizing
compilers or data parallel languages these days. However, general applications, such as knowledge
processing, are non-uniform, and highly-parallel execution of these problems is difficult with known
techuique. We designed Committed-Choice language Fleng for highly-parallel execution of non-
uniform problems, and we have been developing Parallel Inference Engine PIE64 to execute Fleng
programs efficiently. The development of PIE€4 system has almaost finished, and it is now working.
In the present paper we will describe integrated system of PIEG4, including hardware and software,
and its preliminary evaluation.

1 Introduction

Parallel computers are available these days. They succeed in the area of uniform problems such as
scientific computation, using parallelizing compilers or data paralle] languages; they can make use of a
lot of data concurrency which uniform problems have.

However, general applications, such as knowledge processing and symbol processing, are non-uniform,
from which we cannot expect much data concurrency. Thus highly-parallel execution of these problems
is dificult with known technique.

We designed Committed-Choice language Fleng for highly-parallel execution of such problems. Fleng
can extract control concurrency from non-uniform problems, We have developed Parallel Inference Engine
PIE64 which executes Fleng programs efficiently. All of the hardware design and implementation of the
system was done only by the staff in the university without any technical support from the industry.

The development of PIE64 system has almost finished, and PIEG4 is now working. The present paper
describes integrated PIEG4 system and its preliminary evaluation.

Fleng is described in the next section. Hardware and software of PIES4 is described in section 3 and
4 respectively. Section b gives preliminary evaluation of the system and we describe conclusion in the
last section.

2 Committed-Choice Language Fleng

We designed Committed-Choice language Fleng[l] to describe fine grained parallel symbol processing.
GHC(Guarded Horn Clauses)[2], Concurrent Prolog[3], and PARLOG are famous as the same kind of
languapes. TFleng has no guard goals, and only a head realizes guard mechanism; Fleng is a simpler
language than other Committed-Choice languages.

A Fleng program is a set of Horn clauses like:

Head :- Body,,Bodys,...,Body,.

The left side ol :- is called a head part, and the right side is called a body par! whose item Body; is called
a body geal

Execution of a Fleng program is repetition of rewriting goals in parallel. For each execution of a goal,
one clause whose head can match with the goal is selected, then the goal is rewritten into body goals.
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This matching operation is called head-unificafion, and the rewriting operation is called reduction. This
process is repeated by the goals newly created by reduction.

A variable in a goal is a single assignment variable; it cannot be assigned more than once. It has
one of two states:bound and unbound. If variables needed for head-unification are unbound, the goal is
suspended. Suspended goals are activaled when the variables which caused suspension are bound.

Any goals can be executed in parallel, synchronizing by suspend-activate mechanism in a data-flow
manner. This enables highly-parallel execution of non-uniform problems.

3 Hardware of PIE64

3.1 Overview of PIE64
Figure 1 shows the global architecture of PIEG4 and its appearance working with 64 Inference Units.
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ILJ - Inference Unit
PAM - Process Allocation Network
DAN - Data Allocation Network

Figure 1: Global architecture and an appearance of PIEG4: PIEG4 consists of 64 processor elements called
IT and two independent interconnection networks called PAN and DAN,

PIE64 is a parallel computer designed to execute Fleng program efficiently. It has 64 processor
elements called Inference Unit(IU). All IUs are connected by two independent interconnection networks.
These are circuit-switching multi-stage networks which have dynamic load balancing facility.

An [U contains three kinds of processors: UNIRED(Unifier/Reducer), NTP(Network Interface Proces-
sor) and MP(Management Processor). UNIRED is a processor for computation, NIP is one for commu-
nication, and MP is one for management. UNIRED and NIP are dedicated processors developed in our
laboratory, and we use general purpose RISC processor SPARC as MP. These three processors cooperate
to execute Fleng programs. :

An IU has 4MB of local memory. The address space of PIEG4 is global throughout all the IUs, i.e.
PIE64 has NUMA(Non-Uniform Memory Access Time) type shared memory.

We will describe an interconnection network, an inference unit, UNIRED, NIP, and maintenance tools
individually in the following subsections.

3.2 Interconnection network
The features of the interconnection network[4] of PIE64 are as follows:
s Circuit-switching
s Multi-stage network
# Dynamic load balancing facility
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¢ Two independent networks

As a Fleng program runs, the network is mainly used to read remote variable and to transfer newly
created goals. The length of variable is a few words, and that of a goal is 10 words or so. This indicates
that frequently transferred data through the network are short. Thus it is more important to be of low
latency than to achieve high throughput.

Reading remote data needs bidirectional communication, that is, an IU receives data from another
I after sending the address of the data to it. Because remote-memory-read aperations are the dominant
operation through the network, efficient bidirectional data transfer is important.

For these reasons, we adopted circuit-switching network. It enables low-latency communication and
efficient bidirectional data transfer. Figure 2 shows the topology of it.

A notable feature of this interconnection network is dynamic load balancing facility. With this facility,
the path to the least-loaded connectable IU is automatically established by the network itself. To realize
this feature, load values are always sent through unused network paths in the reverse direction. Switches
of the network compare load values to select the lowest one, and they tell the lowest value to the prior
stage of the network. Selecting the path of the lowest value at each stage enables us to connect with the
least-loaded TU. This facility utilizes resources unused for communication, thus it causes no overhead.

PIEG4 has two independent interconnection networks of this kind: Process Allocation Netwark (PAN)
and Data Allocation Network (DAN). They are distinguished only by its usage. PAN is used to transfer
goals, and DAN is used fo read remote memory and to allocate remote heap memory.

To realize this network, we developed 4 x 4 crossbar switches with 8 bit data width using gate array.
This chip is called Switching Unit (SU). The SU chip has two modes: master mode and slave mode,
intended to expand data width in a bit-slice manner. In PIEG4, three slave chips are connected to a
master chip to be used as a switch with 32 bit data width. Each network contains 192 SU chips.

- An SU chip is implemented using an 8700-gate gate array in a 179-pin PGA package. Figure 5 shows
an 5U chip, together with other chips.
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Figure 2: Topology of the network: This is circuit-switching multi-stage network, which has load dynamie
load balancing facility.
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3.3 Inference Unit

In parallel processing, not only actual computation, but also communication and control are important
to achieve high performance. Thus parallel processing can be formulated as follows:

Parallel Processing = Computatien + Communiecation + Control
We adopted a cooperative execution model of three dedicated processors according to this formulation.

Computation ... UNIRED(Unifier/Reducer)
A dedicated processor for executing Fleng program.

Communication ... NIP(Network Interface Processor)
A dedicated processor for communication and synchronization.

Control ... MP(Management Processor) -
A processor for parallel management. We use SPARC as MPF.

An IU consists of these three kinds of processors. These processors are connected by a command hus,
and cooperate by exchanging commands, as shown in Fig. 3.

Scheduling, Losd Distribuiian, Goal Manngement,
Memory Mamgement, System Predicate, 0 Processing

] |

UNIRED

Figure 3: Cooperating Execution Model: Three kinds of processors exchange commands to cooperate in
each ITI.

The following is the outline of this cooperative process:

On receiving reducs with a goal from MP, UNIRED begins execution of a thread to perform unification
and reduction of the goal. On a remote memory reference during execution, UNIRED sends deref or
read to NIP. In crder to assign a value to a remote variable, UNIRED sends bind to NIP. UNIRED
delivers a new goal created by reduction to MP by newgoal. On a reference to an undefined variable,
UNIRED sends suspend to MP, and suspends execution. When MP receives suspend from UNIRED, it
creates some management information, and sends suspend to NIP to request to add a goal identifier to
the suspension record of the vanable When NIP receives bind, NIP binds the value to the variable, and
sends activate to MP.

An IU has 4MB of SRAM as local memory. These three processors share four banks of local memories
through three memory buses, where bus arbitration and data transfer are pipelined to obtain high memory
bandwidth.

Figure 4 shows the organization and an appearance of Inference Unit.

3.4 UNIRED

UNIRED[5] is a dedicated processor designed in our laboratory. It was demgrted to execute Fleng program
efficiently. 'The features of UNIRED are as follows:

¢ A RISC architecture

» A tag architecture

+ A dedicated instruction set for executing Fleng programs efficiently
. Multi-;::ontext processing
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Figure 4: Inference Umit: MP, UNIRED, and NIP -are connected by a command
processors share four banks of local memories through three memory buses.
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us. These three

Adopting a RISC architecture enables UNIRED to execute every instruction within a single eyele.

UNIRED has not only general purpose, but also special instructions for executing Fleng programs
efficiently

We adopted multi-context processing, taking advantage of the fact that Fleng programs create many
threads which can be executed in parallel. The internal pipeline of UNIRED is shared by multiple
instruction sireams. When one of the contexts waits for a result of some remote memory access, UNIRED
fills its pipeline with other confexts dynamically. This enables us to hide the latency of remole memory
access. With this feature, UNIRED acts as a pipeline-shared MIMD processor,

Moreover, the pipeline of UNIRED is not a cyclic pipeline; i.e. having pipeline interlocking capability,
UNIRED can execute instructions in every cycle, even if there is only one active context. Thus, there is
no significant performance loss to execute a sequential program. The number of contexts is four.

UNIRED accesses heap memory in a single address space throughout all the [Us. When UNIRED
reads memory, it detects antomatically if the address is local or remote. If the address is remote, it
sends commands to NIP. Thus, remote and local memery reference need not be distinguished on the
UNIRED machine langunage level. PIEG4 has distributed shared memory or a NUMA architecture using
this facility. Figure § shows an appearance of UNIRED.

3.5 NIP

NIP[6] is a dedicated processor designed in our laboratory. It was designed for communication and
synchronization.
The functions of NIP are as follows:

¢ Read, write, bind, and dereference remote variables
# Suspend and activate goals
= Support garbage collection

WIP interfaces the interconnection network and an IU with such commands as read, write, bind and
dereference. Sending these commands to NTP enables UNIRED and MP to execute actual computation
in parallel with these operation.
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Suspend and activate are executed with wired-logic sequencer. This enables low-cost synchroniza-
tion. Figure 5 shows an appearance of NIP.

Figure 5; LSIs used in PIE64. From left to right, SU, UNIRED and NIP.

3.6 Maintenance tools

Easy maintenance is also important on large scale parallel computer development. PIES4 is equipped
with maintenance hardware TAKO[7], which works as a logic analyzer, network maintenance hardware,
a host interface and a clock generator. TAKO played an important role in completing PIEG4.

TAKO contains a network scan interface and a logic analyzer with eight probes. The scan interface
can read and set state of crosshar switches, with the network stopped. The logic analyzer is used both
for a network and for an IU; it can watch both data on networks and data on buses of IUs.

We developed TAKO supparting software which give us graphical user interface. It shows acquisition
pattern of the logic analyze in time chart formant, and enables us to see and set network state graphically.

4 Software of PIE64

4.1 Compiler

A Fleng compiler[8] is written in Fleng itself and can be executed in parallel. We are now developing a
new compiler which has following features:

e Static load partitioning
# (Granularity control

Fach feature is explained as follows.

Static load partitioning On Fleng execution model, all goals are executed in parallel synchronizing
in data-flow manner. But assigning all goals to different IUs causes unnecessary communication, because
data-dependent goals cannot be executed in parallel. The compiler analyzes data flow of a program, and
assign goals and data which depend on each other to one IU. This reduces communication maintaining
concurrency.
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Granularity control Fine grain execution can extract sufficient concurrency, but it causes large over-
head such as goal management. When sufficient parallelism is extracted and all [Us have sufficient load,
there is no need to extract more parallelism.

Thus, the compiler compiles a program into two granularity codes: a fine grain code and a coarse
grain code. Parallel management kernel selects which code to use according to the parallelism at run
time. When the parallelism is too low to fill all IUs with load, the kernel uses a fine grain code, and when
all 1Us are sufficiently loaded, the kernel uses a coarse grain code. .

This feature is now under development,

4.2 Parallel management kernel

Parallel management kernel[9] is executed by MP, and it plays a part of Control out of three elements of
parallel processing: Computation, Communication, and Control. It is a counterpart of operating system
kernel, and performs low-level system management which cannot be written on Fleng level.

It has roughly two kinds of facility: one is ordinary management needed even by sequential process-
ing, and the other is management which is characteristic of parallel processing. The former includes
management of clauses, 1/0, and memory, and the latter includes goal scheduling, load partitioning, and
switching compiled code.

Significant fanctions of the kernel are load partitioning and selecting compiled code. By dynamic
load balancing facility of the interconnection network, an IU can know the load value of the least-loaded
IU. The value indicates if all IUs are sufficiently luadﬂtl. When all IUs have sufficent load, the kernel
does not send newly created load to other IUs, and executes them on the local IU; and it uses a coarse
grain code if the program is compiled into two granularity codes. It eliminates excessive COMCUTTEncY,
and reduces communication and goal management overhead.

4.3 Debugger
4.3.1 Multi-window Debugger HyperDEBU

Debugging parallel programs is more difficult than sequential programs, because in a parallel program
many processes run simultaneously and interact with each other. We developed a multi-window debugger
HyperDEBU[10][11] to debug highly parallel Fleng programs.

HyperDEBU visualizes execution of a program as processes communicating each other. Multi-window
system provides various views which enable a programmer to observe and operate complicated con-
trol/data flow of programs.

HyperDEBU is written in Fleng itself and can be executed in parallel. Figure 6 shows an overview of
HyperDEBT,

4.3.2 Performance debugging tool Paf

A cause of inefficiency of program is called a performance bug. Paf[12] is a debugging tool to debug
performance bugs of Fleng programs.

Paf executes a Fleng program on infinite virtual processors and traces it, so that the trace indicates
program’s behavior which is independent of execution environment. Paf can display conecurrency and
critical path of a program, and programmers can debug performance bugs using these information.

Figure 7 shows an overview of Paf.

4.4 Application software

To evaluate system properly, we have to use practical applications other than toy programs. Developing
application software is important also for this reason.

We developed non-monotonic reasoning system as application software. This is composed of produe-
tion system based on RETE algorithm and ATMS(Assumption-based Truth Maintenance System).

We are also developing formula manipulation system like REDUCE.
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Figure 6: Multi-window Debugger HyperDEBU Figure 7. Performance debugging tool Paf

5 Preliminary evaluation

5.1 Ewaluation condition

The compiler used here is rather naive without static load partitioning or granularity control mentioned
above; Programs are executed according to Fleng execution model. The evaluation of static load parti-
tioning is mentioned in [13].

Used programs for evaluation are 'n-queens’ and ’primes’. *N-queens’ is a program to solve 'n-queen
problem’ and ’primes’ is a program to find prime numbers. 'N-gueens’ has a lot of concurrency and
'primes’ has less concurrency than "n-queens’.

Clock frequency of PIEG4 is 5MHz, which is half of designed frequency.

5.2 Speedup
0
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Figure 8: speedup

Figure 8 shows the speedup of programs. Execution time used here does not include GC(Garbage
Collection) time. .

The speedup of each program depends on its concurrency, 'N-queens’ has an advantage over 'primes’
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in this point. Because of high concurrency, speedup of 'n-queens’ is almost linear. The 'primes 10k’ has
less concurrency than 'n-queens’, and the speedup is limited,

5.3 Comparison with other computers
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Figure 9: Relative performance

Figure 9 shows performance of PIE64 compared with other computers. 581, 552, 5510-51 means
SPARC station 1, SPARC station 2, SPARC Station 10 model 51, respectively.

To measure performance of workstations, we used Fleng programs here. The Fleng compiler on
workstations compiles a Fleng program into a C program, then a C compiler compiles it to an object
code. The Fleng system on workslation loads it to execute. The Fleng compiler of PIE64 and that of
workstations are same, except for a code generation part.

Execution time used here includes GC time. Performance is normalized by the speed of PIEG4 working
with one IU, Note that the y-axis of the graph is log scale.

This graph indicates that UNIRED executes Fleng programs efficiently {or its clock frequency; UNIRED
runs faster than 551 whose clock frequency iz four times as high as that of UNIRED. This high perfor-
mance of UNIRED is due to its architecture specialized to Fleng execution, such as a dedicated instruction
set, a tag architecture, multi-context processing.

PIEG4 with 64 IUs executes Fleng program much faster than these workstations.

Speedup of 'n-queens’ is super linear. This is because the rate of GC time is large in these programs
(10 ~ 30 %), and not only GC time but also number of GC occurrence decreases with increasing number
of IUs (and amount of memory). '

5.4 Comparison with other programming languages

Figure 10 shows performance comparison with other programming languages. We used ICL (Ver.
1.6 Rel. 2.3) as the language processor of Lisp, SICStus Prolog (Ver. 2.1) as that of Prolog, cc of Sun08
(Rel. 4.1.1) as that of C. Used program here is ‘n-queens’, which we wrote in these languages using same
algorithm. Compiled programs are used to measure execution time. Used workstation is SPARC station
1, whose generation is same as UNIRED.

Performance is normalized by the speed of PIE64 working with one IU. Note that the y-axis of the
graph is log scale. .

Though the programs compiled by current compiler run slower than Lisp and Prolog, hand-optimized
codes run almost as fast as Lisp and Prolog. This indicates that there is still room for improvement of
Fleng compiler. C shows the best performance; but PIEG4 with 64 IUs can run much faster than it.
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Figure 10: comparison with other programming langnages

5.5 Execution time of each processor

71 UNIRED running time

. UNIRED stall time

MF running time

ﬂ HIF running time

Time [(aags)

E Total execution time

Humber of contexts

Average running
context

4T0  16I0 G4I0 4I0 16I0 @ G4I0
Max 1 context Max 4 contexts

Figure 11: Execution time of each processor

Figure 11 shows execution time of each processor of [Us. Executed program here is 'primes 10k’

Execution time of this graph is sum of all IUs" execution time. This would not vary with number of
IUs, if there were no overhead of parallel execution. Actually, the overhead increases total execution time
with increasing number of IUs. Left side of the graph is execution time with one context of UNIRED,
and right side is that with four contexts. "UNIRED stall time’ is the time when UNIRED waits for a
reply from NIP and stops.

When the program is executed with small number of IUs, such as 4 or 16, four contexts execution
makes total execution time short and get rid of almost all the stall time of UNIRED. This is because
multi-context processing of UNIRED can reduce probability of pipeline interlocking and hide latency of
remote Memory access.

When the program is executed with 64 IUs, total execution time and stall time increases. This is
because the concurrency of the 'primes 10k’ is too low to fill all UNIRED contexts of all IUs with loads:
average running context also decreases with increasing number of IUs.
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6 Conclusion

This paper presented the integrated PIEG4 system and its preliminary evaluation.
Main features of PIEG4 hardware are:

¢ Low latency interconnection network,
+ Cooperative model of three processors,
¢ Multi-context processing of main processor.

Software on PIEG4 includes Fleng language processor, programming environment, and application. We
preliminarily evaluated performance of PIEG4, and showed the high performance of PIEG4.

Used programs to evaluate the system were toy programs such as 'n-queen’ and ‘primes’. This is
because the current compiler is not perfect yet. We are now completing the compiler. We will evaluate
the system properly using more realistic application.

The compiler used here is rather naive, and there is still room for improvement. We are now developing
a more efficient compiler which does granularity control. We will improve performance with it in the

. future.
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Specification

Total system

No. of Inference Units
No. of Networks

Basic clock frequency
SPARC clock frequency
No. of Used ICs

Power dissipation

6d

2

10MHz (Now 5MHz)
20MHz (Now 10MHz)
315821

about 14000 VA

Inference Unit

SPARC
Memory
FPU
UNIRED -
NIP

Local memory
Nao, of Tised ICs

Fujitu S-20 -
SRAM, 512K Byies, no wait
WEITEK 3170 (2.54MFLOPS)
1.2 CMOS gate array

42606 gates

1L.2u CMOS gate array

18906 gates

SRAM, 4M Bytes

482

Interconnection network

Switching Unit

No. of Used ICs

1.5 CMOS gate array
6185 gates
416
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Development history

87 Jul.  Abstract design of whole system started.
Sep.  Detailed design of network LSI started.
8% Jul.  Network LSIs finished.
'89 Jan. Detailed design of network started.
Apr.  Detailed design of NIP L5I started.
Oct.  Detailed design of UNIRED LSI started.
Dec,  Detailed design of IU PCB started.
a0 Apr.  Network construction finished.
91 Feb. Prototype version of IV PCB finished.
W2 Apr. NIP LSIs finished.
Jul.  UNIRED LSls finished.
Sep.  Mass production of I POB started.
‘03 Feb. Mass production of IU PCB finished.
Aug. Fleng interpreter on PIES4 fimished.
Oct.  PIEG4 began to execute Fleng compiled code.
"4  Mar. IU hardware problems were fixed.
Sep.  Network hardware problems were fixed.
Nov. PIES4 began to work with 64 IUs
After Nov. Release to users, Evaluation, Tuning, Maintenance, ebe.
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