Design of A Distributed Scheduler for A Parallel CLP System

Liang-Liang Li
Furopean Computer-Industry Research Centre
Arabellastrasse 17, 81925 Munich, Germany
Email: lll@ecrc.de

Abstract: ECL'PS® is an advanced constraint logic programming systemn. It is being extended
to exploit Or-parallelism. Multiple sequential ECL'PS® engines are employed to jointly execute an
application. The parallel ECL‘PS® scheduler coordinates the concurrent activities of individual engines
to comply with the language semantics, and distributes Or-parallel job loads ameng the engines for high
performance. Its design has been tailored to having parallel ECLYPS® run efficiently on a wide spectrum
of computer systems, from multiprocessors with shared memory to a set of networked such systems,
The scheduler frameweork is & distributed scheduler tree which profiles the dynamic execution status
and parallel load distribution of an application. The scheduling fenctions are cooperatively achieved
via individual tree components which communicate with each other through message passing. Parallel
backtrack and cut operations are associated to the pruning and transplant actions of the scheduler tree,
and job-hunting is carried out via messages flowing around within the scheduler tree. Other novelties
of the design include a clean interface between the scheduler and an engine, minimal modifications
imposed on sequential engines for adapting to Or-parallelism, and in particular, a basic mechanism,
retncarnation, to facilitate an engine to migrate nicely within a parallel application.

Keywords: Logic programming, Or-parallelism, scheduler, message passing

1 Introduction

A L)

Chocd oD Paraliel Schediler

B T e S e :
EHE e i N

.‘.....-'
. .
i :

Work Force Management

Figure 1: Parallel ECL'PS* System

search spaces. Using constraint logic programming (CLF)
techniques can drastically reduce the search spaces a pri-
ori. Or-parallelism is able Lo concurrently search nonde-
terministic paths via available computer resources. Inte-
grating the two into one system has proven profitable [18,
14). ECL*PS® is an advanced CLP systemECL'PS® [11,
12] providing several constraint solvers (e.g. finite do-
mains, rationals and generalized propagations). Its aug-

mentation to support Or-parallelism is being undertaken [16].

Parallel ECL'P5® has a wide spectrum of targeted plat-
forms, from multiprocessor systems with shared memory
to distributed memory platforms (say a set of networked
workstations).

Parallel ECLPS* consists of three major components,
as illustrated in figure 1, and an underlying layer which

Real-life combinatorial problems make up an important provides platform-independent parallel programming fa-
area of computer applications, and have typically huge cilities, e.g. shared memory and message passing libraries.

20

2 Workshop on Parallel Logic Programming, FGGC8'94, Tokye, Japan

The Weorker Management maintains & process(or) pool,
and supports dynamic addition and reduction of the

making use of this mechanism, we examine in section 6
and section 5 how the major logic programming con-

working forces; and the SEs are a set of sequential ECL!PS* trol mechanisms, backtrack and cut operations are han-

engines. The component Scheduler, the topic of this pa-
per, has two main functicns. One is to coordinate the
concurrent activities of multiple engines to comply with
the language semantics. More concretely, the cut oper-
ations and backtrack mechanisms advocated in the lan-
guage, for instance, will necessarily invalve interactions
ameng multiple engines in a concurrent setting. The sec-
ond function is to schedule parallel jobs among working
forces available, so that the applications can be more
efficiently executed with multiple engines running con-
currently.

We present in this paper the framework design of
a distributed scheduler for parallel ECL'PS® . By dis-
tributed we mean that the scheduler will not rely on the
availability of shared memory, in contrast to those in
some existing systems [15, 2], as we want to tailor the
design for the diversity of the targeted running enviran-
ments of ECL'PS* . Instead the scheduler is built exclu-
sively on the concept of message passing: it is composed
of numerous small independent agents which cooperate
with each other only via messages. Therefore we are
able to decompose the typically complicated scheduling
functions into simple message handlers. Another design
criterion is that the acheduler should be cleanly sepa-
rated from the engines, and the twe should interact with
each other only through well-defined interface services.
In particular, the adaptation modifications impossd on
sequential engines should be kept minimal.

Our design is centered around the buildup and re-
shape of a distributed scheduler tree which profiles the
dynamic execution status and parallel load distribution
of a CLP application. The leaves and nodes comprising
the scheduler tree act as active scheduler agents. This
paper proceeds as follows. Section 2 will first brief the se-
quential ECL'P5® engine concept. Then it presents the
scheduler tree, its components, and their functions and
interactions. In particular, we examine how the sched-
uler interfaces with engines. Section 3 presents how the
scheduler tree expands by taking over and dispatching
parallel loads. A special mechanism (leaf-reincarnation)
is introduced in section 4. This mechanism facilitates
flexible engine migrations within & parallel application.
With respects to the acheduler tree, it enables clean and
timely subtree withering. As two conerete examples of

51

dled in this proposed framework. Section 7 then details
some other practical considerations, including anatomies
of scheduler tree and message traffic, garbage collection
issues, subtree state transitions, and a listing of services
interfacing the scheduler and the engines. Section & deals
with the support to serialise Prolog operations with side-
effects (e.g. sequential predicates, Prolog cut, 1/0, etc.).
The job-scheduling is an important part of the scheduler
design. Section 8 examines how this task can be carried
out through message traflic among the distributed tree
components. We will show that the framework provides
an appropriate arena to achieve versatile job-scheduling
strategies. Section 10 concludes the paper with the cur-
rent status and planned work for parallel ECLYPS® |

In the sequel, we will treat ECL'PS* as a conven-
tional Prolog system. We can do this because its CLP
part is orthogonal to that of Or-parallelism. Familiarity
with logic programming [13] in general and some Or-
parallel systems [15, 2, 18] in particular is assumed. An-
other important topic for Or-parallel systems is job in-
stallation, which involves setting up a proper state for
an engine o that it can receive and execute an alterna-
tive scheduled remotely, There have been mainly three
schemes available, i.e. stack sharing (plus binding ar-
ray) [20, 15, 18], stack eepying [2], and recomputation
(plus oracle copying) [9, 16]. Both of the latter two have
been used for the parallel ECL{PS® to cope with poten-
tial platforms with hybrid (shared andjor distributed)
memeory architectures. This papér does not cover the
installation details. The scheduler framework presented
here ia however indifferent to which of the two schemes

is employed.

2 Scheduler Tree and Engines

2.1 Logic Programs and Or-Parallelism

A logic program comprises a set of predicate definitions
and a query, and a predicate can have alternative defi-
nition clauses [13]. To resolve a query, first select a sub-
goal [a literal) out of the query, find a unifiable clause
from the predicate definitions, unify them, and generate
8 new query (resolvent). This process repeats until an
empty resolvent is obtained. To describe this process,
upside-down search trees have been popularly used as a

Workshop on Parallel Logic Programming, FGCS5'34, Tokyo, Japan 3

picturesque formalism. A logic predicate with alterna-
tive definifion clauses corresponds to a tree node with
multiple branches. A path of a search tree is a link of
adjacent branches starting from the root downwards. It
is the tip-end of a path that tells if the path i$ with or
without a solution (variable bindings aleng the path).
The execution of a logic program can thus be regarded
as a process of traversing the search tree for solutions,
Below listed is a simple logic program which is to find
descendents of astrid, given the definitions of predicates
ancestor/2, parent/2. Its correspemding search tree is
depicted in figure 2.

T~ ancestor(astrid,D).

anceetor (X,Y) := parent(X,Y).

ancestor (X,Y) :- parent(¥,Z), ancestor(Z,¥}.
parent (astrid,bruce).

parent (astrid,bob) .

parent (bob, carmen) .

parent (beb, chris).

parent (cindy,dan} .

I A I I T I

Figure 2: Logic Program and Search Tree

Prolog employs a depth-first strategy to sequentially
traverse the search tree, supported with a backirack mech-
anism. As a defaclo standard Prolog machine, WAM
(Warren's Abstract Machine) [19] introduces an ad hee

52

Figure 3: ECL'PS® engine: A Simplistic View

control stack to administer the search tree. What re-
carded in the stack are actually the tree nodes (or choice
points in the WAM' terms) encountered along a path in
question. A choice point maintains the remaining al-
ternative paths and the necessary state to try the al-
ternatives on backtracking. An ECLP5¢ engine is an
extended WAM. Shown in figure 3 is a simplistic picture
of an ECL'PS® engine. The vertical line specifies the
path currently being searched, and the circles embedded
in the line are choice points.

The Or-parallelism stemns from the fact that some
choice points, called parallel ehoice points, contain alter-
natives which can be tried concurrently so that one or
more solutions can be found more quickly (Whether a
choice point is created parallel relies on the propertics
of programs executed. We assume some sort of parailel
annotation is either user supplied or generated). The
parallel ECL'PS* approach is to use multiple engines
to concurrently exploit as many parallel alternatives as
possible. At any time an individual engine searches in a
separate part (i.e. a subtree of the search tree) exactly as
& Prolog engine (i.c. using a depth-first plus backtrack
strategy). It interacts with a coordinating component
of the system when it finishes the subtree, when it is

requested by other engines to give up its execution, or

when other engines want to share its subtree. We have
called this coordinating component of the system sched-
uler.

2.2 Scheduler Structure

As a coordinator on the concurrent activities of multi-
ple engines, the scheduler must have a clear view about
the current status of the search tree of an application:
which parts have been, are, and will be traversed. In
particular, it needs to administer parallel alternatives
for job-acheduling. Therefore, the scheduler data strue-
ture should be a neat profile of the search tree and load

4 Workshop on Parallel Logic Programming, FGCS594, Tokyo, Japan

digtribution.

We call this profiling structure a scheduler tree. Tt
consists of nodes and branches (Trees, nodes, branches,
paths and ete. hereafter refer to the scheduler tree, un-
less otherwise explicitly stated). Figure 4 shows a sched-
uler tree, together with several engines. The small circles
on engine bars are the parallel choice points which have
been made known [or published) to the scheduler, while
other choice points, sequential or non-published paral-
lel ones, are not shown as they are net relevant to the
scheduler.

Figure 4: Scheduler Tree and Multiple Engines

2.3 Nodes, Leaves, and Engines

A node of the scheduler tree corresponds to a published
parallel choice point. There can exist multiple instances
of a published parallel choice point. It happens when,
e.g. two paths followed by two engines share a common
section starting from the search tree root, and concep-
tually every engine has a whole copy of the path of its
own. Multiple instances of a published choice peint are
associated to the same node by maintaining a handle on
to the node, shown as dotted horigontal connections in
the figure (In the oracle based installation scheme, the
node association is directly to the corresponding oracle
entry). Mote, the multiple instances are conceptually
symmetric. The engine which initially creates the choice
point is not distinet from others holding an instance (or
a copy) of the choice point. Two nodes sasociated to

two adjacent published choice points are said to have a
parent-child relation, and are linked with a branch. The
node associated to the older of the two choice pmnt& is
the parent, the other the child.

Tip nodes, termed as leaves, of the scheduler tree are
distinct from other nodes. Leaves serve as the interface
betwesn the scheduler and the engines. In fact, an en-
gine and a leaf are the dual faces of a single entity [say
a UNIX. process [3] or & MACH thread [17]). From the
scheduler’s viewpoint, a leaf denotes an engine, and is the
real working force to sprout the scheduler tree (detailed
in section 3} or to reshape the tree. On the other hand,
an engine resorts to its denoting leal for any scheduler
gervices. More concretely, let's call the voungest pub-
lished choice point of an engine border choice point or
simply the border, which associates to the parent node
of the leal, As has been said, an engine behaves as a
normal Prolog engine. But it daes so only in an area
delimited by its border choice point. The rest, from the
border up to the root, is shadowed by the scheduler. To
manripulate the shadowed area, for sake of e.g. backtrack-
ing and cut operations, the engine has to resort to the
scheduler for instructions. Section § and 6 will elaborate
these topics. The concrete interactions between a leafl
and its engine are through a handful of function calls
(section 7.6).

2.4 Job-Scheduling

A node maintains & list of untried alternatives on behall
of the associated choice point. When an alternative is
scheduled to an engine, a branch is created to connect
the node and the leaf denoting the engine,

A leaf can be alive or lodged (gray colored in figure 4),
denoting an active engine or an idle engine, respectively.
We further call the parent of a leal the leafls ladging
node, and call the path from the parent up to the root the
leal's lodging path. A leal, either alive or lodged, denates,
with respect to job-scheduling, an engine state which is
needed to execute any alternative scheduled from the
ancestor nodes on its lodging path. A node holds only
published alternatives which can be as simple as integer-
valued indices, and it does not hold any engine state.
This observation is crucial, az 1t influences [undamentally
the backtrack mechanism and the job-scheduler design
(to be elaborated in section 9).

33

Workshop on Parallel Logic Programming, FGCS'94, Tokyo, Japan b

2.5 Active Nodes & Message Passing

The scheduler tree are to be concurrently expanded and
reshaped by multiple engines (or leaves). In order that
the interactions among multiple engines are clean and
regulated, we decide to use message passing as the ba-
sic and sole vehicle underlying these interactions. As a
conscquence, nodes can be implemented as active objecis
with their own private data, in much the same way as
leaves (engines). Through message passing, nodes and
leaves jointly fulfill the scheduler tasks.

In practice, the nodes can be independent comput-
ing entities, say operating system processes or threads,
as well as (a)synchronous event-handlers of the related
engine/leafl entities.

2.5.1 Pros & Cons

Below listed are some other motivations to use conceptu-
ally distributed tree representation and message passing.

¢ Avoid any potential abuse of shared memory (if
the shared memory ever exists), while optimization
besed on locality of nodes and leaves can be easily
added;

» Achieve a very clean scheduler design. As a matter
of {act, the scheduler functions are divided and iso-
lated into simpler message handlers of nodes and
leaves.

There are disadvantages, of course. Job-scheduling,
for example, will suffer from some typical problems en-
countered in a distributed decision-making system, e.g.
uncerfainty due to out-of-date information, incomplete-
ness due to limited information, and instability due to
mismatch of the parallel applications and the underly-
ing hardware. A significant research effort will have to be
devoted to such topics as how related information should
be distributed, updated, and knowledgeably used in con-
current scheduling.

2.5.2 Message Flows

Message traffic exists mostly between parent and child
nodes. A leafl can also initiate messages directly to any of
its ancestors, as well as to its parent because the handles
on to these ancestors are available in the published choice
points of its engine. Messages flow via branches. A node

can have many branches, cach leading a subtree. We call
a branch and its subtree via which a message flows to the
node the receiving branch and receiving subtree.

2.6 Glossary

MNodes and leaves are the scheduler components. Related
concepts are branches, children, parents and ancestors:
lodging nodes and paths; receiving branches and receiv-
ing subtrees; and border choice points. A further discus-
sion of the scheduler tree is staged in section 7.

3 Publish Job

Parallel choice points are created by individual engines.
Before their alternatives can be scheduled to remote en-
gines, they need to be first transferred to the scheduler
discourse. [t is also termed as publishing from the view-
point of the engines in question. Publishing is cheice
point based. An engine publishes, actively or on request
from its leaf, one or more of its parallel choice points.
Figure b shows an engine has just published two consec-
utive parallel choice points And figure 4 shows the tree
structure before the publish happens. Note, for simplic-
ity, only the engine in question is shown, others are not.
This is also the case in the rest of the paper.

Publishing proceeds as (ollows. The engine selects a
parallel choice point (which should be younger than the
current border choice point), grabs all of its remaining
alternatives, asks the scheduler to create a node to ad-
minister them, and gets back a handle on to the node.
The choice point just published keeps the handle, and
becomes the new border.

In response, the leaf, instead of creating a new node,
turns itself into the node, and creates a new leaf with
the node as its parent. Thus this operation is kept com-
pletely local to the leaf, so that the previous parent needs
not concern itself with its children’s evolution (say, from
a tip into a subtree). Nete that initially the scheduler
consists of only a root node, with all leaves except one
ledged to it. The engine of that solely alive leal starts
the execution of applications. The scheduler tree then
expands owing to job-publishing and job-distributing.

54

& Workshop on Parallel Logic Programming, FGCS'04, Tolkyo, Japan

Figure 5: Publish Parallel Alternatives

4 Migrate Engine

When en engine finishes (or fails) its current job, it needs
to migrate within the parallel application to get another
Job. For its leal, it means a {ransplant within the sched-
uler tree, from its old parent to a new ome. We now
study the leaf transplant as a more general mechanism
than as an operation only for job-scheduling.

A typical leaf transplant consists roughly of discon-
nection from the leaf’s current parent, and commection
with its new parent. To avoid the leaf messing up its
two conflicting roles, we propose the following scheme.
The leal in question creates a skelelon for a new leaf,
associates it Lo the engine, and initiates to the new par-
ent a connection request for the skeleton, and sets itsell
dying. When the skeleton receives a connection reply,
it becomes a real leaf. It also decouples it from the old
leaf. Tn the meantime, the dying leaf, with the engine
decoupled, passively handles any pending messages dedi-
cated Lo il via the old connection, and eventually become
withered. By possively we mean that the leafl simply ab-
sorba all the messages which do not expect any reply,
and bounces back reply-requesting messages. The essen-
tial point of this scheme is that as soon as the leafl {and
its engine) decides to transplant, it shrugs off its duty
(e.g. job-installations) and concentrates on adapting it-

Figure 8: Before an Engine Migrates

self to the new role within the scheduler tree. Figure &
illustrates an engine is about to migrate. The engine
is detached from the old leaf (OLf), and associated to
a leal skeleton (NLf) which is waiting for a connection
reply from the new parent. Section 5 and 6 will further
illustrate engine migrations with two concrete examples.

We call this scheme reincarnation, as the old leaf ac-
tually gives away its own life to a new leal. Tt is well
in compliance to the concept that engines are immortal
with respects to the scheduler, and there should be as
many alive (or lodged) leaves as engines 1.

5 Handle Backtrack

An engine handles backtrack as in a sequential system
as long as it does not cross over its border choice point.
We focus therefore on the border crossing backtracks. A
seemingly simple approach is that the engine in question
stops, its leal sends a terminating message to its parent
and the couple enter into a job-searching session (see
section 9). However, there is a constraint.

1Engine mortality is dealt with at the worker management
layer. T interface with flaxible and dynamic woerker management
is also an important part of the scheduler design, but not coversd
in this paper

55

Woarkshop on Parallel Logic Programming, FGCS'04, Tokyo, Japan T

Figure 7: Backtrack: Fesume Seq. Choice Points

5.1 Resume Sequential Choice Points

Sequential choice points shadowed behind the horder
need to be resumed by somie engine. A simplified ao-
lution is the exhausted node entrust the last backtrack-
ing leaf to take it over. The procedure is as follows. A
backtrack message is initiated by the leaf to the par-
ent, and forwarded to the ancestors. This message flow
stops at an ancestor (or the parent) node if the node is
not exhausted or it has more than one alive branch. In
this way, a maximal and single-threaded exhaustion sub-
tree can be found. The ancestor then replies to the leaf
to let its engine be responsible for all sequential choice
points younger than the published one associated to the
replying node (which actually becomes the leaf's new
parent). And in the meantime, it chops the exhaustion
subtree. On receiving this reply, the leal will ask the en-
gine to undo the published choice points (up to the one
associaied to the replying node) to become exhausted
sequential ones, and resume backirack.

Recall the reincarnation-based leaf tranaplant mech-
anism introduced in section 4. Therefore a new leal NLf
is created to wait for the reply, while the old leal OLf,
detached from the engine, still maintains the old con-
nection. As a consequence, the exhausted subires is re-
placed with a short-cut one. Figure 7 illustrates this out-
come. Of course, if the old parent node is not exhausted,
it can immediately reply to the NLf with an alternative,
which will be elaborated in the job-scheduling section

(section 9). In either of the cases, the receiving subtree
is choepped.

6 Handle Parallel Cut

Cut is an important operator commonly seen in logic
programming languages. [t ia to give users a way to in-
terfere with the runtime search process by pruning some
part of the search tree. The parallel cut supported by the
parallel ECL'PS® is a so-called covalier commit which
is both symmetric and exclusive (see section 8 for se-
quential cut handling). For example, assume a goal a/0
defined as helow is executed in a eoncurrent setting.

:= parallel a/f0.
a - g, !, write(black).
a:=h, !, write{white).

Then either black or white is printed, but not both, when
both threads of execution can manage to reach to the
point to cut,

6.1 Operational Background

We assume that a cut ! is compiled into an instruction
‘cut_to ChP’, where the parameter ChP holds a pointer
to a choice point in the control stack. If the ChP is
not older than the border choice point, this instruction
simply pops all the choice points younger than ChP. The
ChP becomes then the current choice point (at the top
ol the control stack).

The execution of a parallel "cut_from ChF’ crossing
the border is however a bit more complicated, hecause
it involves requesting some related engines to give up
their work. We first define which engines are to be ef-
fected. We introduce a concept of desiination cheice
point, DChP in short, for a eut instruction,

1. ChP is the DChP if ChP is published; otherwise

2. The first published choice point clder than ChP is
the DChP,

And correspondingly the destination nede, DNd in short,
is defined as the node associated to the DChP, and the
destination subtree DST is the one led from the DNd
and embracing the leaf initiating the cut. The cut in-
struction in a concurrent setting requires that the wheole

36

8 Workshop on Parallel Logic Programming, FGCS'94, Tokyo, Japan

deatination subtree except the path leading to the cut-
ting leaf be pruned. That is, ail of the alive leaves except
one within the DST are to give up their work.

6.2 Prune Cut Destination Subtree

QOur approach is as follows, The engine executing the cut
first gets the DNd handle and resorts to the leaf which
initiates a cub request to the DNd, On receiving the
message, the DNd checks if the destination subtree DST
has already been pruned. If so, this means that this cut-
requesting leaf loses in a cut competition to other leaves.
The DNd offers then a lodge to the leaf, and replies with
a cut-failure message to the leaf. If not, the DNd ereates
an alive branch connecting the leaf, and replies with a
cut-ok message to the leaf, and chops the DST. On re-
ceiving a reply, the leaf let the engine adjust the engine
state accordingly. If the reply is negative, the leaf starts
job-search. If positive, it lets the engine conclude the
initial cut and continue. Figure 8 shows the case of a
successful cut. Recall again the leaf transplant mecha-
nism. The whole destination subtree is simply chopped
and replaced with a short-cul one.

Figure 8: A Sumrul Cut-Request

We consider this cut approach innovative as it el-
egantly solves all of the typical cut problems encoun-
tered in a concurrent setting, i.e. cut competitions among
sibling clauses and with nested destinations, and prun-
ing operations with caulious steer clear of the winner

37

path. Furthermore, the destination node provides an
ideal start-point for the cut-failed leafl to search for job.

7 Revisit Scheduler Tree

Having described some of the major scheduler functions
within the proposed scheduler framework, we are in a
better position to examine more technical issues relat-
ing to the manipulation of the scheduler tree and some
other practical topics, including garbage collection, state
transitions, and engine vs. scheduler services.

7.1 Anatomy of Scheduler Tree

Figure 9: A Micro View of the Scheduler Tree

First we take a closer look at the scheduler tree structure,
shown in figure 9. A node maintains parallel alternatives
(shown as black triangles). For every scheduled alterna-
tive, there exists a branch, shown as a diamond, leading
the subtree evolved. It is this diamond, instead of the
node itsell, which connects to a child of the node. And
through this diamond, the child also refers back to the
parent. Furthermore, the handle held by a published
choice point is also to a diamond of the associated node,
The existing branches of a node are internally chained
together for sake of bookkeeping. :

As a consequence, a branch (diamond) identifies a
sublree. Tree components, nodes/leaves, refer to each
other by means of subtree identifiers, and parallel choi-
cepoints are associated to subiress too. Recall in sec-
tion 6.2 we need to fgure out the destination subtree
for a cut eperation. This task becomes trivial as the
subtree handle is available. Subtree is a relative con-
cept. For example, a subtree is actually a super tree for

Workshop on Parallel Logic Programming, FGCS'94, Tokyo, Japan

nodes/leaves within the subtree. Nevertheless we stick
to using subtree as a general term.

7.2 Unique Subtree Identifier

Subtree identifiers (handles) are used as addresses for
message passing. Therefore they have to be exclusively
unique in the whole range of the distributed scheduler
tree. For an easy solution, we introduce a concept of
site. And a unique subtree identifier will consist of a site
id, a local node id and a local branch id within the site.

T.2.1 Site

A site is a virtual address space, which corresponds to an
operating system process, The site concept is not explic-
itly wisible to the scheduler message passing but it nev-
ertheless underlies the tree distribution. Thus site-based
locality of the scheduler components presents an impor-
tant source for message passing optimizations. The site
concept has been known elsewhere as worker [15, 2, 18].
The term worker sounds more active. Indeed a worker
here would denole an object collection which includes an
enging, the leaves that have been associated to the en-
gine, and the nodes that have evolved from these leaves,

7.3 Up and Down Message Flows

There are only two kinds of scheduling message flows:
DOWN, from a parent to one of its children; and P,
from a mode to its parent and from a leaf to any of its
ancestors. As any messages are directed to a specific
branch, we can have a perfect analogy here. A node,
acting independently, is no more than a message handler.
It has multiple ports for receiving and sending messages.
Each of the node’s subtrees has a separate port. There
is also a port, for the communication to its parent, That
is it

7.3.1 A Regularity Assumption

In a distributed system, it is not intended to predict
when a message must arrive at its destination. Our only
assumption on the underling message passing system is
the so-called regelarily,

Messages between two specific nodes arrive
in the same order as they have been sent.

58

7.4 A Note on Garbage Collection

As for any dynamically expanded data structures, one
essential issue for the scheduler tree is garbage collection,
The following simple policies are proposed to enforce a
disciplined message flow for a safe garbage collection.

A chopping message is the last message flow-
ing down via a branch; a chopped acknowi-
edgement is the last message flowing up via
a branch.

Therefore & chopped node can be collected only when
all of its branches have been collected and it has sent a
chopped acknowledgement to its parent; and a chopped
branch can be collected when its chopping is acknowl-
edged. Another consequence of the policies is that if a
leaf exists, so do all of its ancestors (including the par-
ent) and are properly connected, ie. it is safe for a leaf
to initiate a message to any of its ancestors.

7.5 State Transitions

P
l"— -

Figure 10: Branch State Transitions

Figure 11: Leal State Transitions

The states of a node are represented collectively through
those of its branches. Figure 10 and figure 11 illustrate
how a branch and a leaf spend their life, from being born
to becoming withered, i.e. collected. The state transi-
tions are straightforward, except that the state REIN-
CARNATION needs a bit more explanation. As we have

10

presented in section 4, a leal does not die, but simply
give away its life to a new leaf. Therefore, a transition
of ALIVE — REINCARNATION of a leaf always co-
exists with the transition of SKELETON — ALIVE or
SKELETON —+ LODGE of a newly introduced leaf,

7.6 Scheduler vs. Engine Services

Leaves and engines interact with each other through
funciion calls corresponding to a handful of well-defined
services (listed here to give the flaver).

(Laaf)
{leaf)
(leaf,alts Bparent)
(leaf)

sch_left_most
sch_load_report
ach_publish_one
ach_backtrack

sch_cut {leaf,parent)

eng left_most (engine)
eng_publish (engina)
eng_backtrack_ok (engine,parent,alt)
eng_mndo_publish (engine,parent)
ang_cut_ok {engine ,parent)

eng_install_state(engine,parent,coma,leaf)

With engine services a leal is able to get its engine's state
updated accordingly whenever its own state changes,
owing to receiving scheduler messages. MNote the us-
age of scheduler tree handles. Typically a leal will ask
ils engine to manipulate the engine stacks delimited by
a choice point holding a specific handle. For example,
eng-backtrack_ok{engine, parent,alt) is to let the engine
backtrack to a choice point holding the handle (parent),
and sef itself ready to execute the alternative,

8 Support of Prolog Operations

In order that existing applications developed on sequen-
tial systems can be easily made run on parallel ECLIPS®
» support is needed to serialise certain Prolog operations
with side-effect, e.g. some I/0 operations, database up-
dates, and sequential cut. In a sequentizl system, their
execution order is fixed (by the depth-first. scarch strat-
egy). Lo achieve the similar effect in ECL/P5® with mul-
tiple active engines, a concept of left-most path (LM path
in short) is supported within the scheduler tree. A LM
path profiles a path in the search space where any of
these serial operations can be executed without being
delayed. Lets call the nodes (and the leaf) on the LM

59

Workshop on- Parallel Logic Programming, FGCS'94, Tokyo, Japan

path the LM nodes (and the LM leaf). On the engine
side, a suspension mechanism is introduced. On execut-
ing such a serial operation, an engine consults its leaf
which checks if it is on the LM path. If so the engine
goes ahead with the serial operation. Otherwise it sus-
pends its execution and waits. On becoming a LM one,
the leaf tells the engine to resume its execution.

The left-mest path concept is achieved in the paral-
lel ECL'PS® by maintaining a LM flag for nodes/leaves,
and we let LM set nodes act as watchdogs for any LM
state updates. A LM set node needs to take actions only
on two occasions, i.e. when connecting an alive leaf, and
when its solely LM set branch becomes non-alive (due
to e.g. backtrack). Its currently left-most child branch is
then instructed to become LM set when necessary. Note
only on the second occasion, an explicit LI setting mes-
sage is needed, flowing down aleng the left-most path
of the node in question. On the first occasion, the LM
instruction can be combined with & new eonnection ac-
knowledgement message. It is to minimise I.he LM state
update overhead.

Sequential cut. Although r.he- LM condition for
such a cut is sufficient, it is more than necessary. In
fact, the cut can go ahead if the path in question is left-
most within the eut destination subtree. Furthermore,
the branches to the right of the cutting path (including
the remaining alternatives) can also be pruned at once if
the cutting path is left-most within any subtrees of the
destination subtree, Therefore an ad hoc message for the
sequential cut is initiated to exploit early prune opportu-
nities. This message is from the leaf to the parent, and
will be forwarded, up to the cut destination ancestor,
il the receiving branch is left-most under the receiving
node. On its way, the branches to the right of the receiv-
ing branch are chopped. The forwarding flow suspends
when the receiving branch is not left-most, and resumes
when it becomes left-most. Further optimizations with
respects to the cut and other serial operations are possi-
ble through sophisticated program analysis, in order to
minimise suspensions.

9 Search for Job

Job-acheduling consists of two sub-tasks, finding a job
and installing the job. When an alternative is found for
an engine, the engine can not start execution on the new
alternative until its stacks have been properly installed

Workshop on Parallel Logie Programming, FGCS'94, Tokyo, Japan

for the alternative. We first examine the installation
topic and then examine the basic mechanisms [or job-
searching.

_As a node maintains only alternatives, but not the
necessary state for the execution of the alternative, it
therefore has to entrust a leaf within its subtrees to carry
out the state installation which will happen hetween two
engines of two leaves in question (i.e. the state supplier
and receiver, a topic out of the scope of this paper). Af-
terwards the supplier leal acknowledges to the entrusting
node, If the node iz still vich with alternative, one al-
ternative is indeed scheduled to the receiver leal whose
engine has been properly installed. The leaf can let the
engine start execution. If the node becomes exhausted,
it provides a new lodge for the receiver leaf, and lets the
leaf continue its job-search.

Two additional notes. Looking for a leaf to entrust
for state installation can be speeded up: by traversal of
only intra-site subtrees, if we make sure that there is
a local leaf (see the following section); incremental in-
stallation can be enabled if 2 common ancestor node is
known, which should be she outcome of the job-search
-procedure (see also the following).

9.1 Job-Search Prologue

We divide job-searching into two separate phases: a pro-
logue and a miore general searching procedure. In the
prologue, the job-search range is the lodging path of
the requesting leal, i.e. search starts from the lodging
node up to the roat (the search can be further delimited
among the adjacent and local ancestors). The conse-
-quence is that a leaf will stay within the subtree evolved
from the leafl itsell as long as there remain allernatives.
It is straightforward to see the advantages to have this
prologue. First, scheduling an alternative from the lodg-
ing path of a leal does not incur any state installation
overhead, as the needed state is available in the engine
in question. The engine needs simply to backtrack to
some associated choice point and executes the scheduled
alternative, Secondly, a node offering an alternative to
a job-requesting leaf can always find a local leaf to en-
trust for the installation task if the installation is indeed
needed.

Note this job-search prologue is almest obligatory,
imposed by the [act that the scheduler nodes do not hold
a complete description about their parallel alternatives

Il

(1.e. missing states). Therefore engines under the nodes
in question can not freely leave, A similar approach can
also be found in Muse [1].

9.2 'Traverse the Tree

MNext phase of job-search has a more wide search space,
i.e. the whele scheduler tree. It is tree traversal based,
as illustrated in figure 12. The search follows the lodg
ing path as a kind of controlling axis, starting from the
lodging node of the leaf. When all of the subtrees led
by an ancestor node have been traversed in a depth-first
fashion, it steps up along the lodging path to the parent
of the node in question, until the root is reached. (for
the sake of incremental installation, the position that the
search has reached along the lodging path is maintained
during the traversal, as that will serve as the needed
common ancestor for incremental installation),

= = PROLOGUE: LODGING PATH
=== [(ENERAL: REST OF TREE

Figure 12: Search for Job - Two phrases

9.2.1 Search Only Rich Subtrees

In order to improve the traversal efficiency, we add to
each branch a rich/poor flag. A subtree is set poor if it
rajects a job-request, and job-search messages flow cnly
into supposedly rich subtrees. When an engine accumu-
lates enough local load, it will inform the leaf of its load.
In case of being poor, the leaf turns itsell into rich, and
forwards the report up to the first non-poor ancestor, i.e.
all of its poor ancestors are set rich, :

60

12

9.2.2 Divide Job-Search into Sessions

What happens if a job-search finishes empty handed af-
ter the whele tree is traversed? We call it a session.
A successful job-search may consist of multiple sessions.
Clearly a new session should not be started if the load
status of the scheduler tree remains the same, i.e. poor,
as otherwise the system would suffer from constant dis-
turbance. The ideal would be that a job-search suspends
after a session 15 over, and woken up on the job availabil-
ity. A straightforward solution is to let the root maintain
a list of suspended job-search leaves, which will be wo-
ken up when a richness report flows to the root. To fur-
ther reduce the search range, we introduce a concept of
job-search tree to reduce job-search and richness report
activities. A job-search tree is the biggest subtree of the
scheduler tree, whose root node is with multiple alive
branches or of alternatives to offer, and sll of its ances-
tors (up to the scheduler root) have become exhausted,
Obviously the initial job-search tree is the scheduler tree,
and is dynamically updated to become smaller. Om re-
ceiving a richness report, the job-search tree root tells the
job-hunting leaves to restart the search, and determines
a new root for the job-scarch tree (through downward

message, of course).

0.3 Discussions

Joh-search behaviours can basically be tuned by varying
the search policies, and the publish policies. The publish
policies are at the engines’ disposal as they have better
knowledge about the local load they hold. The decisions
that when and what to publish and hew much to pub-
lish at & time are easential to shape the scheduler tree.
The acheduler side maintains the published alternatives,
and are responsible for various search policies. For ex-
ample, assume & node receives a job request, The node
can either fulfill the request by first locking into its own
alternatives, and then, if an alternative is not available,
forward the request to one of its sublrees, or vice versa
{i.e. the subirees first searched, and the node itsell sec-
ond). When there are more than one subtree for a node,
then one has to decide in which order they are traversed,
Obviously knowledge about the participating sites (pro-
cessors) and their physical relationship becomes impor-
tant here, Traversing first the subtrees located on better
connected sites can result in higher search speed. Ap-
plications involving serialised Prolog operations would

6l

Workshop on Parallel Logic Prograrmming, FGCS'84, Tokyo, Japan

favor a left-first policy. This issue becomes more compli-
cated when there exists speculative parallelism [5]. For
example, the efficiency of applications based on Branch
& Bound search can be very sensitive to the variations
of the job-search policies.

How to tune the job-search behaviours for high speed-
up is a very important topic, Different fixes of the above-
menticned open decisions can result in various kinds of
job-schedulers. We are currently busy adding instrumen-
tation and experimenting various policy combinations,
in order to-evaluate within this frarmework some existing
job-acheduling strategies [1, 4, 5, 6, 7, 8] and strategies
specific to applications.

10 Conclusions and Future Work

We have presented adistributed scheduler lramework de-
signed for the Or-parallel ECL'PS® system. The frame-
work is cenfered around a distributedly constructed sched-
uler tree, which is completely separate from the engine
stacks. This design has two essential advantages. One
is its clean and simple interface with the sequential en-
gines and the medification impesed on a sequential en-
gine is kept minimal, i.e. published choice points with
scheduler handles. The other novelty is the decomposi-
tion of typically complicated scheduling functions among
numerous independent agents which communicate with
each other solely via messages. 'We have illustrated how
major scheduling functions, including support for Pro-
log serial operations, can be nicely adapted to this dis-

tributed framework. In particular, a reincarnation ap-

proach has been introduced to achieve elsgant engine
migrations within a parallel application. We have also
illustrated how job-scheduling can be carried out within
this distributed framework, Important topics, such as
state installation, multi-session job-search, dynamic load
information distribution, ete., have heen examined.

Current Status and Future Work. Individual com-
penents of parallel ECLYPS® have heen implemented and
integrated into a running parallel system where nodes
are emulated as asynchronous event handlers. Prelim-
inary tests and benchmarking are under way. We are
adding instrumentations into the scheduler tree to en-
able flexible experiments with various job-search policies.
Further research on the scheduler will focus on more so-
phisticated load information distribution schemes for the

Warkshop on Parallel Logic Programming, FGCS5'94, Tokyo, Japan

scheduler tree, so that the job-search activities can be
more knowledgeably guided. In addition te the locality
optimization of the underlying message passing, atten-
tion will be given to various optimizations at the sched-
uler level, in order to reduce message traffic. One opti-
mization eurrently under investigation is to add a shorl-

13

in Awrora: The Bristol Schecduler.
Springer Verlag, June 1991,

[5] T. Beaumont and D). H. D. Warren. Scheduling Specula-
tive Work in Or-parallel Prolog Systems. In Proccedings
TCL"83, The MIT Press, June 1993,

In PARLE™SI,

cuf into scheduler message traffic among local nodes/leaves 6] P. Brand. Wavefront scheduling. 1988. Internal Repart,

[i.e. intra-site tree components). According to our pre-
liminary statistics, as much as two third of the message
trafic is intra-site, two third of which can be safely short-
cut, i.e. a message sending operation is replaced with
a message handling operation whenever it is safe to do
s0. We expect this optimization, combined with the un-
derlying level ones, will basically eliminate the artificial
message-passing operations on the occasion when either
shared memory is available and can be efficiently used.

Acknowledgement

The author's experience with the ElipSys kernel design
and development has been the major source of the basic
design ideas presented here. The author would like to
thank the following people for the many discussions he
had with them and for their encouragement and support:
Alexander Herold, Shyam Mudambi, Jacques Noyé, Mike
HReeve, Joachim Schimpl, Kees Schuerman. Many Thanks
to Steven Prestwich, Kees Schuerman lor reading a draft
of this paper and suggesting improvements, and to some
anonymous referees for comments and suggestions on an
ealier draft of this paper.

The parallel ECL'PS® project is partly funded by
the Commission of the Buropean Communities through
Esprit Praject 6708 (APPLAUSE).

References

[1] K. A. M. Ali and R. Karlsson. Scheduling Or-Parallelism
in Muse. In Proceedings JCLP'91, The MIT Press, June
1991.

[2] K. A. M. A and R Karlsson. The Muse Approach to
Or-Parallsl Prolog, Research report, 31CS, May 1990,

[3] M. Bach. The Design of the UNIY Operating System.
Prentice Hall, 1986,

[4] A. Beaument, 5. M. Haman, P. Seeredi, and
D. H. B. Warren. Flexible Scheduling of Or-parallelism

Gigalips Project.

[7] R. Butler, T. Disz, E. Lusk, R. Olson, R. Overbeek,
and R, Stevens. Scheduling Or-parallelism: an Argonne
perspective. In Proceedings JOLP'S8, The MIT Press,
June 1988,

[8] A Calderwood and P. Szeredi. Scheduling Or-
parallelism in Aurora - The Manchester Scheduler. In
Progeedings I1CLP89, The MIT Press, June 1989,

[#] W. F. Clacksin. The DelPhi Multiprocessor Inference
Machine. In Procesdings of the th UK. Conference on

Logie Programming, pages 189-198, 1992,

[10] M. Dinchas, P. V. Hentenryck, H. Simonis, 4. Aggoun,
T, Gral, and F. Berthier. The Constraint Logic Pro-
gramming Language CHIP. In Proceedings FOOS'88,
Tokyo, Japan, December 1988,

[11] ECL'PS® 3.4 User Manual. ECRC, January, 1994,

12] ECL'P%* 3.4 Extensions User Manoal. ECRC-94-9,
1994,

[13] R. A. Kowalski. Logie for Problem Solving. Elsevier
North Holland, New York, N.Y, 1979,

[14] L. L. Li, M. Reeve, K. Schuerman, A. Véron, J. Bellone,
C. Pradelles, Z. Palaskas, T. Stamatopoulos, D. Clark,
5. Doursenot, C. Rawlngs, J. Shirazi, and G. Sardu.
APPLAUSE: Applications using the Elip3ys parallel
CLP system. Poster Abstract in Proceedings [OLP'28,
The MIT Press, June 1993,

[15] E. Lusk, R. Butler, T. Diss, B, Olson, R. Overbeek,
R. Stevens, D.H.D. Warren, A. Calderwodd, P. Szeridi,
3. Haridi, P. Brand, M. Carlson, A, Ciepielewsld, and
B. Hansman. The Aurora Or-Parallel Prolog System.
In Proceedings FGCS'88, Tolyo, Now-Dec 1988,

[16] 8 Mudambi and J. Schimpl. Parallel CLP on Hetero-
genecus Metworks., In Procsedings JCLP'94, The MIT
Press, June 1994,

[17] A. Tevanian Jr. Architecture-Independent Virtual Mem-
ory Management for Parallel and Distributed Environ.
ments: The Mach Approach. PhlD thesis, Carnegie Mel-
lon University, 1987.

62

14 Worlksshop on Parallel Logic Programming, FGOCS5'94, Tokyo, Japan

[18] A. Véron, K. Schuerman, M. Reeve, and L. L. Li. Why
and How in the ElipSys OR-parallel CLF system. In
Procesdings of P4 KLE'3S, June 19593,

{19] David DI, Warren., An Abastract Prolog Inatrection
Jet. Technical Note TH-304, SRI, October 1983.

[20] D. 5. Warren. Efficient Prolog memory management lor
flexible control strategies. New Generation Computing,
4:361-369, 1984,

63

