Super Monaco Brothers: The Sequel
A Second Runtime System

J.S. Larson  B. C. Massey  E. Tick
Department of Computer and Information Science
University of Oregon
{jimbart,tick}@cs.uoregon.edu

Abstract

“Super Monaco” is the suceessor to Monaco, a shared-memory mulliprocessor implementation
of Flat Guarded Horn Clauses (FGHC). While the system refains the older Monaco compiler and
intermediate absiract machine, the intermediate code translator, and the runtime system have been
completely replaced, incorporating both the best features of the old architecture and 2 number of new
features intended to improve robustness, flexibility, maintainability, and performance. The compiler,
written in KL1, takes high-level FGHC programs and produces intermediate code for the Monaco
abstracl machine. An “assembler-assembler® converts a host machine descripticn into a KL1 pro-
gram which translaies Monaco intermediale code into target assembly code. There are currently two
intermediale code translators: one for SGI MIPS-based hosts, and another for Sequent Symmetry
80486-based multiprocessors. The runtime system, written in C, improves upon its predecessor with
better memory utilization and garbage collection, and includes new features such as an efficient termi-
nation scheme and a novel variable binding and hooking mechanism. The result of this organization
is a portable system (machine description files are about 500 lines, and the runtime system has about
300 lines of machine-dependent C code) which is robust and extensible. This paper describes the
design choices made in building the system and the interfaces belween the components.

1 Overview

Manaco is a high-performance parallel implementation of a subset of the KL1 [13] dialect of Flat Guarded
Horn Clauses (FGHC) [24] for shared-memory multiprocessors. “Super Monaco” is a second-generation
implementation of this system, consisting of an evolved intermediate instruction set, a new assembler-
generator, and a new runtime system. It incorporates the lessons learned in the first design [21], improves
upon its predecessor with better memory utilization (via a 2-bit tag scheme and the use of 32-bit words,
as discussed in Section 5) and garbage collection, and includes a number of new features: 1) Termination
detection through conservative goal counting. 2) A new mechanism for hooking suspended goals to
variables. 3) A specialized language for implementing intermediate code translalors. 4} A clean and
efficient calling interface between the runtime system and compiled code.

We have found that our changes to Monaco have increased the robustness, portability, and main-
tainability of the system, while increasing the performance in many cases. The system now has less
than 1,000 lines of machine-dependent code, completely encapsulated behind generic interfaces, The
new assembler-assembler makes native code generation simple and declarative, while supporting the use
of UNIX standard debugging and profiling tools. A conservative goal-counting algorithm implements
distributed termination detection. The intermediate code is evolving toward a more abstract machine
model, and thus toward more complex instructions. A new data layout makes for meore compact use
ol memory, in conjunction with a novel hooking scheme, which maintains references to suspended goals
using a hash table indexed by variable address.

This paper discusses the design choices made in this second-generation system, and its preliminary
implementation and performance. Section 2 reviews the Monaco compiler, Section 3 introduces the new
assembier-assembler. Section 4 discusses our intermediate code. Section 5 defines the new layout used for
our data structures. Section 6 introduces the new runtime system and suspension mechanism. Section T
gives performance numbers and an evaluation of the new design. Section 8 discusses related work in the
literature. Section 9 draws some conelusions.
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Figure 1: Overview of the Super Monaco System

2 The Monaco Compiler

The Monaco compiler translates programs written in a subset of KL1 [13] to Monaco intermediate code.
The compiler is substantially unchanged from the earlier-reported work of [22], but is reviewed here
for completeness. The compiler consists of about 2500 lines of “front-end” KL1 code which translates
source programs to an intermediate form with explicit decision graphs [14], and about 4500 lines of
“back-end” KLl code which compiles this intermediate form. The process by which a Monaco source
language program is compiled is described in Figure 1. A machine description written in a special
language is translated into a template based translator. The KL1-subset source program is compiled to
an intermediate “assembly” form, which is then translated into native assernbly code.

Front-end compilation proceeds in two passes. The first pass translates the source program into a
“flattened” form, in which all head structures have been replaced by guard tests, and all variables have
been consistently renamed between the clauses of each procedure. The clause heads of the flattened
program are then processed to create decision graphs for each procedure, using a variant of Kliger's
decision graph algorithm [14].

The back-end first generates code by traversing the intermediate form in a standard fashion, consuming
an arbitrary number of psendo-registers. This code is then passed through an optimizer which builds
basic blocks, and performs memory allocation coalescence, constant subexpression elimination, register
allocation, and spilling. The next pass shortens jump chains, removes statically decidable branches, and
removes dead basic blocks. The basic blocks are then flattened into a linear structure, and a peephole
optimiger traverses the resulting code cleaning up some remaining common code-generation inefficiencies.

The number of registers consumed in the targel program is limited by a compiler parameter {so
that the registers in the intermediate language can be mapped onto general-purpose machine registers
of the native-code target) but is otherwise machine-independent. This scheme leads to good portability,
while also allowing some experimentation, such as artificially restricting register usage on an architecture
to measure performance impacts, or implementing “extra registers” on an architecture using memory
locations.

The intermediate code design was originally targeted toward MIPS-based microprocessors, and some
vestiges of this decision remain in the compiler. For example, the assumption of a reasonably large
number of general-purpose registers (if fewer than about 16 registers are available, code quality degrades
substantially) requires the Sequent Symmetry implementation, with only four general-purpose registers
available, to implement all of its registers as an array in memory. The assumption that condition-codes
are not available as the result of arithmetic and logical computations also leads to some implementation
inefficiency on non-MIPS architectures, because explicit logical temporaries are generated and tested,
consuming both extra registers and extra instructions.
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Figure 2: Code Templates for monaa

3 The Monaco Assembler-Assembler

The Monaco intermediate code is referred to, for historical reasons, as “Monaco assermnbly language.” The
translator from Monaco intermediate code to target assembly language iz thus called mona, the “Monaco
assembler ™ This program has existed in several incarnations: 1) A simple KL1 program was written to
translate Monaeco intermediate code into 3806 assembly code for the Sequent Symmetry. This program
suffered somewhat from speed problems, buf its main defect was that a suceession of inexperienced
KLl programmers found it difficult to understand and maintain. 2) A table-driven C program was
written, which could generate either Symmetry or MIPS assembly language. This program was faster
than its predecessor, but proved equally difficult to understand and maintain. 3) A machine deseription
language, known as menaa (“Monaco assembler-assembler”) was designed. A monaa machine deseription
is automatically translated into KL1 code, and combined with target-independent KL1 cc:u:lf- to produce
a mona translator for a particular target architecture,

The menaa translator consists of about four hundred lines of awk code, together with a small Bourne
shell driver and some m& macro definitions. The overall structure of the monaa language is that of a simple
template expander — no native-code peepholing or other optimizations are currently domne, although it
is possible that this will change in the future. For each mona instruction, one or more non-overlapping
parameterized templates are given, together with machine eode produced in response to the match. Type
information is attached to both the formal and actual parameters to guide matching and expansion. In
addition to instruction templates, the monaa description provides informalion about register names and
calling conventions, as well as some standard templates for procedure prologues and epilogues, debugging
information, and the like. The generated native assembly code follows the C calling conventions for
linking with the runtime system, and allows for profiling and symbolic debugging of Monaco assembly
code using standard UNIX tools. The monaa description for the Sequent Symmetry is about 700 lines
of monaa code, expanding to about 1300 lines of KL1. The machine-independent KL1 code for mona
comprises about 3400 lines, including symbol-table management and basic housekeeping functionality.

Some of the monaa templates used for current targets are given in Figure 2. Note that the templates
in (a) deseribing the 1386 implementation of the Monaco instructions are somewhat larger than those
deseribing the MIPS implementation in (k). This is due in small degree to the two-address nature of
1386 instructions (as opposed to MIPS three-address instructions), but largely to the fact that the 1386
Monaco registers are actually implemented using memaory locations. The small number of general-purpose
registers available on the 1386 foreed this implementation; unfortunately, the Monaco registers t.hus must
be copied to and from real registers in each instruction.

The use of monaa has proved to have several advantages: 1) The specialized machine des-r'rlpt.mn
language is reasonably easy for non-KLI1-literate programmers to use and understand. The bulk of the
MIPS machine description was written and debugged in about a week, by an undergraduate with no
KL1 experience [2]; the entire MIPS port occupied three people for about a month. 2) The reliance on
standard UNIX utilities such as awk, the Bourne shell, sed, and n4 simplifies maintenance of the monaa
translator itself. 3) The isolation of machine dependencies facilitates future ports o new architectures.
4) The production of KL1 code makes bootstrap and integrated versions of the assembler straightforward.
5) The ease of modifications to the template has sped up the design and testing cycle dramatically.
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Figure 3: Monaco Intermediate Code for append /3
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Figure 4; Monaco Object Taxonomy
4 Monaco Intermediate Code

The Monaco instruction set presents an abstract machine which is at an intermediate level between
the semantics of a concurrent logic program and the semantics of native machine code. The abstract
machine consists of a number of independent processes which execute a sequence of procedures and update
a shared memory area. Kach process has a set of abstract general-purpose registers which are used as
operands for Monaco instructions and for passing procedure arguments, Control flow within a procedure
is sequential with conditional branching to code labels. Figure 3 shows the Monaco code produced by
the compiler for append/3. o

The shared memory area is divided into cells, each of which can contain a Monaco data object, also
called a term. Terms are either variables or values. Values are either simple constants or aggregates of
terms. The allowed constants are integers, atoms, or the empty list nil. The aggregale values are lists
or structs, which are vectors of terms. A ground value is either a constant or an aggregate made up of
ground values, that is, an entire structure which contains no variables. Variables may be bound to terms.
A variable which is bound to a ground value is a grounded variable, and grounded variables are themselves
ground values, A wvariable which 1s bound to a non-variable term is called an instantialed variable. If
a variable has been bound to another variable, then the instantiation of either variable will cause the
instantiation of the other variable to the same value. A taxonomy illustrating these distinctions is given
in Figure 4.

Variables are bound through assignment operations or active unification. There are two unification
operations. Passive unification verifies the equality of ground values (in contrast to systems such as JAM
Parlog [5], which alse verify the equality of terms in which uninstantiated variables are bound together).
An attempt to passively unify a term containing uninstantiated variables will result in suspension of
the process until those variables become instantiated. Active unification, on the other hand, will bind
variables to other variables or Lo values in order to ensure equality of terms. As is customary in logic
programining implementations, no “occurs check” is performed during unification for efficiency reasons.

The Monaco instruciion set consists of about sixly operations, and is summarized in Tables 1 and
2, The instructions take constants or registers as Lheir arguments and return their resulis in registers.
There is no explicit aceess to the shared memory except through operations which access the fields of
aggregales,

Each data constructor has a variant which serves to baleh up allocation requests into a large block,
and then initialize smaller sections of the block. Batching up the frequent allocation requests increased
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Data Constructors

alloc(n, Ry}

initgoalraf(Ay, Offset, Size, Proc, Ry)
initlistref(Ry, Offset, By, Mo, Ry)
initstructref( Ry, Ofset, Size, By)

initvarref|fy, Offset, Ry)
mikconst{(zonst), Ry)
mkgoal(Size, Proc, Ry)
mklist{f,y, H,,, Ay

initialize a list
initialize a veckor
initialize a variable
creake a constant
create a goal record
créate a list

mkstroct(Jize, Hy) create o struct
wkper(fy, Label) create a pointer to ground data
miunbaund( 4] create a variable
[ Ground Data Censtroctors
const({const)) write & constant
datalabel{n) ground table lakel
listptr|Label) write a list pointer
structptr(Label) | write a struct pointer
vectorhdr{drily) | write a struct header
Diata Manipulators
car{fe, fJ) get head of list
edr{ Ry, Hy) geb tail of list
dacr(R:, Ry) eompule H. — 1
incr(fa, f4) compute R+ 1
move Ry, B} register-to-regisler copy
sraf(fyn, By) | get struct element
ssat{H. n, fy) | set struct element
saize( ., Hy) gel stroct size

Predicales
eql Hay, Haz, Hy) egual?
isbound( Ry, Rg) instantinted variable?
isempty|Hg) suspension stack empty?
isimn{R,, Rg) immediate? (atom o nil)
isatom| F,, Hy) atom? :
isint( R, Ry) integer? .
islist| R, Ayg) list? (not nil)
ieni1(Rs, Rq) nil?
isscruct(R., A) struct?
isunbound({H;, Ry) | vninstantiated variable?
neq( R, Az, Aa) | not equal?
ieq(fy), Ry, Ry integer egual?
inaq(Rai, Rz, Rg) | integer nol equal?
1le( Ry, Rz, Ry) integer less than?
ile(R,;, Raz, Ry) integer less or equal?
ige(fay, Raa, Ha) integer greater than?
ige( Ry, Hya, Ry inleger greater or equal?

allocale space on the heap
initialize a goal record

Table 1: Monaco Instruction Set
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Arithmetic and Bil Operations

i a.dd{ M, R,g . Rd}l
iEuh{R=j, R.a, R,r}
imul({ R4, Haz, Ra)
id i“{ Rl] 8 Ru2 3 Hd}
imod( sy, Rz, Ba)
i B.I:Id{ Ray, Rea, Hd}
il:l'l'[.n" ' RJE ' Hd}

ixor(R.y, R, Ba)

inleger add

inleger sublract
nbeger multiply
integer divide
integer modulus
bitwise amcd

bitwise or

bitwise exclusive-or

ineg(f., Ry) integer negation
inotH,, Ry bitwise complement
Control
br(a,Lebel) branch always
b (n,Ha,dabel) branch on negakive
br(p s, Label) branch on positive
briz, A, Label) branch on zero
br(nz,fs Label] | branch on not zero
label(n) code label

Unification and Frocess Management

assign|H,y, Haz) bind & variable

punify( M.y, Mo, Ra) | passive unification

anify (i, Rz ) active unification

enguens| f,) enquend a goal

execute| Proc/n) procedurs call

proci Proc/drity) marks the beginning of a procedure
procaad() terminate current thread

push{ ) add Lo suspension stack

suspand| Proc/n) suspend a procecdurs

Table 2: Monaco Instruction Set {cont.}

performance on standard benchmarks, as discussed below in Section 7. In addition, aggregaies which
are fully ground at compile time are statically allocated in the text segment of the assembled code. This
decreases execution and compilation times.

‘The instruction set is modeled after a reduced instruction set (RISC) architecture, on the theory
that such small instructions may be easily and efficiently translated to native RISC instructions using
a simple assembler. This is the case for the MIPS port, where many Monaco instructions translate Lo
single MIPS instructions, as shown in Figure 2. However, the Monaco instruction set has been evolving
toward more complex instructions, as frequent idioms are identified and coalesced. There are several
reasons for this trend: 1) Intermediale inskructions at too low a level viclate abstraction barriers hetween
the intermediate code and the machine-level data layout and runtime system data structures. 2) As
the amount of work per instruction gets larger, more machine-specific optimizations can be made in the
monaa code templates. 3) There is no reason to equalize the amount of work done per instruction or
to standardize instruction formats, as there is with RISC architectures. 4} If the native target is not a
good match for the Monaco instruction set, a simple template-expanding assembler will produce much
better native code for a more complex instruction than for a sequence of simple instructions. (This is
in contrast to systems such as [11], a sophisticated multi-level translation scheme which produces good
code by intelligent generation of very simple intermediate instructions.)

5 The Runtime Data Layout

The previous memory layout [21, 6] had three tag bits on each word, and words were laid out on eight-byte
boundaries in memory. This prodigious use of memery was not merely a concession to the three tag bits,
The unification scheme required each object to be lockable, As a consequence of this requirement, some
of the “extra® 32 bits of each word were used as a lock. While this led to a fine granularity for locking,
it doubled the system’s memory eonsumption.

All ohjects are now represented as 32-bit words of memory aligned on four-byte address boundaries.
This alignment restriction allows the low-order two bits of pointers to be used as tag bits, without loss of
pointer range. The four tagged types are immediates, list pointers, bozr pointers, and reference pointers.
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Immediates are further subdivided into integers, atoms, and box headers. Integers have the distinetion of
being tagged with zero bits, allowing some optimizations to be made in arithmetic code generation, On
most architectures, the pointer types suffer no inefficiencies from tagging, since negative offset addressing
may be used to cancel the added tag.

List pointers point to the first of iwo consecutive words in memory, the head and the tail of the list,,
respectively. The nil list is represented as a list-tagged null pointer. Bax pointers point to an array of n
consecutive words in memory, the first of which is a box header word which encodes the size of the box
and the type of its contents. Boxes are used to implement structs, goal records, and strings, as well as
some objects specific to the runtime system such as suspension slips. Figures 5 and 6 illustrate the layout
of seme typical ohjects.

There is only one mutable object type — the unbound variable, represented as a nuoll pointer with
a reference pointer tag. When a variable is bound, its value is changed to the binding value. When a
variable is bound to another variable, one becomes a reference pointer to the other. Successive bindings of
variables create trees of reference pointers which terminate in a root, which is either an unbound variable
or some non-variable term, The special Monaco instruction deref must thus be applied to all input
arguments of a procedure before they are examined. This operation chases down a chain of references
to its root, and returns the root value or a reference to the unbound root variable. Thus, a conzervative
estimate of whether the variable is bound can be made quickly. In practice, this is only a performance
issue, not a correctness issue — the process may try to suspend on a recently instantiated variable, in
which case the runtime system will detect its instantiation and resume execution of the process,

In the previous implementation of Monaco, one of the tag types was a hook pointer, which was
semantically equivalent to an unbound variable, but pointed to the set of goal records suspended on
that variable. All of the code which dealt with unbound variables alse had to test for hook pointers
and handle them separately. However, profiling revealed that suspension is a relatively rare event —
most variables are never hooked. Therefore the new data layout keeps the association between unbound
variables and suspended goal records “off-line,” as described in Section 6.4. This new organigation seems
promising; contention for buckets is indeed rare, and we were able to simplily some critical code sections
in unification. However, more evaluation needs to be done.

6 The Runtime System

The runtime system is responsible for memory management, scheduling, unification, and the multipro-
cessor synchronization involved in assignment and suspension. It consists of about 2000 lines of machine-
independent C code, and about 300 lines of machine-dependent C for a particular platform. Il has been
ported to the Sequent Symmetry and MIPS-based SGI machines.
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Figure T: Sample Control Flow in the Monaco System

6.1 Portability

The old Monaco used libraries provided by the host operating systern [15] to implement parallel lightweight
threads and memory management. We chose to use a more operating system independent model. We
create many UNIX processes executing in parallel and communicating throigh machine-specific synchro-
nization instructions in shared memory, using the fork and mmap system calls.

The machine-independent portion of the runtime system requires a small set of synchronization primi-
tives from its machine-dependent part. These are: 1) An atomic exchange operation, 2) Atomic increment
and decrement, 3) Simple spin locks, 4) Barrier synchronization. These may be operations provided by
the architecture, or they may be synthesized from more primitive mechanisms, For the Symmetry port,
atomic increment, decrement, and exchange are provided by the instruction set, while locks and barriers
are synthesized using the atomic exchange mechanism. The only assumption made in the machine-
independent code about the shared memory consistency model is that writes are globally reliable.

The result is a framework that is highly portable, since it dees not rely on any particular UNIX
implementation’s libraries for thread and memory management. The UNIX kernel does the scheduling
of the processes on the available processors. Unfortunately, this lead to some drawbacks. UNIX tools
designed to interact with implementation-dependent facilities are unavailable. The shared memory must
be managed explicitly, since we are not provided with a shared-memory equivalent of mallee(). Con-
sequently every runtime systern data structure which must be visible to all worker processes must have
global scope in the C module system, hindering eode modularity. Lastly, the UNIX kernel is not informed
of our synchronization operations and may decide to, for instance, preempt a process which is holding
a gpin lock in order to schedule a process which is waiting for that lock [1]. However, our performance
does not currently seem Lo be impacted by this sort of contention.

The runtime system'’s interface with the compiled code is small and regular. Implicitly, both com-
ponents understand the data layout specified in Section 5. The compiled code ean only allocate and
initialize values; it cannot mutate any values. Thus, all assignment and unification is done in the runtime
system. However, there is a runtime data strueture which is visible and mutable by both eomponents.
This per-worker structure consists of a goal record pointer, used to pass goal records during startup and
suspension, a suspension stack, and the limits of a lacal heap of memory for allocation. This shared
structure allows various operations, such as memory allocation and suspension stack management, to be
implemented in the compiled code rather than through a function call to the runtime system.

6.2 Scheduling and Calling Interface

The Monaco abstract machine produces many thousands of processes during a typical computation, re-
quiring a level of fine-grained process management inappropriate for implementation via UNIX kernel
processes. So, like most concurrent language implementations, we treat UNIX processes (worker pro-
cesses) as a set of virtual CPUs, on which we schedule Monaco processes in the runtime system.

An invocation of a Monaco process is represented as a goal record, recording simply & procedure
name and arguments. A ready set of goal records is maintained by the runtime system. Each worker

43



process starts in a central work loop inside the runtime system. This loop executes until some global
termination flag is set, or until there is no more work to do.” The worker takes a goal record out of
the ready set, loads its arguments into registers, and calls its entry point. The worker then executes
a compiled procedure, including sequences of tail calls, until the compiled code decides to terminate,
suspend, or fail. These three operations are implemented by a return to the control work loop in the
runtime system with a status code as the return value. In addition, the intermediate code instructions
for enqueueing, assignment, and unification are implemented as procedure calls from the compiled code
into the runtime system. Such calls return back to the compiled code when done, possibly with a status
code as a return value. Control flow during a typical execution is illustrated in Figure 7. The runtime
systemn invokes a Monaco procedure via a goal record (1), which tail-calls anather procedure (2). This
procedure attempts a passive unification via a call into the runtime system (3), which returns a constant
suspend as an indication that the caller should suspend (4). The caller then suspends by returning the
constant suspend to the runtime system (5). ' :

The high contention experienced when the ready set is implemented as a shared, locked global object
leads to the necessity of some form of distributed ready set implementation. In our scheme, each worker
has a fixed-size local ready stack, corresponding to an efficient depth-first search of an execution subtree
[17]. If the local stack averflows, local work is moved to a global ready stack. If workers are idle while
local work is available, a goal is given o each idle worker, and the remaining local work is moved to the
global ready stack. This policy is designed to work well both during normal execution, when many goals
are available, and during the initial and final execution phases, when there is little work left to do.

6.3 Termination

Execution of a Monaco program begins when goal records for the calls in the query are inserted into
the ready set, and ends when there are no more runnable goals. At this point the eomputation has
either terminated successfully, failed, or deadlocked — the difference can be casily determined in a post-
mortem phase which looks for a global failure flag and suspended goals. A serious difficulty for a parallel
implementation is efficiently deciding when termination should occur.

Many approaches to termination detection are susceptible to race conditions. The previous implermen-

tation maintained a monitor process which examined a status word maintained by each worker process,
terminating the computation when it recognized that each work had maintained an idle state for some
time. A locking scheme was used to avoid races by synchronizing the workers with the monitor, which
hurt worker efficiency. Most importantly, the monitor process itself consumed a greal deal of CPU time
without performing much useful work.
- In Super Monaco, we have adopted a different and (to the best of our knowledge) novel approach.
We maintain a count of all outstanding goals — those either in the ready set or currently being executed
by workers. Termination occurs when this count goes to zero, The count increases when work is placed
in the ready set, and decreases when a goal suspends, terminates, or fails. The count is not changed
by the removal of a goal from the ready set, since the goal makes a transition from the ready state to
the executing state. During the transition interval there is a temporary overestimate of the number of
goals oulstanding between the time the goal suspends, terminates, or fails, and the time the count is
decremented. However, this will not cause premature termination, since the overestimate means that the
counter must indicate a nonzero number of outstanding goals. Because the count is not incremented until
sometime after a parent has decided to spawn a child goal, there is also a temporary underestimation
of the goal count during this interval, = As long as the eount is incremented before the parent exiis,
this will not cause premature termination either: Since the parent has not yet exited, the count must
be nonzero until after the underestimation is corrected. Thus, since mis-estimates of the number of
outstanding goals are temporary and will not cause premature termination, our termination technique
is both efficient and safe. On the Symmetry, we implemented this goal counting scheme using alomic
increment and decrement instructions: architectures with atomic compare-and-swap should also allow
reasonably efficient implementation.

6.4 Hooking and Suspension

In order to awaken suspended processes when a variable becomes instantiated, there must be some
association between them. As noted in Section 5, old Monaco represented this association explicitly —
some unbound variables were represented as pointers Lo sets of hooks. Figures 8a illustrates the old
representation,

However, for our benchmark set, the vast majority of variables were never hooked. For a variely of
reasons, the most important being the fact that we wanted to adont two bit tag values Lo represent five
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Figure 8: Monaco Hook Struciures

types (immediates, lists, box pointers, variable pointers, and reference pointers), we chose to represent
variables using a single word. Super Monaco continues to use suspension slips to implement suspension
and resumption, as in systems such as JAM Parlog [5] and PDSS [13], except that the association between
variables and hooks is reversed. Each hook contains a pointer to the variable it is suspended upon. Hooks
are grouped into sets according to a hashing function based upon varizble addresses. A global hook table
contains a lock for each such set.

Since any operation on an uninstantiated variable necessarily involves the manipulation of the hook
table, the locks on the buckeis of the hook table may serve as the only synchronization points for
assignment and unification. This gives a lower space overhead for the representation of variables on the
heap. There will be some hash-related contention for locks which would net oceur in a one-lock-per-
variable scheme, but since we are dealing with shared-memory machines with a moderate number of
processors, the rate of such hash collisions can be made arbitrarily low by increasing the size of the hook
table,

To instantiate a variable, its bucket is locked, the unbound cell is bound to its new value, all corre-
sponding hooks are removed from the bucket, and the lock is unlocked. All hooks are then examined.
To bind a variable to another variable, both buckets are locked (a canonical order is chosen to prevent
deadlock) and the set of hooks of on the second variable are extracted and mutated into hooks on the first
variable. These hooks are then placed in the first variable’s bucket, and the second variable is mutated
into a reference to the ficst. The result is that future dereferencing operations will return a reference to
the new root, or its value when instantiated. Figure 8b illustrates the new representation.

6.5 Memory Management

Memory is allocated in a two-tiered manner. First, there is a global allocator which allocates blocks of
memory from the shared heap. Access to the global allocator is sequentialized by a global lock. Second,
each worker uses the global allocator to acquire a large chunk of memory for its private use, All memory
allocation operations attempt to use this private heap, falling back on the global allocater when the
private heap is exhausted. When the global heap is exhausted, execution suspends while a single worker
performs a stop-and-copy garbage collection (3] of the entire heap. Garbage collection overheads are
acceptably low now, but a parallel garbage collector will be implemented in the near future.

Many runtime system data structures are allocated on the heap and represented as Monaco objects.
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Processors
Benchimark System 1] 2] 4 | 8| 12] 16
hanoi(14) old 4,364 | 2339 | 1.218 | 0.772 | 0.598 | 0.538
new 5.240 | 1.6%0 | 0.870 | 0.450 | 0.310 | 0.250
nrev(1000) old 19,153 | 11.740 | 6.136 | 3.394 | 2.503 | 2.135
new - || 30.610 | 15.910 | 8300 | 4.450 | 3.280 | 2.490
queen(10) old 43.305 | 30.348 | 12,413 | 6.153 | 4.041 | 3.082
new 41.620 | 21.190 | 10.710 | 5.410 | 3.650 | 2.770

primes(5000) | old 12841 | 7.549 | 3.788 | 1.084 | 1.390 | 1.117
new || 20.730 | 10.720 | 5.700 | 3.150 | 2.270 | 1.700
pascal(200) old 8.973 | 4.981 | 2.499 | 1.294 | 0.919 | 0.724
new || 10.590 | 5.510 | 2.890 | 1.540 | 1.070 | 0.860

Table 3: Comparison of Execution Times (Seconds)

| Processors
[IT7 37 4] 5] 2] 18

Unification (435436 [ 435 418387 384

Scheduling 8.7 6.3 T.A ) 8.5 | 131 | 147
Suspension 0.0 00 03] LO| 21| LT
Contention 0.0 0O 0O) 00 01| 0.3

Runtime Alloc. 0.0 0.0 0.1 0.6 1.3 1.1
Compiled Alloc, 3.1 30| 29| 26| 26| 2.3
Other Compiled || 47.7 | 47.1 | 45.8 | 44.5 | 42.0 | 41.5

Table 4: Execution Time Breakdown (by Percentage)

Mosi sets are currently represented using lists, including the ready set and the hook set in a hook table
entry. Strings, which are allocated by the parser, are stored as special boxes. Suspension hooks and
suspension slips are stored in list cells and small boxes respectively. Heap allocation of these objects
makes it possible to avoid built-in limits on object sizes, and sped development time through the rense
of existing code. However, implementing these [acilities using statically-allocated resources, such as a
fixed-size ready set and fixed-size suspension stacks, would not only reduce memory-allocation overhead,
but would reduce contention by shortening critical sections. Any brittleness due to fixed-size structures
in such an implementation could be handled by falling back on dynamic allocation when stacks grow
beyond their static limits,

7 Performance and Evaluation

Figure 3 compares Super Monaco performanee to that of the previous implementation, as measured
by executing the benchmark programs listed in [22] under identical conditions. The benchmarks were
executed on a Sequent Symmetry 581 with 16MHz Intel 80386 microprocessors. Measured execution
times reflect the user-level CPU time consumed by the longest running processor from the beginning of
the computation until termination. All times are the best of several runs (5-10 for old Monaco, 5 for
Super Monaco).

In many cases Super Monaco matches or improves on the performance of the previous system, despite
the fact that it is more robust, and has not yel incorporated all of the optimizations used in the previous
system. Tick and Banerjee [22] compared the old Monaco's performance to that of comparable systems
available at the time, such as Strand (7], JAM [5], and Panda [17]. Monaco was found to outperform
these systems in a uniprocessor configuration by factors ranging from 1.6 to 4.0, and to maintain such
ratios for moderate numbers (1-16) of processors. The new implementation of Monaco still maintains
competitive performance.

The first implementation of the runtime system gave us measurements [22] which guided Super
Monaco. For the benchmarks we studied, most variables were never hooked; assignment operations
should therefore be streamlined for this case even at the expense of the suspending case. We canfirmed
old Monaco measurements indicating that even if memory was allocated from a private per-processor
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Processors

|
2T 4] 81 12] 16

Scheduling 00 (450793 ] 9.1 960
Unification 0.0 | 20001 9.0 2.4 1.9
Suspension 0.0 00| 3.8 1.0 0.9
Barriers 0.0 (350 7916 1.2
Total Contentions 0 20 | 266 | 1991 | 4806

Table 5: Locking Contentions (by Percentage)

area, and even if the allocation instruetions were inlined in the compiled code, it was still important to
reduce the number of allocation operations, by doing all allocation requesis in a basic block at once. We
found that global ready-set operations indeed had high contention. Finally, we discovered that the inter-
mediate rode’s method of computing boolean tests into registers and then branching on register contents
did not map well to non-MIPS architectures, and even on the MIPS had no particular advantage.

Although we have not yet incorporated all of the optimizations used in old Monaco, we can use
profiling data to identify the limitations on our performance and afttempt to analyze how the known
optimizations can improve them. The mona assembler lets us generate the information necessary for
profiling our compiled code using standard UNIX tools. We analyzed the performance of compiled code
and the runtime system using the UNIX gprof facilities. Table 4 gives Lhe breakdown of the execution
time for various levels of parallelism. We note that the runtime overhead due to unification is extremely
high, because it has not been tuned yei.

Several sources of overhead remain:

¢ The use of a new data layout conflicts with the Monaco compiler’s “knowledge” of data represen-
tations, thus causing a sernantic mismateh in its use of the intermediate code agsign instruction.
Therefore all assignments are done with unification in Super Monaco. We believe that a combination
of simple static analysis and runtime system tuning will improve assignment performance.

¢ The previous implementation experienced a performance increase of from 5% to 17% when using a
switch intermediate instruction which replaced the MIPS-style condition registers. We expect to
achieve this advantage as well, although in a eleaner fashion, by modifying the Monaco instruction
set slightly. This should reduce the execution overhead of compiled code.

» The new runtime system fixed a number of correctness bugs that plagued the old sy‘siem., ans intro-
duced new capabilities such as garbage collection. These changes led to some additional overheads.

The scalability of the system to larger numbers of processors is limited by the increasing overhead
of scheduling operations and the overhead of shared lock contention. Table 5 shows the sources of lock
contention. Almost all collisions are due to scheduling operations, and these contentions are a negligible
fraction of the time spent in scheduling. The entries for Unification and Suspension indicate that hash
eollisions of variable addresses in the hook table are not a significant source of contention.

8 Related Work

Among the first abstract machine designs for committed-choice languages were an implementation of Flat
Concurrent. Prolog [18] by Houri [12, 19], the Sequential Parlog machine by Gregory et al. [8, 9], and the
KL1 machine by Kimura [13] at ICOT. A good summary of work on Parleg appears in Gregory’s book
[8]. The JAM Parlog system [3] is a commonly-used Parlog implementation which compiles Parlog into
code for an abstract machine interprater. The implementation of JAM Parlog features many innovations
which are still in current use by both our system and others, including hangers, suspension slips, tail
call optimizgation, and goal queues. In spite of its interpreted nature, JAM Parlog is quite efficient. An
outgrowth of work on Flat Parlog implementation, the Strand Abstract Machine [7] was originally de-
signed for distributed execution enviranments, but also achieved excellent performance on shared-memory
parallel machines. Work on shared-memory parallel implementations of the committed-choice language
KL1 at ICOT Jed to the KL1C (KL1 C compiler) system [4], which translates KL1 code into portable
C code. While the initial KL1C implementation is uniprocessor based, a distributed-memory multipro-
cessor version [16] is under development. Other recent work has included the jc Janus implementation
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[10). Interesting comparisons of the execution performance of many early committed-choice language
implementations can be found in Taylor [20] and Tick [22, 23].

9 Conclusions

Super Monaco has achieved improvements over its predecessor in robustness and capability, and some
increases in performance. For the shared-memory hosts we are targeting, we have concluded that: 1) A
machine deseription language, automatic translator generation, and a carefully written runtime system
all facilitate porting. 2) Generating native assembly code permits access to most of the environment-
related advantages of generating C code (easy profiling, debugging, and linking) with only a little extra
effort. 3) Termination detection through conservative goal counting is both efficient and simple. 4) A
reasonably simple implementation of a distributed ready set can almaost entirely eliminate scheduling
contention. §) Implementing suspension using a hook table provides acceptable performance, and allows
simpler implementation of Super Monaco as a whole. More improvements aimed at “fastpathing” the
non-suspension cases of unification are desirable. 6) A migration toward more complex intermediate-code
instructions and greater abstraction from the underlying implementation than were present in old Monaco
is desirable, to improve performance without sacrificing portability. )

In the immediate future we plan to attack performance bottlenecks. We need to further reduce the
_cost of unification by identifying assignments and treating them specially, and “fastpathing” operations
on unhooked variables — since suspensions are rare, we can mare aggressively trade off the expense of
suspension operations for sireamlined handling. We also need to coalesce the instruction set further,
‘especially type testa,
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