Literal Dependence Net and Its Use in
Concurrent Logic Programming
Environment

Jianjun Zhao, Jingde Cheng, and Kazuo Ushijima
Department of Computer Sei.de Communication Eng.
Ixvushin University
G-10-1 Hakozaki, Fukuoka 812, Japan
{zhao, cheng, ushijima}@esce kyushu-u.ac.jp

Abstract

Program dependences ave dependence relationships hm’d«éng between statements in a pro-
gram which can be used to infer about the behavior of the program. In this paper we propose
a general framework for dependence anclysis for concurrent logic programs, in particular
for Flat Concurvent Prolog programs. The first contribution of this paper is to present two
language-independent program representations for explicitly representing control flows and/or
data flows in a concurrent logic program. Dased on these representations. program dependence
analysis for concurrent logic programs becomnes possible. The second contribution is to present
a dependence-based representation named the Literal Dependence Net (LDN) for explicitly
representing primary program dependences in a concurrent logic program. Moreover. we dis-
cuss some possible applications based on the LDN. which include program debugging, testing.
complexity measurement, and mainfenance in o concurrent logic programming envivonment.

1 Introduction

Program dependences are dependence relationships holding between statements in a program
that can be regarded as an intrinsic attribute of a program and used to infer about behav-
ior of the program. Intuitively, if the computation performed by a statement affects the
behavior of another statement, then there may exist some dependence relationship between
the statements. Program dependences in a program can be determined by analyzing control
flows and/or data flows in the program. Dependence-based program representations such
as Program Dependence Graph or Process Dependence Net for imperative sequential or con-
current programs, have been developed as an important program representation tools used
in program optimization, understanding, testing, debugging, inforation-flow control, com-
plexity measurement, and maintenance [3-5,8-10,14-19,25,26]. The seminal works on program
dependence-hased representations for imperative sequential programs are due to the Kuck ef
al.[16] and Ferrante and Ottenstein et al.[8,17], and its adaptation to imperative concurrent
programs has been proved successful [3.4]. This paper is based on the framework initiated and
developed by Cheng [3], which studied the program dependences for imperative concurrent
programs. In addition to the usual control and data dependences proposed and studied for
imperative sequential programs, Cheng [3] introduced three new kinds of primary program
dependences for imperative concwrent prograins called selection dependence, synchronization
dependence. and communication dependence. He also presented a program representation for
imperative concurrent, programs called the Process Dependence Net, which is an arc-classified
digraph to explicitly vepressut five types of primary program dependences in the programs.
and also discussed some applications of the PDN in development of distributed systems.
However, although soime dependence-based program representations have been proposed
and studied for imperative sequential and concnrrent programs, until recently. there is no

127

dependence-based representation proposed for concurrent logic programg. In this paper we
extend the framework of Cheng [3] to concurrent logic programs, taking the Flat Concurrent
Prolog (FCP} [22,23] as the target language of this study. This paper niakes the following
contributions:

First, we propose two graph-theoretical program representations for explicitly representing
control flows and/or data flows in a concwrent logic program. Based ou these representa-
tions, program dependence analysis for imperative concurrent programs can be extended to
concwmrent logic programs naturely.

Second, in addition to the data dependences in concwrrent logic programs. we propose
three new types of primary program dependences named selective control, synchronization,
and communication dependences to represent the control flows and interprocess interactions
in the programs. Moreover. we propose a dependence-based representation named the Literal
Dependence Net (LDN) for explicitly representing these primary program dependences in a
concwrent logic program.

Third, we discuss some possible applications of LDN to programming activities including
program slicing, debugging, testing, complexity measurement, and maintenance in a concur-
rent logic programming environment.

Dependence analysis of sequential logic programs has been discussed by Chang et al.[2],
and Warren et al.[24]. They described how the data dependence information can be used
both to parallelize Prolog programs and to improve its backtracking behavior without ineur-
ring runtime overhead significantly. Data dependence analysis has also been investigated by
Debray [6], who considers the static inference of modes and data dependences information
in sequential logic program. King et al. [13] proposed a framework for schedule analysis for
concurrent logic programs, which was built from the notion of a data-dependence to define a
procedure for creating threads.

In this paper our aim is quite different. In addition to analyze the data dependences in a
concurrent logic program as mentioned above, we also analysze selective control, synchroniza-
tion, and communication dependences in the program, aud our motivation is to develop a
dependence-based, unified representation tool useful in various conewrrent logic programming
activities including program debugging, testing, complexity measurement, and maintenance.
To our knowledge, this work has not been done elsewhere in the literature.

The rest of the paper is organized as follows. Section 2 introduces the syntax of FCP and
defines two new representations named the And/Or parallel control-Aow net and And/Or
parallel definition-use net for explicitly representing control flows and/or data flows in a
concurrent logic program. Section 3 shows how to construct the And/Or parallel control-
fiow net and And/Or parallel definition-use net for an FCP program. Section 4 defines the
selective control, dafa. synchronization. and communication dependences in a concurrent
logic program based on its And/Or parallel control-flow net and And/Or parallel definition-
use net, and presents the Literal Dependence Net. Section 5 shows some possible applications
of the LDN in a concwrent logic programn development environment. Concluding Remarks
are given in Section 6.

2 Preliminaries

2.1 Syntax of FCP

We assume that readers are famuiliar with the basic concepts of logic programs, and throughout
this paper, we will restrict ourselves to FCP. This language illustrates the basic mechanisms
of concwrrent logic programmming.

128

A program is a finite set of gnavded clanses. A guarded clowse is a formula of the form: H :
-G1.G2,....G,|By. Ba, ... By, .(m.n > 0). wheve H. By. Ba, ..., B, ave literals. Gy, G2,....G,
are guard test predicates. H is called the Lead of clause. G, Ga.....Gy the guard. and
B\.Bs,....B,, the body. * =", read if, denotes implication, and *|" is called the commit
operator. If the gnard is empty the clause is written as: H : — By, Ba, ..., By,. and the conunit
operator is omitted. If the body is empty and the guard is not empty, the clause is written
as: H: —=G1.Go.....G, | true. And if both ave empty the clanse is called a unit clouse. and
is written simply as: H. A clause whose body includes exactly one goal is called an #ferative
clause. A procedure is a set of clanses each of which has the same head literal.

In this paper we assmne a fixed finite set of guard test predicates. including integer{X).
X <Y, X =Y, and X # ¥. These predicates require their arguments to be ground and
therefore all variables appearing in the guard of a clause have to appear in the head. Moreover.
we assume that the guard of a clause only contains one guard test predicate for expository
purposes. In what follows, we let P be a program, and let Vo and Vi Vi, o (= 0,1, ...,m)
be the goal and clanses of the P respectively. The literals of the goal and every clanse are
numbered by ¢ = 0,1, ...,m.

2.2 The Process Reading of Logic Programs

Concurrent logic prograinming languages apply a new reading of logic programs, i.e., the pro-
cess reading. According to this reading, each goal atom p(T7, ..., T},) is viewed as a network of
concwrrent processes, whose process interconnection pattern is specified by the logical vari-
ables shared between goal atoms. Processes comumunicate by instantiating shared variables
and synchronize by waiting for some logical variable fo be instantiated. This view is sum-
marized in Table 1. The possible behaviors of a process ave specified by gnarded clauses. A
process can terminate (empty body), change state (unit body), or become several concurrent
processes {a conjunctive body). This is summarized in Table 2.

Table 1. The Process Reading of Logic Programs

[Process model | Concurrent logic programming model |
~ Process Goal atom
Process Network Goal(collection of atoms)
Instruction for process action Clanse [(see Takle 2)
Communication channel Share logical variable
Communication - Instantiation of a shared variable
Synchromzation Wait until a shared variable is sufliciently instantiated

Table 2. Clanses as Instructions for Process Behavior

[Process behavior | Relative clause |
Terminate A —Gltrue
Change stale (1.e. become a different Process) A —-G|B
Become & concurrent processes A =GBy, ... By

2.3 Terminology

Definition 2.1 A digraph is an ordeved pair(V, A), where V is a finite set of elements called
vertices, and A is a finite set of elements of the Cartesian product V = V', called ares, i.e.,
ACV =%V is a binary relation on V. For any arc (vl,v2) € A, v; is called the initiel verter
of the arc and said to be adjacent fo v2, and v is called terminal verfez of the arc and said
to be adjecent from vy, A predecessor of a vertex v is a vertex adjacent to v, and a successor
of v is a vertex adjacent from v. The in-degree of vertex v, denoted by in-degree(wv). is the
number of predecessors of », and the ouf-degree of a vertex v, denoted by out-degree(v), is

129

the number of successors of v. A sinple digraph is a digraph(V, A) such that 1o (1,0) € A
foranyve V.

Definition 2.2 An are-classified digraph is an n-tuple(V, 4;, As. ..., A,_;) such that
every (V,4;) i =1,...,n—1) is a digraph and AiNAj=¢gfori=12....n—1andj=
1.2,....n—1. A simple arc-classified digraphis an arc-classified digraph (V. Ay, 4. A,_|)
such that no (v,v) € 4; (i=1,...,n—1) for any v € V.,

Definition 2.3 A pathin a digraph (V, 4) or an arc-classified digraph (V, 4, 4a, ...,
Aqn-1) is a sequence of arcs (a1.aa,...,a1) such that the terminal vertex of a; is the initial
vertexof ajyp for 1 €4 <l-1, wherea; € A{l <i<lora; € AjUA;U.. Ay (1 <e<1),
and I(l > 1) is called the length of the path. If the initial vertex of a; is v; and the terminal
vertex of @ s vp, then the path is called a path from vy to vr, or path v; — vy for short.

Definition 2.4 An And/Or parallel control-flow net (CFN) is a 8-tuple (V, V, g, Var. A..
Apanar Ap..+ 8.1), where (V. A, Ay . A,) is a simple arc-classified digraph such that A, €
VxV,Ap, .y © Vana X V. Ap,, C Vo x V. Vonq € V is a set of elements, called AND-parallel
ezecution vertices, Vor C V(Vor N Vg = @) is a set of elements, called OR-parallel execution
vertices, s € Vis a unique vertex, called start vertez, such that in-degree(s) = 0.t € V is a
unique vertex, called fermination verter, such that out-degree(t) = 0 and ¢ # s, and for any
v € V(v # s,v # t), there exists at least one path from s to v and at least one path from v to
t. Any arc (v1,v2) € A, is called an AND-parallel execution arc, any arc (v1,v2) € A,,,
is called an OR-parallel execution arc.

Definition 2.5 An And/Or parellel definition-use net (DUN) is a T-tuple (N, E,.,D. U,
I, 5, R), where No = (V, Vind, Vor, Ac, Ap,. 2 Ap.. 8:1) is & CFN, T, is a finite set of symbols,
called variables, and D : V — Z, and U : V — B, are two partial functions from V to the
power set of I, X, is a finite set of symbols, called channels, and §: V — cand R:V — I,
are two partial functions from V' to the power set of I,. :

Note that the above definitions of CFN and DUN are graph-theoretical, and therefore.
they are independent of any concurrent logic programming languages. Moreover, CFNs and
DUNs of sequential logic programs can also be constructed in similar way as described above
for concurrent logic programs.

3 CFNs and DUNs of concurrent logic programs

Using the process reading of concurrent logic programs, the action of process can be divided
into two aspects, i.e., control actions and data processing actions. Control actions include
termination, iteration, forking, and creation of new processes. These are specified explicitly by
the clauses of a concurrent logic program. Control actions correspond to the control fows in
a program. Data processing actions include communication and various operations on data
structures, e.g., single-assignment. inspection, testing, and construction. Data processing
actions are specified implicitly by the arguments of the head and body literals of a clause,
and are realized via unification. Data actions corvespond to the data flows in the program.
we can construct the And/Or parallel control-flow net in a concurrent logic program to
represent the control flows in the program, and construct the And/Or parallel definition-use
net to represent data flows in the program. We use FCP as the target programming language
to show how to construct CFNs and DUNs of concurvent logic programs.

130

3.1 Constructing CFNs of FCP programs

We now describe the informal translation rules for constructing the And/Or parallel control-
How net of an FCP progran. In the CFN. we use vertices to represent the head and body
literals and guards in the program. use AND-parallel execntion vertices to represent the
guard or head literals (if guards are empty) of clauses, nse OR-parallel execution vertices to
represent the procedure literal which corresponds to a group of clanses with the same head
literal, use arcs to represent possible control flows between literals. Moreover, we use a unique
start vertex s and a unique termination vertex t to represent the beginning and the end of
the program, represectively. Note that in the CFN, the vertices s and t do not corvespond to
any clause in the program. ouly for easy representation. As what follows, we show the basic
informal translation rules for constructing the CFN of a FCP program. This is based on the
process reading of logic programs.

A unit clouse is a definite clause with an empty body: p(11,T3,..., Th), specifying that a
process in 4 state unifiable with p(T, T, T},) can reduce itself to the empty set of processes,
and therefore terminate. We create two vertices to represent. the unit clause, as shown iu Fig.
1{a), oue is for literal p, the other is the termination vertex f, and there is an arc from p to .

An iterative clouse is a clause with one body literal: p(7). 75, ... T,) : — G | g(S1. Sa. ...,
Sm), specifying that a process m a state unifiable with p(T}, 7. T) can change its atate
to {51, 82,.... Sm). The program state is changed to g/m (i.e., forking). and the data state
to (S1,5s,...,5m). There is a special case when the body literal of an iterative clause is the
same as its head literal, i.e., p(T1, 7%,Ty) : — G | p(51, 54, ..., S,). We create two vertices
to represent the head and the body literals respectively. As shown in Fig.1 (b). p is for the
head literal, g is for the guard, and ¢ is for the body literal, and there are two ares from p to
g and g to g.

A general clause has the following form: (T, T, ... T) 1 — G| Q1. @3, ..., @y, . specifying
that a process in a state unifiable with p(T). T%, ..., T,,) can replace itself with m new processes
as specified by @1, @2, Qm, i.e., each atomic goal in the body of the clause is reduced in
AND-parallelism. As shown in Fig.1{c), we create a vertex p for the head literal, an AND-
parallel execution vertex ¢ for the guard of the clause, m vertices for m subgoal processes
(body literals) created by the clause, and there are m arcs from g to g1, ¢2. ..o, Q-

A goal clowse with the forme: @ — @, Qa. ..., @y, specifies that m new processes can be
invoked to execute in parallel. We create a start vertex s to represent the start of the
programn, use m vertices to represent m subgoals in the goal. There are m arcs from the s to
ty, V2, ..., Uy a8 shown in Fig.1 (d).

A procedure corresponding to OR-parallel processes with the form:

p(T1. Do, - Th) 1 — G | Q.
FETE]-TiL --u.T',!n} P Gj I QZ-

P{Trrrl-.Tm'..h ---~T'un;} i Gm | an-

specifies that the clanses in the procedure is reduced m OR-parallelism. To construct the
sub-CFN of a procedure, we can construct the sub-CFN of each clause firstly. then use an
OR-parallel execution vertex to represent the procedure literal and connect procedure literal
to every head literal of clanses respectively, as shown in Fig.1 (e).

Having these basic translation rules. it is not difficult to translate an FCP program to
its CFN. First. we can generate the sub-CFNs for the goal and each clause of the program
respectively. Then we can generate the sub-CFGs for each procedure. Finally, we can generate
the total net by connecting the procedures of the program by OR-parallel execution arcs. The

131

CFN of a concwrent logic prograim can be used to define the selective control dependence in
the program. Fig.2 shows a FCP program and its CFN.

3.2 Constructing DUNs of FCP programs

In order to forinally define the data, synchronization, and comumunication dependences in a
concurrent logic program, we construct the DUN of the program. The DUN of a concurrent
logic program can be regarded as an annotated CFN of the program, whose vertices are those
for its CFN,

and annotated in four functions, First, there is a function D{v) for the set of all variables
defined at vertex v. Second. there is a function U{v) for the set of all variables used at vertex
w. Third, there is a function S{v) for the set of all channel variables sent at vertex . Lastly,
there is a function R(v) for the set of all channels received at vertex . To construct the DUN
of an FCP program, we should define these four functions explicitly. In a logic program, the
variables with the same name in different clauses are dif ferent variables. To avoid misusing
variables, we make a transformation for a concurrent logic program before constructing the
DUN of the program. Through this transformation, there is no variable name shared by any
two clauses. In what follows, the construction of the DUN of a FCP program is based on its
transformed program.

To determine the set of D(v) and U(wv) of a literal corresponding to a vertex v in the CFN,
we use two abstract interpretations. One abstract interpretation which is a variation on that
proposed by Sehr [20] is done to get the set U'(v) of variables used at each literal, The set
D(v) of variables defined at each literal are found by another abstract interpretation called
mode inference that infers approximate bindings for variables taking aliasing into account.
This work are based on that proposed by Dabray [6] and Selr [20]. To obtain the sets of S{v)
and R(v), we can do as follows. If there is a literal represented by a vertex v in the CFN
containing a read-only variable X, we add X into R{v). If there is a literal represented by v
containing a writable variable X such that ?X is its read-only variable ocowrred in another
literal, we add X into S{v). The DUN of a concurrent logic program can be regarded as the
a CFN with the information concerning definitions and uses of variables and conmmunieation
channels at each program point. As an example, Fig.3 shows a simple FCP program, its
transformed program, and its DUG.

4 Program Dependences and Literal Dependence Net

Generally, a concurrent logic program consists of a munber of processes. These processes are
not independent because there exist interprocess synchronization and communication among
them. As a result, there are not only intraprocess control flows and data flows but also
interprocess interactions among these control flows and data fows. Baged on the CFN and
DUN of a concurrent logic progran. we define four types of primary program dependence re-
lationships, i.e., selective control dependence, data dependence, synchronization dependence.
and communication dependence, to capture such attributes of & concurrent logic progran:.

4.1 Selective Control Dependences

In concurrent logic programs, there are no specific control mechanism (conditional branch
structure, for instance) such as in traditional imperative programs. The structure that can
be regarded as presenting the control primitive is the guard of a clause. Informally, a literal
u is directly selective control-dependent on a nondeterministic selection guard v in a clause
if whether u is executed or not is divectly determined by the guard result of v. Definition 4.1

132

{a) Unil clause

sequential contrel are,
AMDVOR-parallel exacarion parallel are
spijiential vaatral are

#» = & s & AN parallel execution arc

—— v —]

OR-parallul execution arc
{h) Iterative clause

o> .
Vi: p - g | m- “ Vi: p =g | - ¢
> D

(cy Genaral clanse

(d)y Goal clause
i
Vli: p :- glgl.g?..... am. Wi ?- gl,g2..... qn. ®

(e) Procedure P

V1. p:- gl|gll,ql2, ..., alm,
Vi: p:- g2|qg2i, q22,...,q2m.
Vm: pi- gm|ogml, g2, ..., . .-"""#j -"'\-H-‘h-
.--""" ~—
--..__H

: z T

Fb BESD- > ES B

Fig.1 Informal translation rules for constructing the CFNs of FCP programs.

133

V0 : ?- insertis,[1,3,.4,List])
Vl: insert(X, [¥|¥s], [Y]|28]):-
X=v | f"_L s
ingert (X, Ys?,zs) . PV e
V2: insert!(X, [Y|Ys], [X,Y|¥s]):- u J~ NS
Xﬁ:’YI fa
o AN BRC
Vi: insert(X,(1,[x]). \ H
\ 1]
\GDf | G
\ / If
!
L)1 G

Fig.2 An FCP program and its CFN.

give the formal definition of selective control dependence in a program based on the CFG of
the prograin.

Definition 4.1 Let (V. Vina. Vor, Ae, 4y, 1, Ap,, 5, 1) be the CFN of a concurrent logic
program, and u and v be any two vertices of the net. u is directly selective control-dependent
on v iff (v,u) € Ay, , i.e., (v,u)is an OR-parallel execution arc.

Intuitively, selective control dependence can occur if in a concurrent logic prograan there
are some clauses which have the same head literals. Given a goal and clauses, the OR process
tries to unify the clauses’heads with the goal, which satisfies the constraints posed by the
guard. Only one of these clauses will be selected in a nondeterministic manner, the commit
is executed, the rest of the clauses are aborted, and the OR parallelism terminates. For
instance, in Fig.4 (b), vertices v, vag, v3p are directly selective control-dependent on vertex
Upp, because given the goal insert(s,[1,3.4], List), the OR process will unify it with these
clauses in OR-paralielism.

4.2 Data Dependences

Data dependences of logic programs have been widely studied in the literatures [2.6,20].
In this paper, in contrast to the traditional approach. mode inference is not used alone
to compute data dependences. Rather, the definition sets D{v) and the use sets U(v) are
intersected to compute data dependence in the way more similar to imperative language
techniques. Suppose a literal v executes before a literal u in a clause, informally, u is directly
data-dependent on v if v defines a variable x and u uses 2. Definition 4.2 gives the formal
definition of data dependence in a program based on the DUG of the program.

Definition 4.2 Let (N, Z,,D.U, 2., 5. R) be the DUG of a concurrent logic program,
where No = (V. Vona, Vor, Ae. Ay, Ap,. . 5.1) is the CFN of the program, and u and v be
any two vertices of the net. w is directly date-dependent on v iff there is a path P = (v; =
,v2), (v2,v3), ..., (¥n—1,¥n = u) from v to u such that {D{v)} N U{u)) — D(P") # ¢ where
D(P')y= D{wa) U ... U D{vu—1).

L34

Primary program
vl ¢ F=- mia,¥Y)

Vi mi{X,¥):=

hl (X%,%1}),
h2 (X17,¥%) .
v2: hl(a,b). D(v10)={XL, Y1}
vi: h2ib.c). m
L L]

* Ufvll)={X1} - .

S(vil)=iX11]
Transformed program
VO : ?- mla,YO)

Uiwl2)={¥1l}
Rivl2)={X11}

vi: mwixl.¥l):- hlf{a,b)
hl{X1?,¥11),
h2 {(X117,¥1).

V3. hlia,b).

¥i: h2ib,cl.

ki ik, c)

Fig.3 A simple FCP program and its DUN.

Note that the data dependences in a program can be determined by analyzing the data
flows of the program, There are some effivient algorithms to compute the countrol and data
dependences in a imperative program based on the control Aow graph of the program, These
algorithms can be modified to compute the selective control, data dependences in a concurrent
logic program based on the CFN and DUN of the program. As an example, Fig.4 shows two
gimple FCP programs and their LDNs. For instance, in Fig.4 (a), vertex vy is directly data-
dependent on verfex wg due to the head literal of clause V1 iz a definition point for the
variable X1, and the first body literal is a use point for it.

4,3 Synchronization Dependences

Synchronization mechanisin in concwrrent logic programming languages includes two aspects.
One is when a clanse is invoked, the subgoals in the body of clause are executed in parallel;
on the other hand, when two processes want to conimunicate each other, they should be syn-
chronized by waiting for logical variables to be instantiated. Informally, a literal wu is directly
synchronization-dependent on another literal v in a clause if the start and/or termination of
execution of v directly determines whether or not the execution of w starts and/or terminates.
Definition 4.3 gives the formal definition of synchronization dependence in a program based
on the DUG of the program.

Definition 4.3 Let (N, Z,, D, U, 5., 5 R) be the DUN of a concurrent logic program.
where N; = (V. Vand, Vor, A, Ap,u+ Apor 5. 1) i the CFN of the program. and » and v be any
two vertices of the net. u is directly synchronization-dependent on v Hf any of the following
conditions hold:

(1) (v, u) € A, . ie., (v.u) is a AND-parallel execution arc.

(2) S(v) = Rlu).

Intuitively, synchronization depeudence can occur between the guard or head literal (if

135

guard is empty) of a clanse and each of its body literals (subgoals) executed in parallel, and
also occur between two body literals which have a shaved logical variable as a commmumication
channel. For instance, in Fig.4 (a). vertices v;.v2 are directly synchronization-dependent
on vertex vyg. because the unification of m{e.Y0) with m(X 1, Y1) successful makes the
body literals A1(X17, X11) and h2(X117,¥ 1) executed in parallel. The vertex v;» is directly
synchronization-dependent on vertex v); due to shared logical variable X 11.

4.4 Communication Dependences

In a concurrent logic program, the communication between processes is realized by commu-
nication channels, for instance, the read-only logical variables in FCP. When two processes
want to commmmicate each other, they should synclironize firstly, then some data can transfer
from one process to another one by instantiating shared logical variables. Informally, a literal
u ig directly communication-dependent on another literal v if the value of a variable com-
puted at v has a direct influence on the value of a variable computed at u by an interprocess
communication. Definition 4.4 gives the formal definition of comnunication dependence in a
program based on the DUN of the program.

Definition 4.4 Let (N, E,.D U, Z.. 8, R) be the DUG of a concurrent logic program,
where Ne = (V. Vang, Vor, Ac, Ap, g Ap,ry 8, 1) i8 the CEN of the program, and « and v be any
two vertices of the net. u is directly communication-dependent on v iff there exists a vertex
v’ such that R(u) = S{v'), and v’ is directly data-dependent on v.

Note that the definition of communication dependence is based on the definition of syn-
chronization dependence. Intuitively, communication dependence can oceur between two
literals which are in different clauses and imvolve some communication operation by syn-
chronization. In & clause, there exists no communication dependence because of the data
transferred by intraprocess data flows. For instance, in Fig.d (a), vertex wsg is directly
communication-dependent on vertex vy since the data may transfer from literal h2(b, a) to
literal A1{X17, X'11) by instantiating the shared logical variable X11.

4.5 Literal Dependence Net

We use an arc-classified digraph named the Literal Dependence Net to represent all four types
of primary program dependences in a concurrent logic program. The net has one vertex for
each vertex in the CFN for the program except the start and terminate vertices. There is an
arc in the literal dependence net for one of each type of dependences.

Definition 4.5 The Literal Dependence Net (LDN) of a program is an arc-classified
digraph (V, Con, Dat, Syn, Com), where V is the vertex set of the And/Or parallel control-
flow Net of the program, but except the start and terminate vertices; Con is the set of
selective control dependence arcs such that any (w,) € Con iff u is directly selective control-
dependent on v; Dat is the set of data dependence arcs such that any (u,v) € Dat iff u is
directly data-dependent on »; Syn is the set of synchronization dependence arcs such that
any (u,v) € Syn iff u is directly synchronization-dependent on v; and Com is the set of
communication dependence arcs such that any (u,v) € Com iff u is directly communication-
dependent on .

As an example, Fig.4 shows a digraph vepresentation of the LDNs of the transformed
FCP programs in Fig.2 and Fig.3.

136

5 Applications

Having LDN as a unified representation of a concurrent logic program, we describe some
possible applications based on LDN in a concwrrent logic programming environment. Some
applications are directly based on the LDN of a program, and the others are based on elices
of the program.

5.1 Slicing and Debugging

A program slice consists of the parts of a program that (potentially) affect the values computed
at some point of interesting, referred to as a slicing criferion. The parts of a program which
have a direct or indirect effect on the values computed at a slicing criterion C ave called
the program slice with respect to eriterion C. The task of computing program slices is called
program slicing. -

The original concept of a program slice was introduced by Weiser [25,26]. Weiser claims
that & slice corresponds to the mental abstractions that people make when they debug a
program, and suggests the integration of program slicers in debugging environments. After
that, various slightly different notions of program slices and a number of methods to compute
slices have been proposed for imperative programs [4,8,10]. However, until recently, there is
no program slicing method proposed and studied for logic programs [7). In this paper. we
propose some static or dynamic slices of concurrent logic programs.

Definition 5.1 A static slicing criterion for a logic concurrent program is a 2-tuple
(I,V'), where [is a literal in the program aund V is a set of variables used at I. The static skice
SS(1,V) of a concurrent logic program on a given static slicing criterion (I,V') cousists of
all literals in the program that possibly affect the beginning or end of execution of I and/or
affect the values of variables in V. Statically slicing a concurrent logic prograin on a given
static slicing criterion is to find the static slice of the program with respect to the criterion.

Note that once a concurrent logic program can be represented by its LDN, the static
slicing problem of the program is reduced to be a simple reachability problem in the net.

Definition 5.2 A dynamic slicing criterion for a logic concurrent program is a quadruplet
(I,V,H,I), where | is a literal in the program, V is a set of variables used at [, and H is a
history of an execution of the program with input I. The dynamic slice DS(I, V. H.I) of a
concurrent logic program on a given dynamic slicing criterion (I, V, H. I') consists of all literals
in the program that actually affected the beginning or end of execution of ! and/or affected
the values of variables in V' in the execution with I that produced H. Dynamically slicing a
concurrent logic program on a given dynamic slicing criterion is to find the dynamic slice of
the program with respect to the criterion.

Definition 5.3 A static forward-slicing criterion for a logic concurrent program is a 2-
tuple (I, V'), where [is a literal in the program and V is a set of variables used at . The
static forward-stice SFS(I, V) of a concurrent logic program on a given static forward-slicing
criterion (I, V') consists of all literals in the program that would be affected by the beginning
or end of execution of I and/or affected by the value of v at I. Statically forward-slicing
a concurrent logic program on a given static forward-slicing criterion is to find the stabn:
forward-slice of the program with respect to the criterion.

Note that once a concurrent logic program can be represented by its LDN, the static
slicing problem of the program is reduced to be a simple reverse-reachability problem in the
net.

137

(a) A simple FCP program and its LDN
with data, synchronization, communication dependences

Synchronization dependence
i v — ——
Communication dependence

Ve ¢ ?- mia,¥Yd)

Vl: mixLl,Y1):-
hl(X1?,X11),
ha (¥117,¥1).

va: hilia.bl.

Vi h2ib,cl.

(b) A simple FCP program and its sub-LDN
with selective control dependences

vd : ?- insertis,[1.3.4.Lisc)}
b

Vl: inserk (X, [Y|¥s], [Y|2s]):-
=Y |
insert (¥, ¥s7, 8s).

/J = ™\
. / N
VZ: dinsertiX, [¥|Ys].[X,¥|¥sl):- @ @
K=Y |
/
/ N /
/ v /!

Lrue
Vi: insert (X, [1,[X]).

/ -

-
-
-
Control dependence \®‘.—-""

Fig.4 The LDNs of two sample transformed FCP programs.

Definition 5.4 A dynaemic forward-slicing criterion for a logic concurrent programn is a
quadruplet (I.V, H,I), where [is a literal in the program, ¥ is a set of variables used at [,
and H is a history of an execution of the program with input /. The dynemic forward-slice
DFS(1,V, H,I) of a concurrent logic program on a given dynamic forward-slicing criterion
(I,V, H, I} consists of all literals in the program that actually affected the begiuning or end
of execution of { and/or affected the value of v at s in the execution with I that produced H.
Dynamically forward-slicing a concurrent logic program on a given dynamic forward-slicing
criterion is to find the dynamic forward-slice of the program with respect to the criterion.

Debugging is the process of locating, analyzing, and correcting bugs in a program by
reasoning about causal relation between bugs and the error detected in the 1:rr|::p;lr_r1va:r.ri~ and
has been a difficult part of software development. Program elicing is useful for debugging
in the sense that it potentially allows users to ignore many statements that are irvelative to
the error statements. For instance, if a program computes an erroneous value for variable v
at statement s, only such statements coutained in the slice with v have possibly affect the
computation of that value, all statements which are not in the slice can be safely ignored. On
the other hand, forward slices are also useful for debugging. For instance, during debugging,

138

statement s is found to be incorvect. By making forward slices, we can find all statements
which affected by s. this may be helpful in that how the error may be corrected.

Like debugging imperative programs. debugging logic programs is also a costly process
in logic programming. There are a muuber of papers proposed and studied in that how to
debug a logic program correctly and effectively. see [7]. One of the main achievements is the
algorithmic debugging technicue, which was first introduced by Shapiro [21]. The algorithmnic
debugging was the first atteinpt to lay a theoretical framework for program debugging and
to partially automates the task of localizing a bug by comparing the intended program
behavior with the actual program behavior. The intended behavior is obtained by asking the
user whether or not a program unit (e.g.. a procedure) behaves corvectly. Using the answers
given by the user, the location of the bug can be determined at the unit level. Following
Shapiro’s work, a number of studies have been made for Prolog, and have been extended to
contcurrent logic programs [7]. However, the big problem in algorithmic debugging is the that
the number of queries may be very large. To solve this problem. some system uses heuristics
to ask users more relevant questions first, and another way to reduce the number of queries
is to use partial formal specifications as partial oracles [7]

Since program slicing is very useful in bug localization during debugging a program, and
there are many methods which have been proposed and studied for debugging imperative pro-
grams by using program slicing techniques [1,11,25], we can expect that once some program
slicing methods are proposed. the slicing for logic programs are also useful in debugging logic
programs. As an example, when we debug a logic program by an algorithmic debugger, by
combining algorithmic debugging with program slicing, the number of queries in the process
may be reduced substantially. The similar methods have been proposed for imperative pro-
grams, and showed their powerful functions in debugging nuperative programs automatically
[11,12].

5.2 Testing

Testing is the process that executes a program with the intent to find errors. Although a
number of testing motheds have been proposed for imperative programs, there is no testing
mothed for concurrent logic programs until now [7]. Since the LDN of a concwrent logic
program represents the control flows and data flow properties either within intraprocesses
or between interprocesses in the program. it can be used to define the dependence-coverage
criteria, i.e.. test data selection rules based on covering program dependences, for testing
concurrent logic programs. Issues on how to define and evaluate the dependence-coverage
criteria should be studied in the future.

5.3 Understanding and Maintenance

One of the problems in software maintenance is that of the ripple effect, i.e., whether a code
change in a program will affect the behavior of other codes of the program. To maintain
a concurrent logic program, it is necessary to know which literals in which clauses will be
affected by a modified literal, and which literals in which clauses will affect a modified literal.
On the other hand, to understand the behavior of program, we usually want to know which
literals in which clauses might affect a literal of interest, and which literals in which clanses
might be affected by the execution of a literal of interest. The slicing and forward-slicing
based on LDN of a program can satisfy these requirements.

139

5.4 Complexity Measurement

Metrics for measuring software complexity have many applications in software engineering,.
There are a number of complexity metrics proposed and studied for imperative programs
[5,27), but, no complexity metric has been proposed for concurrent logic programs until now.
Since measuring software complexity is an indispensable process in software developinent, it
18 necessary to propose some complexity wetrics for measwing concurrent logic programs as
well as sequential logic programms. Based on the LDN of a concurrent logic program, we can
propose some complexity metrics for measuring concwrrent logic programs. For instance, the
metric defined by the sum of all primary program dependences holding between literals in a
program can be used to measure the total complexity of the program, and the metric defined
by the number of all synchronization and communication dependences in a program can be
used to measure the complexity of concwrrency in the Program.

6. Concluding Remarks

We Liave presented a general framework for dependence analysis for concurrent logic programs,
particularly for FCP programs. This framework derives from that of Cheng [3], developed for
imperative concurrent programs, that has been naturally extended to analysis dependences
for concurrent logic programs.. Although here we presented the program dependences' and
the representation in term of FCP, a simple concurrent logic langnage, other versions for
this framework for more complex concurrent logic languages are easy adaptable because they
share their basic execution mechanisms with FCP,.

Since dependence-based representations for imperative programs have played an impor-
tant role in program understanding, debugging, testing, maintenance and so forth, we can
expect that the literal dependence nets proposed in this paper are useful in a concurrent logic
programming environment. Their significance depends on how we develop the representation
themselves and apply them to practices of concurrent logic programmming. On the other hand,
how to develop a transformation tool that either transforms a concurrent logic program to its
LDN efficiently or keeps the size of the LDN as small as possible without losing the necessary
dependence information is also an important issue that influences the utilization of the LDN
in & practical concwrrent logic programming environment.

References

fl] H. Agrawal, R. Demillo, E. Spafford, “Debugging with Dynamic Slicing and Backtracking,”
Software-Practice and Experience, Vol.23, No.6, pp.589-616, 1993.

[2] 1. Chang, A. M. Despain, D. Degroot, “AND-parallelism of Logic Programs Based on a Static
Data Dependency Analysis,” Digest of Papers, COMPCON 85, IEEE, New York, 1985.

[3] J. Cheng, “Process Dependence Net of Distributed Programs and Its Applications in Development
of Distributed Systems,” Proceedings of IEEE-CS 17th Anuual COMPSAC, pp.231-240, U.S.A.,
Movember, 1993,

[4] J. Cheng, “Slicing Concurrent Programs - A Graph-Theoretical Approach,”in P. Fritzson (Ed.)
“Automated and Algorithm Debugging.” Lecture Notes in Computer Science, No.749, Pp-223-240,
Springer-Verlag, May, 1993.

[5] J. Cheng, “Complexity Metrics for Distrilnited Programs.” Proceedings of IEEE-CS 4th Annual
ISSRE, pp.132-141, U8 A, November, 1903

[6] S. K. Debray, “Static Inference of Modes and Data Dependencies in Logic Programs.” ACM
TOPLAS, Vol.11,No.3, pp.418-450, 1987.

140

[7] M. Ducasse, J. Noye “Logic Programming Environments: Dynamic Program Analysis and Debug-
ging,” J. Logic Programming, Vol.19/20, pp.351-384, 1904,

[8] J.Ferrante. K.1.Ottenstein. J.D.Warren. “The Program Dependence Grapl and Its Use in Opti-
mization,” ACM TOPLAS, Vol.9 No.3, pp.319-349, 1957,

[9] K. B. Gallagher, J. R. Lyle, “Using Program Slicing in Software Maintenance,"IEEE-CS TOSE.
Vol.17, No.8, pp.751-761, 1991. .

[10) S. Horwitz, T. Reps, “The Use of Program Dependence Graphs in Software Engineering.” Pro-
ceedings of the 14th ICSE, pp.392-411, 1992,

[11] M. Kamlar, “Interprocedural Dynamic Slicing with Applications to Debugging and Testing.”
PLD thesis, Linkeping University, 1993.

12] M. Kamkar, N. Shahmehri, P. Fritzson, “Bug Localization by Algorithmic Debugging and Pro-
gram Slicing,” LNCS, Vol 456, pp.60-74, Springer-Verlag, August 1990,

{13] A. King, P. Soper, “Schedule Analysis of Concurrent Logic Programs,” Proceedings of Interna-
tional Joint Conference and Symposium on Logic Programming, pp.478-492, MIT Press. 1992,

[14] B. Korel, “Program Dependence Graph in Static Program Testing,” Information Processing
Letters, Vol.24, pp.103-108, 1987.

[15] B. Korel, “PELAS - Program Error-Locating Assistant System,” IEEE-CS TOSE, Vol.14, No.9,
pp.1253-1260, 1988,

[16] D. Kuck, R.Kuhn, B. Leasure, D). Padua. M. Wolfe *Dependence Graphs and Compiler and Opti-
mizations,” Conference Record of the 8th Annual ACM Symposinm on P1111c1p1es of Fmgra,mmmg
Langunages, pp.207-208, 1981.

[17] K. J. Ottenstein, L. M. Ottenstein. “The Program Dependence Graph in a software Development
Environment,” ACM Software Engineering Notes, Vol.9, No.3, pp.177-184, 1984.

[18] A. Podgurski, L. A. Clarke, “A Formal Model of Program Dependences and Its Implications for
Software Testing, Debugging, and Maintenance,” IEEE-CS TOSE, Vol.16, No.9, pp.965-979, 1990.

[19] C. S. Hsieh, E. A, Unger, R. A, Mata-Toledo, *Using Program Dependence Graphs for Informa-
tion Flow Contrel,” J. Systems and Seftware, Vol.17, pp.227-232, 1992,

{ED] D. C. Sehr, “Antomatic Parallelization of Prolog Programs,” PhD thesis, University of Illinois at
Urbana-Champaign, October, 1992, CSRD Report 1288.

[21] E. Shapiro, “Algorithmic Program Debugging,” MIT press, 1983,

[22) E. Shapiro, “The Family of Concurrent logic Programming Lauguages, ACM Computing Sur-
veys, Vol. 21, No. 3, pp.412-510, September, 1989,

[23] E. Shapito (Ed.), “Concurrent Prolog: Collected Papers,” Vols. 1-2. MIT Press, 1987,

{24] R. Warren, M. Hermenegildo. 5. K. Debray, “On the Practicality of Global Flow Analysis of Logic
Programs,” Proceedings of the Fifth International Conference on Logic Programming, pp.684-699,
MIT Press, 1988,

[25] M. Weiser, “Programmers Use Slices When Debugging,” CACM, Val.25, No.7, pp.446-452, 1982
[26] M. Weiser, “Program Slicing,” IEEE-CS TOSE, Val.10, No.4, pp.352-357, 1984.
[27] H.Zuse, “Software Complexity: Measures and Methods,” Walter de Gruyter, 1990.

141

