An Efficient Implementation of Reflection in KL1
- Toshiyuki Takahashi — Masayuki Takeda

Department of Information Sciences,
Faculty of Science and Technology,
Science University of Tokyo
2641 Yamazaki, Noda-Shi, Chiba, 278, Japan
E-mail: {tostyuki, takeda} @is.noda.sut.ac.jp

Abstract

This paper proposes the reflective architecture to realize an efficient
implementation of reflection in KL1. The previous approaches to imple-
ment the reflection facilily in logic-based languages are almost all based
on meta-interpreter methods which are far from practical. This paper
aims at an efficient implementation of reflection in KL1. To this end,
we developed a reflective architecture based on the notion of ‘metabody’
which is able to customize/control the execution of KL1 programs with-
out meta-interpreter methods. Several examples using this architeciure
are shown and analyzed. This paper assumes a basic knowledge of parallel
lagic language.

1 Introduction

Computational Reflection was defined by Maes[5] as the behavior exhibited by
a refiective system, where a reflective systemis a computational system which is
about itselfin a causally connected way. A computational system is a computer-
based system whose purpose is to answer questions or support actions in some
domain. A computational system is said to be causally connected to its domain
if the internal structures and the domain they represent are linked in such a
way that if one of them changes, this leads to a corresponding effect upon the
other,

Recently, computational reflection as a software paradigm has a great deal of
attention. Implementation of a reflective facility into the programming langnage
promotes the modularity of the program, and enhances the remsability and
understandability of the code. Also, reflection makes module to change to
another module dynamically. This will make the selection of executing strategy
complying to the changing environment, and it contributes for the efficiency of
the program execution.

Our aim is to achieve an efficient implementation of reflection in KL1. There
are some experiments for implementation of the reflection facility into Parallel
Logic Languages, and most of these approaches are based on meta-interpreter
methods. Using meta-interpreter methods makes it easy to build the self-
representation which is causally-connected to the aspects of the system. These
methods are far from practical since interpretation methods cause overhead in
execution, which results in poorer to the performance. To eliminate overhead

17

problems, application of partial evaluation has been suggested in some paper-
s. But, these applications do not have enough performance and are roughly
10 times slower compared to the non-reflective programing language. And we
have developed a reflective architecture based on the notion of ‘metabody’
which is able to customize/control the execution of KL1 programs without
meta-interpreter methods. This approach gains efficiency because it translates
the enhanced KL1 code to the pure KL1 code. :

In section 2, we explain metabody as an essential concept in reflective archi-
tecture. Section 3 presents how the body part of the base-level code customized
by metabody and makes concept of meta-process group distinct. In section 4,
we present two kinds of application programs, and in section 5, we discuss about
suggestion of these expansions to KL1.

2 Fundamental Concepts

Reflective language which is designed using, base-level and meta-level codes
that are written separately. We are going to use base-level codes to describe
its domain. and then use meta-level codes to describe the customization of
base-level codes and how to control their execution.! The codes for dynamic
extention/modification to adapt to the new problems and environments are
meta-level ones. For example, on a parallel computer, the codes solving the
puzzle are in base-level and the codes for dynamic load balancing are meta-
level cades.

Original KL1 has several primitives which assist description of the meta-
level operation. For example, ‘@node’ and ‘@priority’ are used in meta-level
operation. ‘@node’ is the notation to specify the processor to execute the goal
and ‘@priority’ is the notation to specify the execution priority of the goal. In
KL1 the programmer has to write compounded codes which contain two level
codes, base-level and meta-level codes,

Our first motivation to implement reflective facility in KL1 is dividing these
two level codes into separate codes: To achieve this, we made some extentions
to KL1 to supplement the meta-level code into the existing base-level code.

Figure 1 illustrates the extended image of the KL1. The arrow stands for
control flow, and the dotted line stands for division between base-level and
meta-level codes. The clause starting with p is the base-level code, and the
clause starting with meta_p is the supplemented meta-level cade.

As we can conjecture from the control flow, if clause p commits, the body
part of the clause p will not be executed, but instead meta_p will be executed.
The $execbody in meta-level is the special goal in which the execution of this
goal will pull the trigger for the base-level body’s execution. In the illustrated
example in figure 1, two goals x and y are invoked in the clause meta_p. In
result, five goals x,y,r,s,t are invoked.

The meta-level codes can customize/control the meta-level codes themselves.

18

base-level

meta-level

P :-ql|lr, s, t.

_baselevel 7 .{quwt:ol. .
meta-level metabody ,

meta p :—- X, ¥y, $execbody.

Figure 2: Metabody customization of the body

translation
basge-level cods
i translated code
p:-qlr 8, t.
p i- g | meta_p.
---------------------- meta p - %X, ¥, body p.

mete-level code body p :- r, s, t.
meta_p - X, ¥, Sexecbody.

Figure 3: Translation to compounded codes.

Figure 2 is another representaion of figure 1 at the different point of view.
Body part in the base-level can be customized by the meta-level code which is
called metabody. *

The extended KL1 programs can be converted into normal ones. Figure 3
shows how the base-level and meta-level codes are translated into compounded
codes.

3 Reflective Architecture
3.1 Metabody

In KL1 specification, the code which distributes goals to the computed X by
using loadb:assign node/1 are expressed as below:

#While we describe the metabody in mela-lavel, it can also contral the body part’s execution

19

t-module samplel.
foo :- loadb:assign_node(X), fool@node(X).

The same code described in extended KL1 specification are as follows:

:-module samplel.
freflect metalb:distrib.
foo :- fool.

:=metamodule metalb.
:-metabody distrib/0.
distrib :- loadb:assign_node(X), $execbody@node(X).

In the example above, base-level codes are between declaration :-module and
declaration :-metamodule, and meta-level codes follow the declaration :-metamodule.
Metamodule is the module which describes the meta-level code. The declara-
tions of metamodule begin with : -metamodule Metamodule, and the meta-level
code such as metabody follows., End of file or the declarations of another mod-
ule {or metamodule) will terminate the metamodule description. Since there
is a description in the base-level code that begins with Yreflect, this specifies
a relation between base-level clause and metabody. In this case, the base-level
clause foo and the metabody distrib are related. That is, if the clause foo
commits, the metabody metalb:distrib will be invoked.

Metabody is described into the metamodule. Definition of a metabody be-
gins with a metabody declaration of the form :-metabody Metabody/Arity fol-
lowed by its clauses. In the example metalb:distrib/0, when the distrib/0
is invoked, the goal loadb:assign node/1 is called, which is an invocation
of the assign node/1 inside the module(# metamodules). Then, by the goal
$execbody, the body part of the base level will be executed. Under these cir-
cumstances, we implement a load balancing by specifying the processor with
the pragma @node.

It is also possible to hand over the argument to the metabody to make the
possibility of customizing the body execution for the furthur advancement. The
argument to hand over to metabody other than ground term is the name of the
variable in the body part of the clause, and the group stream which we describe
in the next section.

In the example below, the parameter “P which denotes the the variable P in
the body part is passed to the metabody msample2:mfoo/1.

:-module sampleZ,
dreflect msample2:mfoo(~P).
foo(P,Q):-calcl(P),calc2(q).

i=-metamodule msampleZ.

:~metabody mfoo/1.
mfoo(X):-$rep_v(X,Y),base:calc3($X,Y),$execbody.

20

In the example of metabody msample2:mfoa/1, the received variable name is
used for two purposes. First, it is transfered to invoked goal: base:calc3/2 as
an argument. In the metabody, a variable® which has modifier symbol ‘¢’ on
its name is unified with the variable in base-level which is indicated by value of
received variable itself. In above example, ‘received variable’: X="P, therefore
$X=P. Secondary, it is used for replacing the base-level variable with another
one. It is possible to replace variable in base-level body (received variable’s
name) with another one before execution of $execbody/0, using special goal
$rep_v/2 in metabody.

$rep_v/2is a clause that replaces the variable given in first argument (base-
level variable) with another one given in second argument. The Program de-
scribed above is equivarent to the following one:

i-module sample2.
foo(P,Q):-base:calc3(P,Y),calci(Y),calc2(Q).

Below is the attractive example of §rep_v/2:

t-module sampled.

main :- calc(X),cutput(X).
freflect compe:compe([1,2,3],7X).
cale(X) :-task(X).

task{X):- ... X=[Ansa].

r=metamodule compe.

:-metabody compe/2.

compe(NL,Out) :- merge(R,3),
waitans(3,$0ut), compe2(NL,0ut,R).

compe2([NINL] ,0ut,R) :- R={R1,R2}, compe2(NL,Out,R2),
$rep_v(0Out,R1),$execbodylnode(N).

compe2([J,_,R) :- R=[].

waitans([Ans|_],0ut) :- Out=[Ans].

Metabody introduced in above code, compe: compe/2, is the meta level code
which can get the result of calculation as fast as possible, by calculating in
each node separately. The clause compe:compe/2 generates copy of the goal
in the body of base level clause, and distribute them on each node. Then, it
returns the result of the node that finishes the fastest as global answer. In
this example, The same goal task/1 is distributed to the three nodes that has
No. 1-3, then the result that is returned in first from one of these nodes is
unified to X which is to accept the answer originally. To receive the answer,
we use merge/2 which is built-in predicate of KL1. It should be noticed that
meta-level code for distributed computation and receiving result is separated
from base-level code clearly by application of extended KLI.

Customization such as replacement of goal in base-level body with another
one can be made by use of metabody. The following is an example of the meta-
level code for replacement of goal (exists in base-level body) which is given in

Yhis variable should have the name of variable that appecars in base-level body.

21

actual argument of metabody in the form of ‘functor/arity’ with another goal.
Special goal $rep_g/2 described in metabody is similar to $rep_v/2. It replaces
the goal given in first argument (of metabody) in the form of ‘functor/arity’
with one given in second argument:

:=module sampled.
%reflect msample4:mfoo(calc2/1).
foo(P,Q) :~calcl(P),calc2(q).

:=metamodule msampled.
r-matabody mfoo/1.
mfoo(X):-$rep_g(X,base:calcl/1),$execbody.

Above code is equivarent to next one:

:=module sampled.
foo(P,Q):-calci(P),base:calci(Q).

3.2 Meta-process Group

In this section, we introduce the concept of meta-process-group. We call an
execution on the base-level as base-process, and an execution of a metabody
as meta-process. For resource management on meta-level, coordination be-
tween meta-process belonging to the same group sharing the same resource
is necessary. We named this mechanism for the coordination meta-process-
group. It consists of group-stream, which is the common communication
path for both meta-process and the group, and group-controller which con-
trols resources shared in the group.
The following is an example program using meta-process-group:

:-module sampleb.

%defgrp metalb:initgrp(ns).
main :- gen(X),foo(X).
foo([X|L]) :- fool(X), fool(l).
foa([]) :- true.

ireflect metalb:assign_node(ns).
fool(X) := cale(X).

:=metamodule metalb.

:-metagrp initgrp/1.

initgrp(*strm) :- demander(*strm).

:-metabody assign_node/1.

assign_node(*strm) :- *strm<<¥X, $execbody@node(X).

This program performs the coordinative load balancing. The diffrence between
the sample of load balancing program(samplei) which we mentioned before, is

22

that it makes the meta process to perform the coordinative balancing strategy?
opposed to the sample before which can only perform the incoordinative® one.
The notation 4defgrp imported in module samples is the declaration of the
meta-process-group. The invocation of the group-controller and the name of the
group stream are defined here. In the sample, the group controller initgrp/1
descripted in the metamodule metalb is invoked, and ns will be defined as the
“group-stream name”. The declaration :-metagrp is added to the meta-level
code. Declaration :-metagrp Group-controller will define the following clause
as a group controller. In the example above, it defines initgrp/1 as the group
controller. When the initgrp/1 is called, it invokes the goal demamder/1. In
the meta-level code, we represent the name of the group-stream with prefix *.
In the code above, *strm is a group stream. Also, in the sample above, << is
an operator which sends message X to *strm. By mediating the group-stream,
message X which was sent to group-controller is calculated and unified.

4 Examples of Reflective Programming
4.1 Load Balancer

Program sampleS shown in section 3.2 is translated into KL1 as follows:

:- module samples.

main :- gen(X),foo(Ns,X),
merge(ls,Ns1),demander(Ns1).

foo(Ns, [XKIL]) :- Ns={Nsi,Ns2}, fool(lNsi1,X), foo(Ws2,L).
foo(lls, [J) :- Ne=[].

fool(¥s,X) :- Ns=[X], fool_1_1b{X)@node(X).
fool_i1_1b(X)} := calc(X).

4.2 Debugger

For a practical example, we show an application to the debugger. The meta-
module for the debugger are shown below:

i-metamodule debugger.

:-metagrp init/1.
init(*io)} :- debugger:init(+io).

:-metabody spy/1.
spy{*io) :- debugger:catch(*io,Cnd,$functor,$args), .

*a strategy like choosing the node depending on statistical information, distribute the job
to the unoccupied node at high priority, ... elc.
“a strategy like choosing the node at random, in turn, ...etc.

23

spy2(Cmd) .
spy2(cont) :- $execbody.
spy2(halt) :- halt.

Then, we show a program which calculates prime number, with debugging aids:

:~module primes.

defgrp debugger:init(tio).
primes(Max,C) :- gen_primes(Max,Ps), count(Ps,C).

gen_primes(Max,Ps) :- gen(2,Max,Ns), sift(Ns,Ps).

sift([],Zs0):-2=s0=[].

freflect debugger:spy(tio).

sift([PIXs1],Z80) :- Zs0=[P|Zs1],
filter(P,Xs1,Ys), sift(Y¥s,Zs1).

filter(_,[],Ys0) :- YsO=[].

lreflect debugger:spy(tic).

filter(P, [X1Xs1],¥s0) :- X mod P=\=0 | Ys0=[X|Ysi],
filter(P,%s1,¥sl).

filter(P, [X1Xs11,Ys0) :- X mod P=:=0 | filter(P,Xs1,Y¥s0).

The translated code for sift is as follows:

sift(Tio, [],280) :~ Tio=[1, Za0=[].
sift{Tio,Argl,2s0) :- Argl=[P|Xsl] | Tio={Tica,Tiocb},
debugger :catch(Tioa,Cmd,sift_2_2, [Argl,Zs0]).
sift_2_2_debugger_spy2(Cmd,Tiob,P,Xs1,Zs0).
sift_2_2_debugger_spy2(cont,Tio,P,Xs1,Z80) :-
sift_2_2b(Tio,P,Xs1,Zs0). o
sift_2_2_ debugger_spy2(skip,Tio,_,_,_.) := Tie=0.
gift_2_2b{Tio,P,Xs1,2Z20) :-
Tic={Tioa,Ticb},
Za0=[P|Zs1], filter(Tioa,P,Xs1,Y¥s), sift(Tiob,¥s,Zsl).

5 Discussions

5.1 Relationship to Other Works

From the work ABCL/R2, we noticed that reflection is an useful mechanism to
construct parallel /distributed system, and their achievement are the motivation
of our work.[6][7][8] :

The original idea for making the relationship between base-level and meta-
level are from Meta Object Protocol in OpenC++.[1][2]

An issue for introducing reflection to GHC is currently done by Jiro Tana-
ka. Tanaka used meta-interpreter to implemenent Reflective GHC (RGHC) but

24

that implementation was far from practical since the overhead caused by the in-
terpreter are huge. The reflective architecture(metabody, meta-process-group)
which we proposed translates the program into KL1 code, and the compounded
code after the translation will be quite similar to the code which does not use
the Reflective Architecture, so it will be very efficient and practical .[10][11)

5.2 Future Works

o Our architecture restricts the reflection of the body part, but the argu-
ment about the effect on reflection is not enough.

¢ Metabody is described in KL1, so it is possible to make meta- meta-body,
and by using that, we have to work on the reflective tower that we may
construct,

+ To appeal the usefullness of this reflective Architecture, we can apply our
extended KL1, to the system for syntax error diagnosis of programming
languages and this will be the subject of a future paper.

6 Acknowledgements

We would like to thank Kazunaki Rokusawa and Kasumi Susaki at ICOT for dis-
cussioning from the early period, and Akinori Yonezawa labo at The University
of Tokyo, Jiro Tanaka labo at University of Tsukuba for their helpful comments,
and Takashi Chikayama, Kazunori Ueda, the members of ICOT KLIC-TG also
gave us many advices. We would also like to thank Tomosuke Takanashi and
Jun Konosu for the help in writing the paper, and Ph.D. Kenzo Inoue who
encouraged us.

25

References

[1] Chiba,S.and Masuda,T. Open C++ and Its Optimization, In Proceedings
of OOPSLA’93 Workshop on Object-Oriented Reflection and Metalevel
Architectures, Washington, D.C., 1993.

[2] Chiba,S. Open C++ Release 1.2 Programmer’s Guide,Technical Report
No.93-3, Dept. of Information Science, Univ. of Tokyo, 1993.

[3] Chikayama,T. Introduction to KL1, ICOT, 1994.
[4] Chikayama,T. KLIC User’s Manual, ICOT, 1994.

[5] Maes,P. Issues In Computational Heflection, In Meta-Level Architectures
and Reflection, pp.21-35, North-holland, 1988.

[6] Masuhara,H. and Matsuoka,S. and Yonezawa,A. Designing an 00 Reflec-
tive Language for Massively-Parallel Processors, In OOPSLA’93 Proceed-
ings,1993

[7] Masuhara,HI Matsuoka, Watanabe T Yonezawa,A. Object-Oriented Con-
current Reflective Languages can be Implemented Efficiently, In QOP-
SLA'02 Proceedings, 1992, pp.127-144.

[8] Masuhara,H. Study on a reflective architecture to provide efficient dynamic
resource management for highly-parallelobjeci-oriented applicalions, Mas-
ters Thesis, Univ. of Tokyo, 1994.

[9] Matsuoka,S. and Watanabe,T. and Yonezawa,A Hybrid Group Reflective
Architecture for Object-Oriented Concurrent Reflective Programming, In
ECOOQP'91 Proceedings, 1991, pp.231-250.

[10] Tanaka,S. and Matono,F. Constructing and Collaspsing a Reflective Tower
in Heflective Guarded Horn Clauses, In Proceedings of thelnternational
Conference on FGCS, 1992.

[11] Tanaka,]. Meta-interpreters and Reflective Operation in GHC, In Proceed-
ings of the International Conference on FGCS, 1988,

[12] Watanabe,T. An Actor-Based Metalevel Architecture for Group-Wide Re-
flection, In Proceedings of the REX School/Workshop on Foundations of
Object-Oriented Languages (REX/FOOL), Noordwijkerhout, the Nether-
lands, Lecture Notes in Computer Science. Springer-Verlag, 1990.

[13] Watanabe,T. and Yonezawa,A. Reflection in an Object-Oriented Concur-
rent Language, In OOPSLA’88 Proceedings, 1988, pp.306-315.

26

