Proc, of FGOS 94, ICOT, Tokyo, December 1954

Parallel Theorem-Proving System : MGTP

Ryuzo HASEGAWA

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
hasegawa@icot.or.jp

Abstract

The parallel thecrem-proving system MGOTP has heen
developed at ICOT.

MGTP exploits OH-parallelism for non-Horn prob-
lems and AND-parallelism for Horn problems. MGTP
achieves a more than 200-feld speedup on a parallel in-
ference machine PIM/m with 256 processing elements.
Using MGTP, we succeeded in proving difficult mathe-
matical problems including cpen problems that cannot
be proven on sequential systems.

We added two new MGTP features: Non-Horn Magic
Set (MHM) and Constraint MGTP (CMGTP). NHM is a
technique 1o enhance the search capacity by suppressing
generation of irrelevant model candidates, thereby mak-
ing MGTP a practical prover. CMGTP is an extension
of MGTF to deal with constraint satisfaction problems,
enabling constraint propagations with negative atoms.
CMGTP can prune search spaces reguired for the origi-
nal MGTP by orders of magnitude.

We studied several techniques necessary for the devel-
opment of applications, such as negation as failure, ab-
ductive reasoning and modal logic systems, on MGTPE,
These techniques share a basic idea, which is to use
MGTP as a meta-programming system for each appli-
cation.

1 Introduction

Theorem proving is an important basic technology that
gave rise to the logic programming being pursued as a
key technolopy in the implementation of the Fifth Gen-
eration Computer Systems (FGCS).

We started research on parallel thesrem provers in
1989 in the FGCS project with the aim of integrating
logie programming and theorem proving technologies.

The immediate goal of this research was to develap a
fast theorem-proving system on the PIM, by effectively
utilizing KL1 languages[34] and logic programming tech-
niques. We intended this system to be an “advanced
general-purpose inference engine® that can facilitate the
development of intelligent knowledge programming soft-
ware in K11, Theorem proving is typical of symbolic pro-

cessing that demands large-seale eomputation and huge
amounts of memory. Thus, it is also a good application
for KL1 and PIM machines[28].

We have developed a parallel model-generation based
theorem prover MGTF in KL1 on PIM machines|[12,
8. We adopted the model generation method of
SATCHMO[24] as the proof procedure. Qur reasons are
the following. This method has a merit of not need-
ing full unification; that is, it needs matching only. In
addition, it is easy to incorporate mechanisms to prune
search spaces, such as lemmatization, subsumption tests,

© and other deletion strategies.

Two versions of MGTP are being built: one is a ground
MGTP (MGTF/G), for dealing with ground models, and
the ather is a non-ground MGTP {MGTP /M), for dealing
with non-ground models.

MGTP/G exploits OR parallelism from non-Horn
problems by independently exploring each branch of a
proof tree caused by case splitting. On the other hand,
MGTP/N exploits AND parallelism from Horn problems
that do not cause case aplitting,

At present, both systems achieves almost linear
speedup on a PIM/m 256 PE system. With MGTP/G,
we succeeded in solving some open gquasigroup problems
in finite algebrald, 17]. MGTP/N on a single PIM/m PE
attaing a speed comparable to OTTER[25] on a SPARC
II. With MGTP/N on the 256 PE system, we also suc-
ceeded in selving several hard (condensed detachment)
problems([26] that could not be solved by OTTER with
any strategy[13, 20]. Our success shows the effectiveness
of a large-scale parallel theorem prover.

Besides mathematical problems, MGTP is applica-
ble to other Al-oriented applications, such as constraint
satisfaction problems, design and planning, and hard-
ware (software verification. In particular, MGTP/G has
actually been used as a rule-based engine for the legal
reasoning system HELIC-II[28] developed at ICOT.

Research on MGTP can be divided into three aspects:
(1) implementation, (2) extension of the MGTP features,
and (3} application. In the FGCS project, we placed
emphasis on the first aspect, then became convineed that
MGTP could be put into practical nse. In the Follow-
on project, we thus shifted our research efforts from the

52

pursuit of efficiency to the enhancement of the functions.

{1} Implementation

Dhring the development of MGTP systems, we es-
tablished the following techniques to improve the
efficiency of MGTP.

e avoiding redundancy in comjunctive matching

(RAMS/MERC)[7).

e reducing time and space complexity by sop-
pressing over-generation of atoms (Lazy Meodel
Generation][15, 14].

& compiling peoblem clanses and main proof proce-
dures into KL1 clanses,

e parallelizing MGTP on a multi-processor system
with a distributed memory architecture[13, 20].

{2} Extension of the MGTP features

Since MGTP is a bottom-up theorem prover, it
may derive unnecessary facts and cause redun-
dant case splitting. To avoid this, we developed
a method called Non-Horn Magic Set {NHM)(16].
This method is a natural extension of the magic set
developed in the deductive database field, and can
be applied to non-Horn problems.

Through research on proving quasigroup problems
with MGTP, we found that MGTP lacks negative
constraint propagation ability. Then, we developed
CMGTP (Constraint MGTP)[17] that can handle
constraint propagations with negative atoms,

(3) Application

MGTP can be viewed as a meta-programming sys-
term. We can build various reasoning systems on
MGTF by writing the inference rule used for each
system as MGTP input clauses. Along this idea, we
developed several technigues and reasoning systems
necessary for AT applications. These include:

« a method to incorporate negation as failure into
MGTP[18].

¢ abductive reasoming systems(19), in which a
method similar to the above method is used.

» modal logic systems[22, 1].
+ mode analysis of FGHC programs[33).

The following sections describe the main results of
research on the parallel theorem prover MGTP in the
FGCS and the Follow-on projects, focusing on paral-
lelization of MGTP, and the extension and application
aspects.

2 Outline of MGTP

2.1 Model Generation Method

An MGTP clause 1s represented by an implicational
form:
Al,}ig,.. ' 1-'41 i GI.;GI; --';‘:‘m

where A;{1 < i < n) and C4(1 < § < m) are atoms;
the antecedent is a conjunction of A,, dz,..., A;; the
eonsequent is a disjunction of Oy, O, ..., Cp. A clause
is said to be positive if its antecedent is true(n = 0},
negative if its consequent is false(m = 0), and otherwise
mized (m 3 0,n 3 0). _

The following two rules act on the model generation
method,

o Model extension rule: If there is a clause, 4 — C,
and a substitution & such that Ac is satisfied in a
mode]l candidate M and C'o is not satisfied in M,
extend M by adding O to M.

o Model rejection rule: If there is & negative clause
whose antecedent Ag is satisfied in & model candi-
date M, reject A,

We call the process cbtaining A, a conjunctive match-
ing of the antecedent literals against the element in a
model candidate. Note that the antecedent true of a
positive clanse is satisfied by any model.

The task of model generation is to try to construet a
model for a given set of clanses, starting with an empty
set as & model candidate. If the clause set is satisfiable,
a model should be found. This method can also be used
to prove that the clause set is unsatisfiable, by exploring
every possible model candidate to ensure that ne model
exists for the clause set.

2.2 Sequential MGTP Algorithm

Figure 1 shows a sequential model peneration algorithm
of MGTP. This algorithm searches one branch of a proof
tree and does not contain a procedure for case-splitting,
It returns sat if a set 5 of clauses is satisfiable, otherwise
it returns unsaf.

M I} is an array to retain atoms generated by model
extension. In this algorithm, k is the number of pesitive
clavses in §. MD[1],..., MD|g — 1] represent elements
of the model candidate M, M D[gl,..., M D[s] represent
elements of the model-extending candidate I} {a set of
model-extending atome which are generated as a result
of the application of the model extension rule and that
are going to be added to M). g—1 is the number of
atoms that have been used for model extensions and g
specifies the range of the next model extension. s is the
total number of derived atoms retained in Af U D and
specifies the range of model rejection testing.

53

(0) Tit: MD[i]:= C; for i = 1,...,k where {€},C},...,C} = {C | (true — C) € 5}
(1) Init: g:=1;3 = k;

{2} while g < 5 do begin

(3 foreach 4;,..., A, = O

(4 foreach |[1E[,,1 -1,15“} gL, 'ﬂrj{'i_r < g} and 3‘?'[1'3 = g:l

(B} if Jo¥j{M Dfi;]e = Aje and C'¢ is new) then begin

(6 5= s+ 1; M D[s] = Co; [* model extension */

(T foreach A4;,..., A, — false

(8) foreach (i1,...,1,) 8.t ¥5(i; < #) and 3j(i; = 5)
(9) if o' (M D[i;]e" = Ao’} then

(10} return {unsat); /* model rejection */
(11} end;

(12) gi=g+1

{13} end ;

{14) return (sat);

Figure 1: A sequential algorithin of MGTP

Initially, M and I are set to an empty set and a set
of atoms appearing in the consequent parts of positive
clauses, respectively ({0) and (1)), “Cw is new" in (5}
means that 2 generated atom C'e iz not subsumed by any
atom in M U D (=31 < i <)30’ (Co = M D[ile")).

{3) to (8} are procedures for model extension.

We perform conjunctive matchings of each mixed clause
against M {(4) and the former part of the conditional
in (5)). If the conjunctive matching sueceeds, we make
subsumption tests for C'o (the latter part of the condi-
tional in (5)), and store unsubsumed C'e in D{(6)).

{7) to (10) are procedures for model rejection tests.
We perform conjunctive matchings of each negative
clause against MUD, and return unsat if the conjunctive
matching succeeds.

The computational mechanism for MGTP is essen-
tially based on the “generate-and-test” scheme. This,
therefore, would cause over-generation of atoms, which
is incurred by generation processes, leading to a waste of
time and memaory space.

To sclve this problem, we developed the lazy model
generation method[14]. In this method, a generator pro-
cess to perform model extension generates a specified
nurnber of atoms only when reguired by a tester process
to perform model rejection testing. The lazy mechanism
can be used to control the difference in speed between the
generator and the tester processes, thereby avoiding un-
necessary computations and reducing the time and space
complexity. '

3 Parallelization

There are several ways to parallelize the proving process
in the MGTP prover.
These are to exploit parallelism in:

& conjunctive matching in the antecedent part,

+ subsumption tests, and

® case s.p]ltﬁn,g

For ground non-Horn cases, it is sufficient to exploit
OR parallelism induced by case splitting. Here we use
OR parallelism to seek a multiple model, which produces
multiple solutions in parallel.

For Horn clause cases, we have to expleit AND paral-
lelistn. The main source of AND parallelism is conjunc-
tive matching, Performing subsumption tests in paralle]
iz also very effective for Horn clause cases.

In the current MG TP, we have not yet considered non-
ground and non-Horn cases.

3.1 OR Parallelization

Theugh OR parallelism can easily be exploited by explor-
ing branches in different PEs, inler-PE communication
increases becanse the number of branching combinatori-
ally explodes in general and it is necessary to copy a com-
putational environment (model candidates and model ex-
tending candidates) when branching is required.

To suppress the amount of communication, we first
introduced bounded-OR parallelization. In this scheme,
we allocate a task (a branch to explore} to a different
PE every time case splitting occurs until all PEs have
enough tasks to keep them busy. Later, each PE explores
branches assigned without further distributing tasks te
any other PEs. Bounded-OR parallelization works well
when a proof tree is well-balanced.

However, for ill-balanced proof trees, dynamic load
balancing must be devised to equalize all PE's loads. Fig-
ure 2 shows a task allocation method based on dynamic
load balancing. In this method, one of the branches is
solved in the same PE and the remained branches are
allocated to cther PEs. This is a mixture of depth-first
and breadth-first searches. We experimented with sev-
eral PE allocation methods: (1) probabilistic allocation,

5

p1'ps “P6 p4' p7 P8
Figure 2: Task Allocation for OR Parallelization
256 b ' p 2 ideal —-w--
F pigeon-9
_%L 4 ——
f e -
S12s} 7~~~ Jaes11
‘-% 64l o |
32r
ﬂ 1 1 i
0 32 64 128 256
No. of PEs

Figure 3: Speedup Ratio (OR Parallelization)

(2) circular alloeation by modulo, (3) allocating tasks te
a PE whose load is light and (4} allocating tasks to an
idle PE. For solving quasigroup existence problems, (2)
and (3) showed good parallel performance,

3.1.1 OR Parallel Performance

Figure 3 shows the OR parallel performance obtained
for pigeon hole and quasigroup (QG) existence problems
on PIM/m. The former is a typical benchmark in au-
tomated theorem proving and the latter is called QG5.
Solving these problems causes combinatorially intensive
case-splitting.

While the proof tree for the pigeon hole problem is
well-balanced, that for the QG problem is ill-balanced,
Thus, it is harder to equalize the load of sach PE for the
QG problem. We obtained a 170-fold speedup with 256
PEs for ()G5-11. The speedup ratio would be improved
by devising a load balancing scheme.

3.2 AND Parallelization
During the design, we studied the following alternatives:

1. proof changing vs. proof unchanging
While a proof unchanging prover does not change
the proof length according to the number of PEs
used, a proof changing prover may change the proof
length. The proof changing prover may get super-
linear speedup and can obtain good parallel perfor-

Generatory Generato Generator,
pea 1 - r
PA '

aler

=
i
P

' H
tasrmemrmass L L]

Tester,

Figure 4: AND parallelization of MGTP

mance. However, it would be difficult to distinguish
between parallelization effects and strategy effecie.

2. model copying vs. model distribution

For model copying, each PE has a copy of the model
and model-extending candidates. For model distri-
bution, they are distributed to each PE. Although
the model distribution method can obtain memory
scalability, it has the problem that the communi-
cation cost increases sinee generated atoms need to
flow to all PEs for subsumption tests and conjunc-
tive matchings.

We established the following pelicy: (1) Distinction
between the speedup effect caused by parallelization and
the search-pruning effect caused by strategies, and (2)
Pursuit of both execution efficiency and ease of imple-
mentation. Accordingly, we adopted proof unchanging
and model copying, then implemented an AND parallel
MGTP based on the lazy model generation method[14].

Figure 4 shows a process network of the AND paral-
lel MGTP. There are three types of processes: generator
(G}, tester (T), and master (M) processes. G/T pro-
cesses perform conjunctive matchings for mixed /negative
clauses. The M process mediates between G and T pro-
cesses, [n our implementation, several (2 and T processes
are allocated to each PE.

A group of & processes interconnects with a group of T
processes via the M process. The M process gives (3 and
T processes individual tasks according to their requests.
When a G/T process works out a given task, it requests
a mext task from the M process. This is repeated until a
proof is obtained.

The M process replies to the G and T processes si-
multaneously. On receipt of a request from a G process,
the M process sends a buffer New; to the G process and
orders it to perform conjunctive malchings and to store
newly-generated atoms into New; where Vew, is shared
by the M process and the G process. On receipt of a
request from a T process, the M process sends an atom
in Newy to the T process to make it perform rejection
testings on the newly-generated atoms. -

Subsumption tests are performed in G and T pro-
cesses. We call a subsumption test in a G process a
local subsumption test (LS) and that in a T process a
global subsumplion test (GS). An atom that passes LS
is stored into New;. We use discrimination trees[31] to
implement LS for quick retrieval of atoms,

The M process equalizes the loads of G and T pre-
cesses by monitoring these processes. This is the most
important task of the M process.

Each G/T process requests a task to the M process af-
ter completing the previous task. The M process replies
to their requests in order of arrival and assigns them ex-
clusive tasks. The M process prevents G processes from
generating too many atoms by monitoring the number of
atoms stored In New buffers and by keeping that number
in a moderate range. This number indicates the differ-
ence beiween the number of atoms generated by G pro-
cesses and the number of atoms tested by T processes.

When the above number exceeds the specified range,
the M process suppresses teplyving to demands from G
processes. Omn the other hand, when the number drops
below the range, the M process prefers G processes to
T processes. By simply controlling G and T processes
with the buffering mechanism mentioned above, the idea
of lazy model generation can be implemented, This also
enables us to balance the computational load of G and
T processes, thus keeping a high running rate.

3.2.1 AND Parallel Performance

Figure 5 shows AND parallel performance for solving
condensed detachment problems[26] on PIM/m with 256
FEs.

These problems consist of a detachment rule ({modus
ponens), severel axioms (positive clauses), and a negated
conjecture that we want to prove [negative clauses).
They are given as a set of Horn clauses only, as follows,

22 (i: implication/ n: negation)

p(X), p(i(X,Y))—p(Y).
tmﬂ_"?(i(i‘(‘:{; Y]l-i'{i'{yl Z]Il?—'(xl z]:l}}'
true—plifi(n{X), X), X))
true— p(i(X, i(n(X), ¥))).
plifi{n(e),c),i(i(b, c),i(i(a, b}, €))}) — false.
Proving time (sec) obtained with 32 PEs for each

problem is as follows: £49:18600, #£44:9700, #£22:8600,
#T79:2500, and #82:1900. The numbers of atams that

55

256 — - xx_.{f: deal -~
. #49 —e—
-g- A il
o128 e { #79 —&-
- #22 --x%--
64| 1 #82 —a--
32t - .
O -
0 32864 128 256

Mo. of PEs

Figure 5: Speedup Ratio (AND Parallelization})

have heen kept in M U D when the proof is obiained
are #£40:20600, £44:15100, £22:36500, £79:14200, and
#82:15100. More than a 230-fold speedup was attained
for #49 and #44 and a 170~180-fold speadup for #22,
479 and #82.

Problems #48 and #44 take longer than the others
and have the characteristics that |M LU.D| slows up, since
almost all generated atoms are discarded by local sub-
sumption testing. The longer the proving time is and the
slower | M U D| grows, the better parallel performance is.

To verify the effectiveness of an AND parallel MGTE,
we challenged 12 ALL-FAIL condensed detachment prob-
lems. These problems could not be solved by OTTER
with any strategy proposed in [26).

T of 12 problems were solved within an hour except for
problem #£23, in which the maximum number of atoms
being stored in M and D (|A + D|) was 85100. The
problems we failed to solve were such that this size ex-
ceeds 100000 and more than 5 hours are required to solve
them.

It would be possible to solve these problems by spend-
ing muoch more time. However, this is a limitation of
the medel copying method at present since at this size
of |M + D, the memory consumption rate is over 80
peteent thereby cansing frequent garbage eolleetion.

3.2.2 Model Distribution

In order to solve the memory limitation problem
mentioned above, we are now developing a model-
distribution based AND parallel MGTP:

1. Model candidate M and model-extending candi-
date D are divided into n parts My, -, M, and
Dy, -+, Dy, respectively. Each pair of M; and D is
allocated to a processor PE;.

2. At PE;, model extension is performed using an atom
& and M;, and newly-generated atoms are stored
in the buffer New;. Hejection testing is performed
using an atom A’ and M;u Dy

o

e e ey

=

B

PRI P B 5

e EE e T

--i-.ll-
i

A A

o-a

Figure 6: MGTP Runtimne Monitor

3. Each atom in Newy is flown to all PEs for subsump-
tion testing.

4. Unsubsumed atoms are to be distributed so that
each PE has even size of M; and D

In the recent experiments, & good parallel performance
is obtained up to about 100 PEs.

3.3 MGTP Runtime Monitor

In the parallel performance debugging, it is essential to
observe the behavior of processes allocated to PEs, as
well as the PE's utilization. We developed an MGTE
runtime momnitor Lo visualize the load of a process and
the proving process of AND parallel MGTP.

Figure & shows the graphic display of the runtime mon-
itor, There are 4 windews at the corners: the upper 2
windows display the load of the G processes at an in-
terval and the lower 2 windows display that of the T
processes. Each window has 16 x 18 = 256 subwindows
which display the process load at each PE. The color of
the subwindow represents the load of the corresponding
process.

The central 4 bar graphs display how many atoms
are generated, buffered in New, stored in M D (unsub-
sumed), and tested at an interval or in total. We can ver-
ify whether the buffering mechanism works well or not
by watching these windows. When the buffer becomes
close to empty, we can see that the load of G processes
become heavy in the upper 2 windows., On the other
hand, when the number of the buffered atoms exceeds a
limit, we can see that T processes become busy in the
lower 2 windows.

Experiments with various theosrems have indicated
that graphic displays are helpful in distributing work
loads evenly and determining which process creates a
bottleneck.

4 Extensions of MGTP Fea-
tures

4.1 Non-Horn Magic Set

The basic behaviors of model generation theorem
provers, such as SATCHMO and MGTP, are to detect a
violated clause under some interpretation, called a madel
candidate, and to extend the model candidate so that
the clause is satisfied. However, since SATCHMO selects
any possible violated clanse for model extension without
any selection criterion. Therefore, i the given program
includes non-Horn clauses irrelevant to prove the given
goal, it may cause combinatorial explosion of the number
of generated model-candidates.

Loveland et al. [36, 23] have proposed a method called
relevancy testing to avoid redundant model-candidate
extensions with irrelevant non-Horn clauses. Let fC
be a set of Horn clanses, and [be a current model can-
didate. A relevant literal is defined as a goal called in
a failed search to prove L from HC W [or & goal called
in a failed search to prove the antecedent of a non-Horn
clause by Prolog execution.

The vse of relevancy testing can restrict the select-
ing of violated non-Horn clauses for model extension to
only those all of whose consequent literals are ground
instances of some relevant literals. In relevancy test-
ing, however, there are some overheads becanse the Pro-
log procedure is performed whenever violated non-Horn
clauses are detected.

On the other hand, compared to top-down provers, a
madel generation prover like SATCHMO or MGTP can
avoid solving duplicate subgoals because it is based on
bottom-up evaluation, However, it also has the disad-
vantage of generating irrelevant atoms to prove the given
goal.

Thus it is necessary to combine bottom-up with top-
down so as to use goal information contained in neg-
ative clauees, and to avoid generating useless model
candidates. For this purpose, several methods such as
magic sets, Alexander templates, and bottom-up meta-
interpretation[4] have been proposed in the field of de-
ductive databases.

All of these transform the given Horn intentional
databases to efficient HHorn intentional databases, which
generate only ground atoms relevant to the given goal in
extensional databases. However, these were restricted to
Horn programs.

We developed a transformation method applicable to
non-Horn clauses. We call it the non-Horn magic set
[WHM). NHM iz a natural extension of the magic set
yet warks within the framework of the model generation
method. Stickel[32] proposes another extension for non-
Horn clanses, simulating top-down execution based on
the model elimination procedure within a forward chain-

ing paradigm.

By the NHM method, a clause Ay, -, 4, —
By;-++; By in the given program is transformed into the
following clauses:

T1: goal(B,),---,goal{Bu)
— goal(Ay), - -+, goal{Ag).
T2: goalB,), --,goal{Bm), Ay, ---, A
— By B

Here, the meta-predicate goal(A) means that an atom A
is a goal. The transformation T'1 simulates fop-down
evaluation. If all consequent literals By,---, B, are
goals, then all antecedent literals A;, - -, A, of the clause
are salved in parallel. On the other hand, the transfor-
mation T2 sirmulates relevancy testing. If all consequent
literalg By, -+, By, of the clause are goals, then the orig-
inal ¢lause may be used for extending the model candi-
dates. That is the original clansge is not used for extend-
ing the model candidates if there exists any consequent
literal B; such that B; is not a goal. This transformation
method i called a breadth-first NHM. We have another
transformation method called the depth-first NHM, in
which all antecedent literals 4, -, A, of the clause are
solved in sequence with the left-to-right strategy.

The WHM method has the same power as relevancy
testing. Therefore, the NHM method can also avoid com-
binatorial explosion of the number of model candidates
generated with irrelevant violated non-Horn clauses to
the given goal, Since the NHM method statically trans-
forms the given program, there are no overheads as in
[23] which performs relevancy testing dynamically.

4.2 Constraint MGTP

In this section, we present an extension of the MGTF
system called CMGTP (Constraint MGTP), which can
solve finite-domain constraint satisfaction problems such
as quasigroup (QG) existence problems [3] in finite alge-
bra. .

In 1992, M. Fujita and J. Slaney([9] first succeeded in
solving several open QG problems by using FINDER
and MQTP. Later, it was shown that other systems
such as DDPP or CHIP could sclve QG problems more
efficiently. Such research has revealed that the origi-
nal MGTP lacks negative constraint propagation ability.
This motivated us to develop an experimental system
(P based on the CLP (constraint logic programming)
scheme.

We found that the constraint propagation mechanism
used in CF can be realized by the slightly modified
MGTP system, called CMGTP[17].

4.2,1 Quasigroup Problems

A Quasigroup is a pair {Q, o) where () is a finite set, 0 a
binary operation on & and for any a,b,e € @,

57

|| |w]=|le
L) B A | G| =]
o | = e | w3 | o L]
AR IR
Wi | [e e ||
| e e =] & ||

Figure 7: Latin square (order 5)

aob=goc=zb=c
aoc=boc=ra="5
The multiplication table of this binary operation =
forms a latin square (shown in Fig.7).
In a guasigroup, we can define the following inverse
operations ey called (Gk)-confugate:

Ty =z > Toy=z
Togy =2 == Kozr==I
Togpy =2 = IOI =Y

Multiplication tables of the inverse operations defined
above also form latin squares.

We have besn trying to solve 7 categories of QG prob-
lems (called QG1, QG2,..., QGT), each of which is de-
fined by adding some eonstraints to original quasigroup
constrainte. For example, QG5 constraint is defined as
Yab € Q. ((ba)b)b = a.

422 CP

While in CLP languages, domain variables are used to
represent constraints, in CP, domain element variables
are introduced as well as domain variables. Fig.8 shows
the variables in a third-order latin square used in CP
where domain variables V; range over {1,2,3} {1 <
i,j < 3) and domain element variables Ay, Br,.... i
range over {yes,no} (1< k< 3).

Let ¥V be a domain variable whose domain is
{1,2,...,n}, and (A, 4z,. .., As) be a vector of domain
element variables wr.t. ¥. The value of 4; determines
whether V = i{ 4; = yes) or V 3 i[A; = no).

For QG problems, we maintain three squares accord-
ing to {1,2,3)-, (2,3,1)- and (3,1,2)-conjugates. Domain
element variables in these 3 squares can be linked (uni-
fied) with each other. (shown in Fig.8 and Fig.8).

Using shared {unified) variables facilitates constraint

propagation like :

Wabc. {ﬂ.uln&= Ce 5@2;1:&:&# C g1z @ =i}] {1}
Yabe. (aopmbF e bogmcFacopmai#b) (21

Ordinary CLP does allow constraint propagation like
(1), but {2) is not possible in general because domain el-
ement variables cannot be handled directly, By this uni-
fication, CF can propagate negative information which
can be overlooked in ordinary CLP systems.

b

e 1 E] £
S—square ; 1 Vi Vi Via
{'123]_ Ay Az Az) | (B By Ha) [IC, & Ca)
N 2 L Vaa Vaa
conjugate (B Ds: Do) | (By Ex By | (Fy Fp Fa)
3 ¥n Vag Vas
(Gy Gz G} [(H, My Ha) | (I Iz fa)

Figure 8: The varables in a third-order latin squares

) 1 E] E)
I-square 3 1 Wi Wiz Wia
{231]__ (Adi Dy i) | (As Dy Gyl | (As Dy Ga)
, 7 n Waa Waa
conjugate (By Ey H) | (Bs Eax Hi) | (Ba Bz Ha}
] 5 Waz Waa
o ” o B &) (s By)
© 1 2 3
R—square : |1 T U1z L
{312]— {dy B i) | ([h Ey Fi) |Gy Hy L)
. 2 Liay Uz g
conjugate (As Ha Co) [(Dz BEx Fa) | (Gy Ha I)
3 [Uz Lhas
{As Bs Ca) | (Ds Es Fs) | (G3 Ha I}

Figure & The variables in (231)-, (312)-conjugate latin
sSuares

4.23 CMGTP

The structure of CMGTP model generation processes
is basically the same as MOTP. The differences be-
tween CMGTP and MGTP lie in the unit refutation pro-
cesses and the unit simplification processes with negative
atoms. We can usze negative atoms explicitly in CMGTP
to represent constraints. If there exist P and - P in M
then false is derived by the unit refutation mechanism.
If for a unit clause =F € M{F € M), there exists a
disjunction which includes F(=F5), then Fi(-F) is re-
moved from that disjunction by the unit simplification
mechanism.

The refutation and simplification processes added to
MGTP guarantee that for any atom P € M , P and
=F are not both in the current M, and disjunctions in
the current [} have already been simplified by all unit
clauses in M.

Fig.10 shows the original MGTP rules for QG5.5.
These rules can be rewtitten into CMGTP rules in arder
fo propagate negative information using negative atoms.
For example, the original MGTP rule for QG5,

plY, X, AL plA Y, B),p(B, Y, C)LX #C — false
can be rewritten in CMGTP rules as follows:

p(Y, X, A),p(A, Y, B) — p{B, Y, X}.
p(Y, X, A}, ~p(B, Y, X} — =p{A,Y, B).
—q){E,KX],Pl:A., Y, B:I — ﬂp[}" X, J“i}l

In the above rules, negative information is propagated
by using the last 2 rules.

true — dom(1), dom(2), dem{3), dom{4), dom(5).

dom{’M}, dom({¥] —
Pl N, 1) p(ML N, 2); pi ML N, 3
pibd, M. 4) p(M, N, 5],

PIY, X V1L VLY, V), p(V2, Y, V). [Vi= X} — falsa,
Pl X, V) [Vi= X} — falsa.

B FL V)L X Y2, V), (Y1) = ¥2) = false,

PIXL Y. V] p(X2. Y. ¥}, {X1\= X2} — false,

PIX, B, Y] XL is X - 1,% < X1} — falew,

Figure 10: MGTP rules for QG5.5

Table 1: Comparison of experimental results (QGS)

Failed Dranches
Oider || DOPPT | FINDER® | MG TP CP TMOTE |
] £ a0 | a9 3 . 15

10 50 66 | TOIE L])
1 136 1845 E1604 117 117
12 [TE] 13527 | 27406TE FiE EIF
13 TA0T7 Ta0d7 |
14 G464l Gandl
15 150415 130425
i3 P ER

In this sense, CMGTP can be considered as a meta
language for representing constraint propagation.

4.2.4 Experimental Results

Table I compares the experimental results for QG prob-
lemz on CF, CMGTP and other systems. The numbers
of failed branches generated by CP and CMGTFE are al-
most equal to DDPP and less than those from FINDER
and MGTP, In fact, we confirmed that CP and CMGTP
have the same pruning ability as DDPP by comparing
the proof trees generated by these systems. The slight
differences in the number of failed branches were caused
by the different selection functions used.

For general performance, CP was superior to the other
gysterns in almost every cage. In particular we found that
no medel exists for QG516 by running CP on a Sparc-10
for 21 days in October 1993. 1t was the first new result we
obtained. On the other hand, CMGTP is about 10 times
slower than CP. The reason of thiz difference is caused
mainly by the manipulation of term memory. We are
now trying te make term memory efficient in CMGTP,
and also to parallelize CMGTP processes on PIM/m and
parallel UNIX machines.

5 Applications

5.1 FEmbedding Negation as Failure
into MGTP

Negation as failure is one of the most impeortant tech-
niques developed in the logic programming field, and
logic programming supporting this feature can be a pow-
erful knowledge representation tool. Recently, declara-
tive semantics such as the answer sef semantics[11] have
been given te extensions of logic programs containing
both negation as failure (net) and classical negation (=),
where the negation as failure operator is considered to
be a nonmonotonic operator,

However, for such extended classes of logic programs,
the top-down approach cannot be used for computing
the answer set semantics because there is no local prop-
erty in evaluating pregrams. Thus, we need bottom-up
computation for correct evaluation of negation as fail-
ure formulas. For this purpose, we use the framework of
MGTP, which can find the answer sets as the fixpoint of
model candidates.

Here, we introduce a method[18] to transform any logic
program (with negation as failure) into a positive disjunc-
tion program (without negation as failure) [27] for which
MGTP can compute the minimal models.

5.1.1 Translation into MGTP rules

(1) Positive Disjunction Programs
A posifive disfunctive program is a set of rules of the
form:

35.1!---1:44'—#11.&1,-“:-"‘-»-:, {1]

where m > [> (0 and each A; i3 an atom,

The meaning of a positive disjunctive program I can
be given by the minimal models of T [27].

The minimal models of positive disjunctive programs
can be compuied using MGTT. We express each rule of
the form {1} in a positive disjunctive program as the
following MGTP input clauses:

Aty ooy Am = Aa| L | AL (2)

(2) General and Extended Logic Programs
MGTF can also compute the stable models of a general
logic program[10] and the answer sets of an extended
disjunctive program[11] by translation into positive dis-
junctive programs.

An estended logic program is a set of rules of the form:

Li ...|L;1—L;+h.. .,,'H-EELE {3}

' g Lmr M1Lm+l1 .

where n 2 m 2> 1 2 0 and each L; is a literal. This logic
program is called a general logie program if [< 1, and
each [; is an atom,

While a general logic program contains negation-as-
failure but does not contain classical negation, an ex-
tended disjunctive program contains both of them.

58

In evaluating net L in & bottom-up manner, it is nec-
easary to interpret nof L with respect to a fixpoint of
computation becanse, even i L is not currently proved, L
might be proved in subsequent inferences. When we have
to evaluate no? L in a current model candidate we split
the model candidate in two: (1) the model candidate
where L is assumed not to hold, and (2} the model can-
didate where it is necessary that L holds. Fach negation-
as-failure formula net I is thus translated into negative
and positive literals with a modality expressing belief,
ie., “disbelieve L" {written as -K L) and “believe L"
{written as K L).

Based on the above discussion, we translate each rule
of the form (3} to the following MGTP rule: '

Livty ooos b= Hy | oo | Hy | KLt | o | KL (4)

where H; = ~KLpsy Ao A-KL, A L; (i=1,...,1)

For any MGTP rule of the form (4), if a model candi-
date &' satisfies Lypyy. .. L, then 5 s split into n—m-+
m=m=z0,0<1< 1) model candidates,

In order to reject model candidates when their guesses
turn out to be wrong, the following two schemata (in-
tegrity constraints) are introduced:

=KL, L — for every literal L € L. (5)
=KL, KL — for every literal L€ £, {6)
Added to the schemata above, we need the following

3 schemata to deal with classical negation. Below, T is
the literal complement to & literal L.

L L— for every literal . € £, {7
KL, L — for every literal L € L. {8)
KL, KL — for every literal L € L. {9)

Mext is the condition to guarantee stability at fixpoint
that all of the guesses made so far in a model candidate
5 are correct.

For every ground literal L, ifKL € 5, then L € 5.

The above computation by the MGTP is sound and
complete with respect to the answer set semantics.

5.1.2 Remarks

The fechnigue presented here is simply based on a
bottom-up model generation method together with in-
tegrity constraints over K-literals expressed by object-
level schemata on the MGTP,

Compared with other approaches, the proposed
method has several E:::npulatiﬂnal advant.agea: m a
word, it can find all minimal models for every class of
groundable logic program or disjunctive database, incre-
mentally, without backtracking, and in parallel

This method has besn applied to a legal reasoning sys-
tem [29]. We can see some advantages of the proposed
methaed fram the viewpoint of this application.

5.2 Bottom-up Abduction by MGTP

Abduection has recently been recognized as a wvery im-
portant form of reasoning for variows Al problems. An
abductive framework is a pair (Z,T), where T is a set of
formulas and T is a set of literals. Given a closed formula
7, aset E of ground instances of I is an ezplanation of

@ from (5,T) if

1. UE = G, and

2. ¥ U E is consistent,

The computation of explanations of & from (I, T") can
be seen as an extension of proof-inding by introducing
a set of hypotheses from I that, if they could be proved
by preserving the consistency of the augmented theories,
would complete the proof of G.

5.2.1 Abduction by Model Generation

Here, we introduce a method[19], which we call the Skip
method, to implement abductive reasoning systems built
on the MGTP. We consider the first-order abductive
framework (I,I"), where E is a set of range-restricted
Horn clauses and " 15 a set of aloms [nbdﬂci&lss}.

The simplest way to implement reasoning with hy-
potheses is as follows. For each hypothesis H in T, we
supply a clause of the form:

— H|-KH, (10)

where =K H means that “ff is not assumed to be true in
the model”. Namely, each hypothesis is assumed either
to hold or not to hold., For dealing with =K H, we nead
the axiom schema as an integrity consteaint :

-KH, H — for every hypothesis H. (11}

The above technique, however, may generate 2/l
model candidates. To reduce them as much as possi-
ble, we can use a method similar to the implementation
of negation as failure in Section 5.1, that delays case-
splitting for each hypothesis. That is, we do not supply
any clanse of the form {10) for any hypothesis of I, but,
instead, introduce hypotheses when they are necessary.
When abducibles Hy,..., s {n 2 0} from T appear in
the antecedent of a Horn clause in X as:

Alﬂ...ﬂi‘hf"\ Hlf'l....ﬂHE—"G,
ahducibles

we transform this clause into a non-Horn clause:

Ay oo, Ay = Hy, o Hy C|-KHy | ... | -KH,.

{12)
In this transformation, each hypothesis If; in the an-
tecedent is shifted to the right-hand side of the clanse in
the form of ~KH;. Moreover, each H; is skipped instead
of being resolved, and is added to consequent C of the
rule gince C becomes true whenever all A;’s and H,'s are
true.

5.2.2 Remarks

The Skip method has been applied to a logie-circuit de-
sign system[18]. Although we need to further investigate
how to avoid possible combinatorial explosion in con-
structing model candidates for the Skip method, we con-
jecture that the Skip method will be promising from the
viewpoint of OR-parallelism.

5.3 Modal Logic in MGTP

In this section, we describe a technique to implement
efficient modal theorem provers that transforms modal
formulae into input clauses for MGTP. The technigue,
called the modal clause transformation method, i based
on partizal evaluation of the rewriting rules for the modal
tableau method.

5.3.1 Motivations and Backgrounds

Modal logies have been gaining popularity in various
domains of Computer Seience. For such applications,
modal logics require fast and efficient theorém provers.
Recently, the translation proof method [30] which trans-
lates modal formulae into classical formulae has been
proven to be useful because it can be applied to various
modal systems. The translation approach has ancther
merit in that it can employ many control strategies de-
veloped for theorem proving in classical logic. Unfortu-
nately, the previously proposed methods do not address
the iseue of controlling inference to reduce the search
space,

To take advantage of the above, we proposed a ver-
sion of the translation method, called the modal clouse
transformation method[1]. This method is based on the
following meta-programming method[21, 22].

5.3.2 Meta-programming Method

The meta-programming method implements the rewrit-
ing rules for the tablean method as schemata encoded as
MGTP input clavses, and simulates the modal tablean
method[3] on MGTP. The following are the MGTP input
clauses representing the tableaux expansion rules and the
close condition:
a-rule :
f(FVG,W) = f(F,W),f(G,W).
HENG,W) — t(FW),¢{G,W).
G-rule : .
HE VG W) — t(F,W) G, W).
AFAG,W) — f(F,W), f(G,W)
w-rule:
t[DF'l W]-Pﬂ*h{m V] - L{F: 1"'")
w-rule:
AOF,W) — {newworld{V)}, path{W, V), f{F, V).
close condition:
(EW), FIF,W) — false,

where F, (- are modal formulae; #{(F, W)/ f(F, W) rep-
resents that F is true/false in the world W path{W, V)
represents that V' is accessible from Wi {---} is a se-
quence of KL1 predicates and new_world(V) creates a
new world V.

5.3.3 Modal Clause Transformation Method

Sinee the meta-programming method simulates the
tablean method on MGTP, the prover tends to create too
many branches, We therefore apply a partial evaluation
technique to the meta-programming method, thereby
suppressing the generation of branches which can easily
be checked to be closed. We call this translation method
the basic modal clause transformation method.

‘We represent modal formulae as sets of modal clauses.
A modal clause is a disjunction of modal atoms and their
negations, where a modal atom is a propositional atom or
& modal formula with & modal operator O followed by a
modal clause. Any modal formula can he represented as
a set of modal clauses. This can be proved by induction
on the structure of modal formulae,

Given & set of modal clauses, the translator first tries
to apply the o rules or @ rules of the modal tablean
methods to the modal clauge set. The result consists of
signed modal aioms, that is, MGTF atoms in the form
of either i{w, w) or fw, w) where ¢ is a modal atom. A
signed modal atom {w, w) indicates that a modal atom
g is true in world w, and f{,w) indicates that o is falze
in w.

If there is a signed modal atom to which the & rule
[or the v rule} can be applied, an MGTF clause that is
a specialization of the x rule {or the » rule} is generated.
Far example, the following MGTP clause is generated for
the signed modal atom £(0(p A Og > Or V 5), W).

3{':'(1’-"\'311 o Or v g},w:],j}ﬂth{w., VLE{F: V}1 ‘{DGH V}
—H{0r, V) | s, V).

Where path(W, V) denotes that world V' is accessible
from warld W,

By translating modal formulae so that clese condi-
tion testing is replaced with pattern matching in the
antecedents of translated clauses, instead of generating
such branches, we can suppress the generation of redun-
dant branches that can easily be checked to be closed.
We have proved that this transformation preserves the
satisfiability.

5.3.4 Incorporating NHM

In practical applications, formulae usnally contain many
subformulae irrelevant to the proof. To avoid the gen-
eration of irrelevant branches, we adapted the NHM
method that transforms input clauses so as to simulate
top-down reasoning. We analyze input modal formu-
lae to incorporate control information specific to a given

g1

input modal formula into its translated formula. The
integrated translation method is called the NHM modal
clouse transformation method.

We apply the NHM methed enly to positive informa-
tion (ie., #w, W}). For example, the following MGTP
clauses are generated for the signed modal atom ¢(O(p A
Og > Or v 5), W).

goal(Or, V), goal(s, V'), path{W, V) — goal(p, V),
goal(Og, V'), goal(D(p A Og > Tr V s), W).

goal{Cr, V), geal(s, V), £(0(p A Og D Or v 5), W),
path(W, V), t(p, V), ¢(0g, V) — £(Or, V) | i(s, V).

5.3.5 Ewvaluation

The cost of the modal clause transformation has been
shown to be linear to the length of the input modal
clanses.

We have tested the above mentioned methods on sev-
eral modal formulae, The basic modal transformation
method is generally superior to the meta-programming
method. The reason is that the meta-programming
method generates branches for everv atom in the an-
tecedents, while the basic transformation method pro-
cesses conjunctive matching of the antecedents instead
of generating branches. For formulae which contain ir-
relevant subformulas, the NHM transformation method
is much better than the other two methods since it does
not generate irrelevant branches. This merit becomes
more important as the program size increases,

5.3.6 Related Work

So far, there have been few reports on efficient strategies
for modal theorem proving. Auffray et al. [2] proposed
a modal version of resolution strategies such as input
and linear resolution. These strategies, however, impose
restrictions on modal formulae, the so-called modal Horn
clauses, while our method can be applied to any modal
formula.

From the viewpoint of the modal clause transforma-
tion method, all previously proposed translation meth-
ods compute the 7 rule and the ¥ rule completely. Com-
pared with previously proposed translation methods, the
modal clause transformation method offers the following
advantages.

1. Translated clauses are range-restricted. Hence, ef-
ficient theorem proving is possible, as matching is
sufficient instead of full unification.

2. It is possible to restrict the invecation of the ¥ rule
and the » rule. We can therefore avoid generating
branches irrelevant to the proof.

62

5.4 Mode Analysis of FGHC Programs

This section describes a method of mode analysis[33)]
for FGHC (Flat GHC) programs(34] with MGTP. Mode
analysis is a kind of fixpoint computation that corre-
sponds to generating a model in MGTP. The generated
medel includes mode information, which lets us know a
variable's mode and mode consistency in the program.
Mode information is useful not only for compiler opti-
mization but also for static bug detection.

5.4.1 Mode Constrains of FGHC programs

In our method, formulas representing mode constraints
[35] are translated into a set of clauses for MGTP. Mode
analysis of the entire program is reduced to mmput,ing
a model of the set of clauses.

We outline mode constraints vsing the simple FGHC
program listed halow,

s([], D 3 oi= true | t{D).
s{ [push (X} 15],D Y = true | s(S,.[XID1).
s{[pop{X) 18], [YID]) := true | X=Y, =(8,D).

The mode of the first argument is ¥n becaunse predicate s
waits for its first argument being instantiated with [] or
& cons cell. This is represented by mi{{s, 1)) = in. {s,1)
indicates the first argument of the predicate 5. The car
part of the first argument of 5 is represented by a concate-
nation like (s, 1}(.,1} ({., 1} represents the car part, {.,2}
represents the cdr part.). We can point out any posi-
tion of terms and atoms using this notation, called path.
m(Path) represents the mode pointed out by Path. Sim-
ilarly, we get m{(s, 1}{.,1}) = in and m{{s,2}) =

The variable ¥ of the first clause appears in the head
and body parts. From this, we can say that the mode of
the second argument of s equals to the mode of the first
argument of ¢. This is represented by m/(s,2) = m/t, 1).
mp means Yg((m/p)(g) = m{pg)) where p and g are
paths and pg is a concatenation of p and g.

Similarly, when locking at variables I, S and X of
the second clause, we get mis,2) = mfs2)(.,2),
mfs, 11,2} = mf{s,1) and mfs, 1}{, {u,l) =
mfls, 2., 1} {u is an abbreviation for push).

The mode of the path indicated by X is the inverse
of the made of ¥, because both X and Y in the third
clause appear in the head part and are unified with
each other in the body part. This is represented by

m (s, 1){., 1He,1) = m/(s, 2., 1}(o is the abbreviation
for pop). m() means mode inversion,

5.4.2 Mode Analysis in MGTP

The mode constraints have two kinds of forms: m() =
in (or m{) = out) and m/p = mfq (or m/p = m/q).
Roughly speaking, m(} = in is translated o a positive
clause true — m() = in, and m/p = m/q is translated
to two mixed clauses m/p — m/g and m/g — m/p.

Table 2 shows the transformation of the meode con-
straints, m(Path, Mode) is a relation that represents
that the mode of path Path is Mode. And, a path is
represented by a list notation. For example, {s,1}(., 1)
is translated to [5/1,./1].

Mode consistency is also checked by a negative clauee:
m{P, M), m{P,M) — false which means that the mode
is incnnsist.ent when a path P has two modes: in and
out.

Example For the above program, we have 3 positive
{one literal) clanses and & mixed clauses. We start with
an empty model candidate My = 0. My is first expanded
to My = {m([s/1], in), m(s/2], in), m((s/1, /1], in)}, by
applylng the model extension rule to the 3 pﬂsitwe
clauses.

One direction of rule (4) m{[s/2|X],M) —
m([t/11], M) is applicable to M) because m(s,/2} in) &
M) can be unified with the antecedent m([s/2|X], M)
by substitution {(]/X,in/M}. So we get the consequent
my = m([t/1),in). This means that M, is extended
by {4} to My = M; U {m;}. Repeating a similar pro-
duction of mode information, we get the final resuli:
My U {m([¢/1],in}, m([s/2, ./2],in), m([t/1,./2),in)}.

6 Conclusion

We have overviewed research and development of the
parallel theorem proving system MGTP in both the
FGCS and the Follow-on Projects.

To show the effectiveness of a large-scale parallel the-
orem prover, we first aimed to achieve a linear speedup
effect on the PIM and to solve “hard problems® which
are difficult for sequential systems to prove becanse of
the limits of time and space.

We mainly challenged mathematical theorems such
as the condensed detachment and quasigroup existence
problems. We obtained better results than expected, We
succeeded in proving difficolt probleme including open
quasigroup existence problems that sequential provers
could not prove.

However, some parallelization issues became clear
through the development of parallel MGTP,

Although the current AND parallel implementation
shows good parallel performance, it still has the sequen-
tiality of global subsumption testing and lacks memory
scalability. The sequential problem would become more
serious when we introduce a sorting strategy for the se-
lection of model-extending atoms.

In the current parallel implementation, we have to
properly use an AND parallel MGTP for Horn problems
and an OR parallel MGTP for non-Horn problems sepa-
rately. Thus, it is necessary to build a parallel version of
MGTP which can combine AND- and OR-parallelization
for proving a set of general clauses,

Table 2: Mode constrains — MGTP clanse transformation

Mode constrains " MGTP clause
mi{s,1}) =in true — mi{[s/1}, in) (1)
mils,2)) = in true — m{[s/2],in) (2}
mi{s,1}{.,1}) = in true — mi[s/1,./1],in) {3}
mf(s,2) = mE.1) m{[s/21X), M) = m{[t/ X, 3) — @
0/ (5.2) = mJ (5, 21(22) alls21 0}, M) = (372, /31X0, 79} (5)
(s, 1) D0ty Ty = 1 {5 BT | /1, o Ly T, M) (o2, J1TXT, M) (8)
mi{s, 1}{., 1){o, 1) = m/{s, 2} (-, 1} | m{[s/1,./1,0/1 X]IMme{[Sfﬂl'fer]:m {7)

t ml[P M) e+ m[P, M") represents two MGTP clanses:
. m(P, M) — m{P", M") and m(P', M") — m(P, M).
i M iz the inverse mode of M i.e., in = put and ouf = in,

To enhance the MGTP's pruning ability, we extended
the MGTP features in two directions: non-Horn Magic
set (NHM) and Constraint MGTP (CMGTF). NHM is
2 key technology for making MGTP a practical prover
and applicable to several applications such as disjunc-
tive databases, abductive reasoning and modal logic sys-
tems. The essence of the NHM method is to simu-
[ate a top-down evaluation in & framework of bottom-up
computation by statical clause transformation te propa-
gate goal (negative) information, thereby pruning search
spaces. This propagation is closely related to the tech-
nique developed in CMGTP to manipulate {negative)
constraints. Thus, further research is needed to clar-
ify whether the NHM method can be incorporated to
CMGTP.

Lastly, we have presented several techniques to de-
velop applications on top of MGTP. We have shown
that it is easy to implement on MGTFP negation as fail-
ure, abductive reasoning and modal logic systems that
are necessary for knowledge representation and advanced
problem-selving systems. Made analysis of FGHO pro-
grams presented here is useful for both the optimization
of KL1 compilers and NHM transformation.

The basic idea of thess techniques is to translate for-
mulas with special properties, such as non-monotonicity
and modality, into first order clauses (MGTP clauses)
on which MGTP works as meta-interpreter. The manip-
ulation of these properties is thus reduced to generate-
and-test problems for model candidates, These can then
be handled by the MGTP very efficiently through case-
splitting of disjunctive consequences and rejection of in-
consistent model candidates.

The final goal of the MGTP research is to integrate au-
tomated reassping technelogy with logic programming
technology. MGTP embodies an exhaustive searching
property which KL1 lacks and has the potential capac-
ity to give a new logic programming paradigm based on
bottom-up computation.

In the future, we will develop a new version of MGTP
with the KLIC system[6] running on a UNIX machine for

portability and available to other people outside ICOT.
We will also make further extensions to MGTP in order
to develop MGTP as a programming language system,
and we will explore application areas suitable for MGTP.

Acknowledgments

The research on the paralle]l theorem proving system in
the Follow-on Project was carmied out by the MGTP
group in the First Research Department at 1007, The
author would like to thank all who have engaged in the
development of MGTP.

Thanks are also due to Prof. Kazuhiro Fuchi of the
University of Tokyo, Prof. Koichi Furukawa of Keio Uni-
versity, Prof. Fumio Mizoguchi of the Science University
of Tokyo, Prof. Makoto Amamiya of Kyushu University,
and all the PTP-TG members for their fruitful discus-
sions and helpful comments. .

Finally, we would like to express our gratitude to Dr.
Shunichi Uchida, the director of the ICOT Ressarch Cen-
ter, and Dr. Takashi Chikayama, the manager of the
First Hesearch Department, who have given encourage-
ment and support in this work.

References

[1] J. Akshani, K. Inoue, and R. Hasegawa. Bottom-
Up Modal Theorem Provers based on Modal Clause
Transformation. Technical Report 874, ICOT, 1994,

[2] Y. Auffray, P. Enjalbert, and J-J. Hebrard. Strate-
gies for Modal Resolution: HResults and Problems.
J. Automated Heasoning, 6:1-38, 1990,

[3] F. Bennett. Quasigronp Identities and Mendelsohn
Diesigns. Conadian Journal of Mathematics, 41:341-
368, 1989,

64

{4] Frangois Bry. Query evaluation in recursive
databases: bottom-up and top-down reconciled.
Data & Knowledge Engineering, 5:280-312, 1990,

[5] M. Fitting. First-Order Modal Tableaux. In J. du-

tomated Reasening, volume 4, pages 191-213, 1988,

[6] T. Fujise, T. Chikayama, . K. BRokusawa, and
A, Makase. KLIC: A Portable Implementation of
KL1. In Proc. Int. Symp. on Fifth Generation Com-
puter Systems, December 1994,

[7] H. Fujita and R. Hasegawa. A Model-Generation
Theorem Prover in KL1 Using Ramified Stack Al
gorithm, In Proc. 8th Int. Conf. on Logic Progrom-
ming. The MIT Press, 1991,

[8] M. Fujita, R. Hasegawa, M. Koshimura, and H. Fu-
jita. Model Generation Thecrem Provers on a Par-
allel Inference Machine. In Proc. Int. Conf on
Fifth Generation Computer Systems, pages 357-
375, Tokyo, 1992,

[9] M. Fujita, J. Slaney, and F. Bennetl. Automatic
Generation of Some Results in Finite Algebra. In
Proe, IJCAISS, 1093,

{10] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. In Proc. Fifth
Int. Conf. and Symp. of Logic Programming, pages
1070-1080, Seattle, WA, 1088.

[11] M. Gelfond and V. Lifschitz. Classical negation in
legic programs and disjunctive databases, New Gen-
eration Compuling, 9:365-385, 19891,

[12] R. Hasegawsa and M. Fujita. Parallel Theorem
Provers and Their Applications. In Proc. Inf. Conf.
on [ifth Generation Computer Systems, pages 132-
154, Tokyo, 1992,

[13] R. Hasegawa and M. Koshimura. An AND Paral-
lelization Method for MGTP and Ite Evaluation. In
Froc. First Ini. Symp. on Parallel Symbolic Com-
putation, pages 194-203, Linz, 1994,

[14] R. Hasegawa, M. Koshimura, and H. Fujita. Lazy
Model Generation for Improving the Efficiency of
Forward Reasoning Theorem Provers. In Proc. Int.
Workshop on Automated Reasoning, pages 221238,
Beijing, 1982. also in ICOT TR-751 1982,

[15] . Hasegawa, M. Koshimura, and H. Fujita. MGTP:
A Parallel Theorem Prover Based on Lazy Model
Ceneration. In Proc. 11th Int. Conf. on Automated
Deduction, pages TT6-T80, 1992. (System Abstract).

[16] R. Hasegawa, Y. Ohta, and K. Inoue. Non-Horn
Magic Sets and Their Relation to Relevancy Test-
ing. Technical Report 834, ICOT, 1993, Dagstubl

Seminer on Deduction in Germany, 1993 Workshep
on Finite Domain Theorem Proving, 1994,

[17] R. Hasegawa and Y. Shirai. Constraint Propagation
of CF and CMGTP: Experiments on Quasigroup
Problems. In Proc. Workshop 1C fAutornated Rea-
soning in Algebra), CADE-12 Nancy, France, 1994,

(18] K. Inoue, M. Koshimura, and R. Hasezawa. Embed-
ding Negation as Failure into a Model Generation
Theorem Prover. In Proc. 1fth Int. Conf. on Au-
tomated Deduction, pages 400-415. Springer-Verlag,
1892, LNAI 607,

{19] K. Inoue, Y. Ohta,
R. Hasegawa, and M. Nakashima. Bottom-Up Ab-
duction by Model Generation. In Pree. JJOA-93,
1943, ICOT TR-814.

[20] M. Koshimura and H. Hasegawa., A Method
for AND Parallelizing Model Generation Theorem
Provers, To appear in Trans. IEICE D-1 (in
Japanese),

[21] M. Koshimura and R. Hasegawa. Modal Proposi-
tional Tableaux on a Model Generation Theorem
Prover. In Proc. Logic Pregramming Conf. 91,
pages 43-52, Tokyo, 1991, ICOT. also in ICOT TR-
665 (in Japanese).

[22] M. Koshimura and R. Hasegawa. Modal Proposi-
tional Tableaux in a Model Generation Theorem
Prover. In Proc, Third Workshop on Theorem Prouv-
ing with Analytic Tableauz ond Related Methods,
pages 145-151, UK, 1884, also in [COT TR-860.

[23] D. W. Loveland, 0. W. Beed, and D. 5. Wil-
son., SATCHMORE: SATCHMO with RElevancy.
Technical report, Department of Computer Science,
Duke University, Durham, North Carclina, 1993,
(C8-1893-06.

[24] R. Manthey and F. Bry. SATCHMO: a theorem
prover implemented in Prolog. In Proc. $th Int.
Conf. on Automated Deduction, Argonne, [llinois,
1088,

[26] W. W. McCune. OTTER 2.0 Users Guide. Argonne
National Laboratory, 1990,

[26] W. W. McCune and L. Wos. Experiments in Au-
tomated Deduction with Condensed Detachment.
In Proc. 11th Inl. Conf. on Automated Deduction,
pages 209-223, Saratoga Springs, NY, 1962,

[27] J. Minker, On indefinite databases and the closed
world assumption. In Proc. Sixth Int. Conf. on Au-
tomated Deduction, pages 292--308, Springer-Verlag,
1982, Lecture Notes in Computer Science 138,

(28] H. Nakashima, K. Nakajima, 8. Kendoh, Y. Takeda,
Y. Inamura, 8. Onishi, and K. Masuda. Architecture
and Implementation of PIM/m. In Proc. Int. Conf.
en Fifth Generation Computer Systems, pages 425-
435, Tokyo, 1992,

[29] K. Nitta, Y. Ohtake, 5. Maeda, M, Cno, H. Ohsaki,
and K. Sakane. HELIC-II: A Legal Reasoning Sys-
tern on the Parallel Inference Machine. In-Froe,
Int. Conf. on Fifth Generation Computer Systems,
pages 1115-1124, Tokyo, June 1992,

[30] H. J. Ohlbach. A resolution caleulus for modal log-
ics, In Proc. Sth Int. Conf. on Automated Deduction,
pages 500-516, 1988,

[31] M. Stickel. The path-indexing method for indexing
terms. Technical Note 473, Artificial Intelligence
Center, SRI International, Menlo Park, CA, Octo-
ber 1989,

[32] Mark E. Stickel. Upside-down meta-interpretation
of the model elimination theorem-proving procedure
for deduction and abduction. Technical Report 664,
ICOT, July 1991, A revised version is to appear in
J. Aufomated Reasoning.

[33] E. Tiek and M. Koshimura. Static Mode Analyses
of Concurrent Logic Languages. Technical Report
875, ICOT, 1894, To appear in J. Programming
Languages Design and Implementation.

[34] K. Ueda and T. Chikayama. Design of the Kernel
Language for the Parallel Inference Machine. Com-
puter J., 33:494-565, December 1990,

[35] K. Ueda and M. Morita. Moded Flat GHC and Its
Message-Oriented Implementation Technigue. Re-
vised version of the paper In Proc. Tth Int. Conf. on
Logic Programming, 1990.

[36] D. 5. Wilson and D. W. Loveland. Incorporating
Relevancy Testing in SATCHMO. Technpical repart,
Department of Computer Science, Duke University,
Durham, North Carolina, 198%. C5-1989-24,

65

