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Abstract

A parallel database management system (DEMS) called
Kappa is developed in order to provide efficient database
management facilities for knowledge information pro-
cessing applications. The data model of Kappa is based
on a nested relational model to treat complex structured
data efficiently. The system is written in KL1, and works
on parallel and/or distributed environments of conven-
tional machines with KLIC. In this paper, we give an
overview of Kappa.

1 Introduction

In the Japanese FGCS (Fifth Generation Computer
System) project, many knowledge information process-
ing systems (KIPSs) were developed under the frame-
work of logic and parallelism. In these systems, R&D
of databases and knowledge-bases[10] aims at an mte-
grated knowledge-base management system (KBMS) un-
der a framewark of deductive object-oriented databases
(DOODs). - Kappa ! is a database management system
(DBMS) located in‘'the lower layer and is also the name
of the project. The objective is to provide database man-
agement facilities for many KIPSs. In the Kappa project,
we developed a sequential DBMS, Kappa-JI[9] and a par-
allel DBMS, Kappa-P[4]. Both systems adopt a nested
relational model, and run on experimental hardware and
software environment developed in the FGOS project.
We have been developing a parallel DBEMS called Kappa,
which works on parallel and for distributed environments
on conventional machines, to make it easier to adopt our
research results.

The following is a short description of Kappa-II,
Kappa-P, and Kappa. Kappa-II is written in ESP, which
is 2 kind of prolog with object-oriented features, and
runs on the PSI sequential inference machine with the
SIMPOS operating system. The system showed us that
our approach based on the nested relational model is
sufficient for KBMSs and KIPSs; for instance, natural
language processing systems with electronic dictionar-
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ies, proof checking systems with mathematical knowl-
edge, and genetic information processing systems with
molecular biological data. Kappa-P is logically based on
Kappa-II with the configuration and query processing
extended for a parallel environment. Kappa-P is writ-
ten in KL, which is based on FGHC, and runs on PIM
parallel inference machines with the PIMOS operating
system. Kappa is based on Kappa-P, modified to be
suitable for parallel and/or distributed environments on
conventional machines with KLIC; that is, as a portable
implementation of KL1.

We give an outline of Kappa in Bection 2. Section 3 de-
scribes those features of Kappa's nested relational model
which are different from others. We give an overview of
operations on nested relations in Section 4, and Section 5
covers implementation issues.

2 Outline of Kappa

Our environment contains a variety of data and knowl-
edpe with complex data structures. For example, molec-
ular bislogical data treated by genetic information pro-
cessing systems includes various kinds of information and
huge amounts of sequence data. The GenBank/HGIR
database[3] has a collection of nucleic acids sequences,
physical mapping data, and related bibliographic infor-
mation, and the amount of data has been increasing ex-
ponentially, The size of the sequence data ranges from a
few characters to 200,000 characters. The data becomes
longer as genome data, and is analyzed gradually: the
size of a human genome sequence is abeut 3,000,000,000.
The conventional relational model is not sufficient for ef-
ficient data representation and efficient query processing.
Moreover, the rapid increase of data will require more
processing power and secondary memory to manage it.
Such situations requires a parallel computational en-
vironment with database management facilities provid-
ing a data model which can treat complex structured
data efficiently, and countermeasures for huge amounts of
data. We have two solutions to these reguirements. One
is a paralle]l environment using PIM machines, the PI-
MOS cperating system, and the Kappa-P DBEMS in KL1,
which was developed in the FGCS project. Another is a



parallel and/or distributed environment for conventional
machines with KLIC, and the Kappa DBMS, which we
hawve developed.

Some features of Kappa are listed below.

Nested Relational Model

As there are various data and knowledge with complex
data structures in our environment, the conventional re-
lational model is not appropriate for efficient data repre-
sentation and efficient guery processing. In order to treat
complex structured data efficiently, we adopt a nested
relational meodel. The nested relational model with a
set constructor and hierarchical attributes can represent
complex data naturally, and can aveid unnecessary divi-
sicms of relations. Semantics of nested relations matches
the knowledge representation language, QurxoTe(8] of
KBMS. There have been other nested relational mod-
els[6, 7, 1] since the proposal in 1978(5). Specifically,
although syntactically the same, their semantics are not
necessarily the same. Operations on nested relations are
extended relational algebra, which is & simple extenmn
of relational algebra.

The model is the same Kappa-P data model which
proved to handle complex structured data efficiently,
but the implementation of the model is a little differ-
ent. Kappa-P has two kinds of operations: primitive
commands and a query language based on extended re-
lational algebra. To reduce the code size of the sys-
tem, Kappa provides primitive commands only. Prim-
itive commands are the lowest operations for nested re-
lations based on tuple identifiers. Term is one of the data
types in both systems, because term is a primitive data
structure in KL1. While the character code in Kappa-P
is a 2-byte code because this iz usual in the PIM and
PIMOS envireonments, the character code in Kappa is
a 1-byte code because this is usual in & KLIC environ-
ment. Both systems provide special indices to handle a
huge mount of data such as genome database in the near
future, While an ordinary index for an attribute consists
of pairs of the value of the attribute in a tuple and all
tuple identifiers which point to tuples having the valne of
the attribute, a special index for an attribute consists of
pairs of & modified value and tuple identifiers. There are
several ways for the modifications: concatenating speci-
fied values to an attribute value, getting a sub-string of
an attribute value, and getting multiple sub-strings of an
attribute value by scanning the value. The last way can
be used to find some fragments In amino acid sequences.

Configuration

Kappa is constructed of a collection of element DBM3s
which manage their own data. Each element DBMS con-
taing full database management facilities, and manages
a sub-database. Figure 1 shows the overall configuration

m

of Kappa., This is called shared-nothing architecture[2].
A global map of relations is managed by element DBMSs
called server DEMBEs to improve availability, and to de-
centralize access to it. Element DBMSs with the excep-
tion of server DEMSe are called local DBMSs,

Interface processes are created to mediate hetween ap-
plication programs and Kappa as a collection of element
DBMSs, and to receive queries in primitive commands as
messages in KL1. A guery iz processed by some elernent
DBEMSs, in which relations accessed by the query exist.
To allow the element DBMSs to cooperate, Kappa pro-
vides distributed transaction mechanisms based on the
two phase commitment protocol.

=y

Figure 1: Configuration

Data Placement

Placement of relations is the responsibility of the
database designer, because it should be determined in
consideration of relationships among relations and kinds
of typical queries to the database. Kappa provide three
kinds of data placement: distribution, horizontal parti-
tion, and replication.

In order to use parallelism, relations can be located
in some element DBMSs. The simple case is distributed
relations as in distributed DBMSs. When some gueries
to a relation need large processing power or a relation is
too large to treat in an element DBMS, the horizentally
partitioned relation relation can be declustered to sub-
relations located in different elerment DBMSs according
to some declustering criterfa. An example is a molec-
ular biological database including sequence data which
increases rapidly. If a relation is frequently accessed in
queries, multiple copies of the relation can be made and
lpeated in some element DEMSs. The replicated relation
is implemented as a global map only. The horizontally
partitioned relation is logically one relation.



102

3 Nested Relational Model

A nested relational model is known to reduce the num-
ber of relations in the case of multi-value dependency
and represents complex data structures more naturally,
compared with the the relational model. However, there
have been other nested relational models[6, T, 1] since
the proposal in 1978[5]. Spacifically, although syntacti-
cally the same, their semantics are not necessarily the
same. In Kappa, one of the majer problems is which se-
mantics is apprepriate for many applications in our en-
vironment. Anocther problem is which part of CQurrore
should be supported by Kappa as a database engine be-
cause enriched representation is a trade-off for efficient
processing. In this section, we explain the semantics of
the Kappa model.

Intuitively, a nested relation is defined as a subset of
cartesian product of domains or other nested relations:
NR C Eyx.-ukE,

B u= D|2¥E

where [Jis a set of atomic values *. That is, the nested re-
lation may have hierarchical structures and set values of
other nested relations. This corresponds to introducing
tuple and set constructors as in complex objects, Corre-
sponding to syntactical and semantical restrictions, there
are various subclasses, to each of which extended rela-
tiemal algebra are defined.

In Kappa's nested relation, a set constructor is used
only as an abbreviation for a set of normal relations as
follows:

{7"[11‘=|:}, j?={511 ree 5E'n}]}
= {I‘[.il=ﬂ.,lgc-h1],- e 17'[11:11,!2:1?“]}

The operation “=+" corresponds to an unnest operation,
while the opposite operation (“+") corresponds to a nest
or group-by operation, although “4=" is not necessar-
ily congruent as for the application sequence of nest or
group-hy operations. That is, in Kappa, the semantics of
a nested relation is the same as the corresponding rela-
tion without set constructors. The reason why we adopt
these semantics is to retain the first order semantics for
efficient processing and to remain compatible with the
widely used relational model. Let a nested relation be

NR={nty, - ,nt,}
where nt; = {ty, -, i} fori=1,.--,n,
Then the semantics of NR is {t11,---, t1z, -~ tuts- s

tue}. Extended relational algebra for this nested rela-
tional database is defined in Kappa and produces results
according to the above semantics. This guarantess to
produce the same results as the corresponding relational
database, except for the treatment of the attribute hier-
archy. ‘

*The term “atomic” is ot the conventional one. For example,
when an atomic value has & type term, the equality must be based
on unification or matching

4 Operations on Nested Rela-
tions

Kappa provides operations on nested relations called
primitive commands as an internal model. Primitive
commands consist of unary operations based on tuple
identifiers. A query in primitive commands is expressed
as a sequence of commands to a interface process. The
interface process sends each of the commands to an el-
ement DBMS or some element DBMSs in which rela-
tions accessed in the commands related exist. Primi-
tive commands can be classified into the following oper-
ations: restricting a nested relation with/without using
indices and getting a collection of tuple identifiers called
a set as the result, manipulating sets, manipulating tu-
ples in & nested relation, and manipulating meta-data
of a database. In primitive commands we call nested
relations fables and call tuples records because tuples of
nested relations are not flat data but complex structured
data including set values and tuple values.

Operations to Restrict a Nested Rela-
tion

Kappa provide two kind of restriction operations: a
search.indes operation and a search_data operation. The
difference between the two operations is in the use of in-
dices. Both operations return a collection of tuple iden-
tifiers: a set as the result. So a set corresponds to a
sub-relation of the relation, but dees not contain tuples.
Meost primitive operations can be specified as a set in-
stead of a nested relation. Moreover there are standard
operations on sets: union, intersection, and difference.
These operations on sets are performed by only using
tuple identifiers without using values of tuples, but the
sets must correspond to the same relation. As a tuple in
a nested relation can contain set values, a tuple identi-
fler consists of a principal tuple identifier, which specifies
a whole tuple, and sub-tuple identifiers, which specify
some occurrences of set values in the tuple. A set gen-
erated by a restriction operation is located en the same
machine on which an accessed relation exists, or on all
machines on which sub-relations of & horizontally parti-
tioned relation exist {Figure 2).

Operations to Manipulate Tuples in a
Nested Relation

Operations to manipulate tuples in a nested relation are
a read_record operation to extract tuples from a nested
relation, an add record operation to put & tuple into a
nested relation, a modify_record operation to modify a
tuple in & nested relation, and a delefe_record to delete
a tuple from a nested relation. We can extract specified
attributes from a nested relation for a read_record op-
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problermm. The application-dependent restriction op-
eration is passed as a filter process in KLl to a
read record_with filter operation, and is performed on
the same machine on which an accessed relation exists, or
in all machines on which sub-relations of a horizontally
partitioned relation exist (Figure 4).

Figure 2: Read operation with a filter

eration like a projection operation in relational algebra.
The result of a read record operation specifving a set as
an argument is the same as the result of & operation on
a sub-relation restricted by the set.

A read record operation on a horizontally partitioned
relation is performed by read_record operations on el
ement DBMSs in which sub-relations of the horizon-
tally partitioned relation exist, and & merge process to
gather all results of the read.record operations on the
sub-relations [Figure 3). The result of a read _record op-
eration is not returned in a plain list of tuples but in
a fuple stream because of efficlent processing (SeeSec-
tion 5.2). :

Local DEMS | [ Ralaion |

lication rend_raearnd _—

Read —_—

Intertace E

Local DEMS 2 [Fmatienz]

read_record T —
Tuple Stream Menge Fead ——

Procas 1 A

Figure 3: Read operation with a filter

In some cases applications will restrict a nested re-
lation with an application-dependent restriction for-
mula, In order to reduce inter-glement DBEMS com-
munieations, these application-dependent restriction op-
erztions should be performed on the same machine
on which the accessed relations exist. Kappa pro-
vides a read record.avith.filter operation to solve this

Figure 4: Read operation with a filter

Other Operations

Other operations are controlling jobs and transactions,
creating a nested relation, deleting a nested relation,
modifying the schema of a nested relation, getting the
schema of a nested relation, and getting physical infor-
mation of a database, ' o

The nested relations to be used in a job and a trans-
action are specified in the creation operation of the job
and the transaction. The specified nested relations are
locked exclusively or not exclusively. Although the trans-
action is logically one transaction, sub-transactions in
element DBMSs in which locked nested relations exist,
and a transaction coordinator are created for distributed
transaction based on the two phase commitment proto-
col. An argument of the operation to creating a nested
relation is the schema of the nested relation. Indices of
attributes are specified in a schema. An operation to
meodify the schema of 2 nested relation allows attributes
to be added or removed under certain restrictions.

5 Implementation Issues

5.1 Management of Global Informa-
tion

Kappa has two kinds of relation identifiers: global rela-

tion identifiers and local relation identifiers. Every rela-

tion has it own local identifier managed by an element

DBMS in which the relation exists. Server DEMSs man-
age global relation identifiers as a global map centrally,
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freeing the identifiers from element DBMS information
in which the relations exist. The centralization doss not
affect performance, becanse the information is only re-
ferred to find target element DBMSs from relation identi-
flers at the beginning of query processing, and is modified
when global relations are created or deletad. The global
map is not managed by cne server DBMS but by several
server DBMSs with replicated relations to decentralize
access to the relation, and to improve availability.

We decided. to implement the replicated global map
based on the weighted voting protocol, because the pro-
tocol satisfies the above requirements, is not complicated
to implement, and does not work ineorrectly under any
kind of fajlure. A read operation for the global map
iz translated to read operations for randomly selected
server DBMSs, the number of which is one or two over
the read vote. The operation is completed when the
nurnber of read vote results are received. A write opera-
tion for the global map is translated to read operations
for randomly selected server DBMSs and write opera-
tions for server DBMS3s replying to the read operations.
As the latter write operations are performed by using dis-
tributed transaction mechanisms based on the two phase
commitment protocol to make implementation simple,
failures in the write operatioms are not treated by the
weighted voting protocol, but by the two phase commit-
ment protocol. This is not a big problem because the
reason for implementing the replicated global map is to
improve availability, and to decentralize access to it.

5.2 Parallel Processing of Primitive
Commands

Kappa is constructed with many modules as processes in
KL1. The way tuples are treated among internal mod-
ules of & DBMS is important, and influences parallelism
and the number of suspended goals. For example, a re-
striction operation without using an index on a relation
iz performed by two processes, a process to get the tuples
of the relation, and a process to test them to satisfy a
restriction formula, connected by a tuple stream. This is
a typical KL1 program with a generator and a consumer.
In & simple implementation of the program, the genera-
tor process generates one data contained by a cons cell,
and the consumer process receives the data, triggered by

the cons eell. If these two processes are not scheduled’

properly, the generator process will exhaust main mem-
ary. There are some ways to prevent this; for instance,
to execute the generater process at a lower priority than
the consumer process, or to change the direction of trig-
gers. That is, a consumer process creates a cons cell to
request a generator process to generate one data, and
the generator process waits for the cons cell and then
sets one data into the car of the cons cell.

Tuple streams in Kappa are based on the latter. In
order to reduce suspensions of goals, a generator process

passes the user-defined number of tuples as a list of tu-
ples at a time. Of course, the head of the list is passed
when the last tuple is generated, to reduce suspensions
in the consumer process. A tuple stream is expressed as
follows: [[Tupley, Tupleys, - - Tupleyy),- - - [ Tuplepn,
Tupleps, - - - Tuplepn], end, - - - yend]. Cons cells of the
outer list are created by the consumer process, and the
inner lists, each of which calls a buffer, is created by the
EEnerator Process.
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Figure 3 Restriction operation with various sizes of
buffers

Figure § shows the relationship between the execution
time for a restriction operation without using an index
on a relation, and the number of suspended goals for
various sizes of buffers, on a sequential version of KLIC.
The relation contains 10,000 tuples. About 15 tuples of
the relation are transferred by one read operation from
secondary storage. This figure shows that tuple streams
work efficiently.

From a parallel processing point of view, the generator
process and the consumer process can run in parallel with
double buffering technigues, although a buffer contain-
ing tuples is processed sequentially. In order to obtain
further parallelism, the consumer process requests multi-
ple buffers at a time, and the generator process performs
the requests in parallel.

5.3 Modules Written in C Langunage

We can use C modules as generic objects in KLIC. But
functions of generic objects are executed seguentially.
Almeost all modules in an element DBMS are suitable
to be written in KL1, because of the data structure of
tuples in nested relations, and because sets containing
tuple identifiers are complex. -

The lowest data structure in nested relations is bit-
image, stored as files. Kappa accesses the data as byte
strings in KL1. Operations on strings can be treated
more efficiency in C than in KL1. Important operations
on strings, which infiuence the system performance, are



getting a tuple from strings, getting B-tree components
from strings, and similar operations.

We decided to implement the following operations in
: getting a tuple from strings, setting a tuple into
strings, getting B-tree components from strings, and set-
ting B-tree components into strings. These operations
are implemented sequentially in Kappa-P written in KL1
also, becansze too much parailel coding decreases perfor-
mance. Parallelism is controlled by the number of tuples
to be processed in parallel.

6 Conclusions

In this paper, we describe a parallel DEMS Kappa on
KLIC. The KLIC system enables the Kappa to run not
only on PIM machines but also on parallel and/for dis-
tributed environments on conventional machines. The
performance of Kappa for the Wisconsin benchmark pro-
gram is almost half that of an experimental DBMS based
on the relational model on the same machine, although
the benchmark program is for the relational model which
is a subset of our model, and Kappa is written in KLL.
We release Kappa as IFS (ICOT Free Software) to make
it easier to adopt our research results.
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