10

Proe. of FGCS '84, ICOT, Tokyo, December 1994

Parallel Basic Software

Takashi Chikayama

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japan
chikayama®@icot.or.jp

Abstract

Results of the research and development conducted on
parallel basic software in the FGCS follow-on project are
reported. The principal objective of the project is in
dissemination of the technologies developed in the FGCS
main project based on concurrent logie programming.
To reach the objective, the software systems devel-
oped in the FGCS project on parallel inference ma-
chines (PIMs} required a more widely available platform
for their broader utilization. PIMs were evaluated in
further depth and a new implementation of a coneur-
rent logic programming language KL1 for Unic-based
systems, KLIC, was developed based upon the results.
Frincipal basic software systemns on PIM were ported to
KLIC, including a parallel database management system
Kappa and a parallel bottom-up theorem prover MGTE.

1 Introduction

In the Fifth Generation Computer Systems (FGOS)
project conducted in fiscal yvears of 1982 through 1992,
its parallel inference system was developed to provide
massive processing power with a comfortable software
development environment based on concurrent logic pro-
gramming. The parallel inference system consists of par-
allel inference machines [7], parallel implementations of a
concurrent logie programming language KL1 upon them
and basic software systems (17, 2.

Through development of numerous experimental par-
allel application software systems, the parallel inference
system was proved to provide superior processing power
and a comfortable environment for efficient software de-
velopment. However, the system based on special pur-
pose hardware had some drawbacks that prevented wider
utilization of the system and application systems on it.

The KL1 language system and basic software systems
have been redesigned and reconstructed on computer sys-
tems commonly available in the market for wider avail-
ability and easier access. This paper gives an overview of
the research and development on this area in the PGCS
follow-on project.

1.1 Motivation and Objectives

The parallel inference system built in the FGCS project
had the following drawbacks.

e PIMs had processing and interprocessor commu-
nication hardware specially devised for concurrent
logic programming. 1t had many experimental fea-
tures and consideration on their cost was premature.
This prevented wider availability of the hardware.

KL1 was the anly high level programming language
available on the system. This prevented utilization
of already existing software written in other lan-

Euages,

* The operating system of PIMs had user interface
much different from commonly used operating sys-
tems. MNew users needed to get over this thresheld
before enjoying the benefits.

o Although KL1 was appropriate for description of
parallel symbolic processing programs, it does not
feature theorem proving mechanisms for the full first
order logic, and there were needs for higher level
logic programming.

Thege had been obstacles for broader utilization of the
software developed in the FGCS project.

To get rid of these obstacles, the following had to be
provided.

e An efficient and portable implementation of KL1 on
computer hardware accessible to a wider range of
researchers,

s Language features to allow smooth linkage with al-
ready existing software.

+ User interface consistent with widely used operating
systems.

e A higher level programming langnage which pro-
vides more general theorem proving capabilities.

1.2 R&D Overview

The requirements described above led us to design a new
implementation of KL1 for Unix-based computer sys-
tems, named KLIC.

For higher portability, KLIC uses the language C as an
intermediate language for compilation of KL1 programs,
rather than going dewn directly to the machine instruc-
tion or the microprogram level as was done with PIMs.
However, it is not the only difference between KLIC and
PIM implementations. Many of the design decisions were
remade for different reasons.

Through deeper analyses of the KL1 implementation
on PIM with many experimental parallel application
software on it, we could more quantitatively evaluate
various implementation ideas, which inflsenced the de-
sign of KLIC considerably. The difference of the target
hardware caused redesigning, of course, Some of the im-
plementation ideas that needed architectural support for
efficient processing were given up and several new ideas
were incorporated instead.

Some of other basic software systems aleo needed non-
trivial redesign for efficiency on general purpose hard-
ware, In case of PIMs, we designed the whole computer
systems from the architecture level with specially devised
eommunication mechanisms, which the KL1 implemen-
tations could use directly. On the other hand, KLIC is
for hardware with communication mechanisms with rel-
atively low throughpot and high latency. More impor-
tantly, the operating system layer in between the hard-
ware and the language implementation incurs consider-
able overhead. Thus, some basic software systems had
to be redesigned to reduce the amount and frequency of
interprocessor communication. The distributed pool is a
representative example.

The features of KLIC to link with pregrams in other
languages enabled writing some parts of systems in lan-
guages other than KL1 best suited for their purposes.
Most of the conventional languages are suited only for
sequential processing, but KLIC can be used effectively
to combine such sequential parts together into a parallel
system. A parallel database management system Kappa
was ported to KLIC with rewrites in the low-level data
handling in the language C.

The language KL1 is a logic programming langnage
but is not meant to be a theorem prover for the full first
order logic. This iz also true for Prolog, but giving up
the avtomatic search feature of Prolog for better paral-
lel execation control made the language level lower than
Prolog. To fill the enlarged gap betwesn the needs of
application software and the features provided by KL1,
a bottom-up theorem prover MGTF on PIMs was aug-
mented with various features to be useful as a common

tool or a programming language for knowledge process-
ing and perted ento KLIC.

The rest of the paper gives more detailed descriptions
of each R&D topic. The next section gives an overview of

11

the evaluation effort made on the KL1 implementation
on PIMs. Section 3 describes the outline of the KLIC
implementation of KL1. The distributed pool, a table
handling utility optimized for distributed processing, is
described in section 4. Section & gives the cutline of
the database management system Kappa. B&D on the
MQGTP theorem prover is deseribed in section 8. Finally,
a conclusion is given.

2 Ewaluation of PIMs

Five models of parallel inference machine PIM were built
in the FGCS project. In the FGCS follow-on project,
their evaluation through building experimental parallel
application software continued.

In addition, the KLl implementation on the PIM
model-p has been inspected in more depth after various
improvements. The overall processing speed of the im-
plementation has been more than doubled in two years of
the project period, smoothing out rough edges, making
evaluation of the implementation scheme maore reliable.

2.1 Memory Management

All the KL1 implementations on PIMs adopted a refer-
ence count memaory management scheme with a single
reference count bit in peinters [4]. Through analyses of
the implementation, the following were found.

Management of MRB was made quite efficient with
glight architectural implementation supports.

& It was effective in allowing destructive updates of
singly referenced data structures without disturbing
the pure semantics of the language.

» Incremental garbage collection using the MRB infor-
mation was not so effective; the management cost for
free lists was much higher than simple consecutive
allocation. Conventional garbage collection might
outperform it.

2.2 Shared Memory Implementation

The model-p of PIM has clusters with eight processors
sharing memory and a bus, which in turn are connected
with a hypercube network. Thus, its paralle] implemen-
tation of KL1 has both shared and distributed memory
portions,

Through the analyses of the shared memory portion
of the implementation, we could find the following.

e Unification on shared memory could be made effi-
cient with a simple compare and swap primitive.

s Dynamic automatic load distribution within a
shared memery cluster could be made reasonably
efficient [9].

12

» Parallel garbage collection was effective but the
shared bus becomes the bottleneck. On the other
hand, incremental garbage collection incurs more
false sharing of cache lines and thus heavier bus traf-
fie.

2.3 Distributed Memory Implementa-
tion

The distributed memory implementations of KL1 on
PIMs adopted & two level addressing scheme with local
and plobal addresses. Interprocessor memory manage-
ment was through weighted reference counting,
Analyses of the implementation revealed the following.

® The scheme allowed independent local garbage col-
lection, which was quite effective in reducing the
amount of interprocessor communication.

o Reference counting interprocessor garbage collection
warked well. Although this cannot collect garbage
forming an interprocessor loop, this never was a seri-
ous problem with application systems tested so far.

o Lazy data transfer scheme worked well, but interpro-
cessor communication delay was considerably large
even with architectural supports. Application pro-
grams had to be aware of data locality for effi-
cient processing. However, for many problems, al-
gorithms to ensure higher data access locality could
be designed without losing parallelism much,

2.4 KLIC on PIM

The sequential core of KLIC {described in the next sec-
tion) was ported to the model-p of PIM. It provided an
interesting basis for comparing two different implemen-
tation schemes.

The KLIC implementation showed performance simi-
lar to the original implementation in average. This was
unexpected as the original implementation utilizes the
special features of PIM hardware while KLIC implemen-
tation relies only on RISC-like instructions generated by
a O compiler. The following are suspected reasoms.

The original implementation is ready for shared-
memory parallel processing while the KLIC version
is not.

The free list menagement with incremental garbage
collection with MRB in the original implementation
iz not so effective for sequential processing.

& The original implementation uses 64 bits per pointer
while KLIC uses 32 bits which resulted in better
cache performance.

One point where KLIC was found to perform much in-
ferior to the original implementation was goal suspen-
sion for data-How synchronization. KLIC owes its perfor-
mance to inline code expansion and thus the object code

tends to become large. To alleviate this problem, com-
piled code for a program module has only one runtime
siubroutine call site commonly used for all the possible ex-
ecution interrupts: goal suspension, garbage collection,
external interrupt, etc. This increased the poal suspen-
sion cost considerably. However, it was also found that
only few application programs had frequent suspensions.

Considering performance superiority of KLIC on Unix
machines to other logic programming language systems,
the porting proved that the original KL1 implementation
on PIM was reasonably efficient, although some room
remains for improvements.

Further details can be found in [13].

3 KLIC: A Portable KL1 Imple-
mentation

KLIC is & portable implementation of the concurrent
logic programming langnage KL1. As almost all the soft-
ware systems developed in the latter part of the FGCS
project were written in KLI, it was essential to pro-
vide its portable implementation for dissemination of the
FGCS technologies,

3.1 Design Policy
KLIC was designed under the following policies.

« Portability should be put above everything, Only
" standard features of the language C and Unix should
be used.!

& The system should be made as modular as pessible.
Az a standard for interprocess communication mech-
anism is yet to be established, parallel implementa-
tions cannot bui have some system dependencies.
Such system dependent modules should be clearly
separated for ease of porting.

The interface should conform to the Unix tradition.
Systems on Unix usually provide a collection of rel-
atively small programs in stead of a single unified
environment that most Lisp or Prolog systems pro-
vide. We suspect that this difference has been a
paychological obstacle to wider acceptance of sym-
bolic processing languages. Separation of develop-
ment and execution environments also makes pro-
duction code smaller.

e The system should provide a way to smoothly in-
terface with programs in other languages, specifi-
cally the language C. A subroutine interface is not
enough. There should be a way to define data
area for O programe that are maintained within

Y Actually, we constrained ourselves to a still smaller subsat to
enable versions on D08, 0852 and parallel systems withouwt full
Unix functionalities on processing nodes.

] I
Exccutable
KL1 l:!rwr:;n Relocatable Obsject
Baurce Oibject = Code
Program || [~ from KL1 Code . oot
xxk k1l AEK . 0K &
Runtime
Library Other
Archive Libraries
Lividic. et

Figure 1: Compilation of KLl Programs

the framework of the memory management policy
of KLIC, including distributed memory cases.

3.2 System Outline
The KLIC gystem consists of the following.

KL1 compiler that translates programs in KL1 to
plain C programs. Only those features commonly
available with most of the C compilers are used.

Buntime Libraries which are a collection of C subrou-
tines called from the translated C code.

C Header Files that provide data type definitions and
inline expanded operations used in the translated C
code and the runtime library.

Compiler Driver that controls the compilation and
linkage of KL1 programs.

Compilation of KL1 programs procesds just like compi-
lation of C programs except for an additional precompi-
lation step from KL1 to C (Fig. 1). In a sense, KL1 is a
so-called “fourth generation language™.

Different runtime libraries are provided for different
forms of usage.

The simplest library provides the basic features and is
meant for the production code. The debugging library
is for program development providing tracing and better
errcr diagnestics in addition to the basic features.

Another axis that characterizes different libraries is
their parallel processing features. The sequential runtime
library does no parallel processing. The shared memory
and distributed memory parallel runtime libraries pro-
vide different parallel processing schemes. Furthermere,
the core algorithm for the distributed memory implemen-
tation iz made independent of physical communication
mechanisms. Separate libraries are provided depending
an the lower-level communication mechanisms used. Of
course, the users are expected to install only those li-
braries of their need (Fig. 2).

Note that, for all the different purposes, the C
code translated from KL1 programs remains the same.

13

Shared-Memory
Paralell
Implementation

Sequential Core Implementation

Figure 2: Structure of Parallel Implementations

Switching from production code to debugging code only
requires linkage with a different library. This also makes
optimizations on the compiler and the parallel imple-
mentation mechanisms orthogonal, making concurrent
system design and development easier.

To use the same code for different parallel implemen-
tation schemes, some handles are required in the core
implementation to recognize the needs of non-local pro-
cessing. Explicit operations, such as designating = goal
to be executed on a different worker, are easily recog-
nizad. Shared data accesses are implicit and data access
operations have to provide handles to escape to appro-
priate runtime library routines. This is realized by using
generic objects described in section 3.4

3.3 Basic Design

Taking inte aceount of the evaluation results of the KL1
implementations on PIMs, differences of the target ma-
chine architectures, and recent research results on logic
programming language implementations, we made the
following design decisions for the core part of the KLIC
system.

* The MREB reference counting scheme is not adopted.
Ineremental garbage collection based on MRB was
found not to be so effective and, unlike PIM proces-
sors, stock hardware cannot handle many tag bits ef-
ficiently. Also, recent research results suggest most
of the information obtained by dynamic reference
counting may be obtained through static analyses.

+ Only two lowest bits of a pointer word are used for
tags. By aligning pointer words with four or more
bytes at word boundaries, these two tag bits can
be used freely. Modern C compilers can combine
tag handling and memory accesses as one load fstore
instruction with a small offset. Various builtin data
types are realized as generic objects described below.

¢ HRather than compiling one KL1 predicate into ane
C function, ene KL1 program module consisting of
a set of related predicates is compiled into one C
function. As most of the modern C compilers are
gtill not good at interprocedural optimization, size
of C functions should be kept reasonably large.

14

3.4 Generic Objects

With the KLl implementations on PIM [7], we experi-
enced severe difficulties in trying out different paralle]
execution schemes, as the schemes were too much inte-
grated into the system core. This pointed to us a moral
that system extensibility and modifiability should be put
above bare efficlency. On the other hand, as the system
s for stock hardware, enly a limited number of pointer
tag bits can be handled efficiently. We thus needed some
other ways to distinguish various built-in data types.

Generic ohjects were introduced to achieve these two
chjectives at a time., We borrowed the basic idea of
generic objects from AGENTS [11], modified and ex-
tended it for KLIC.

The core of the runtime system and compiled codes
only know data types generically called generic objects.
Generie objects of all elasses have the same interface; new
object classes can be freely added without changing the
system core. For example, copying of objects on garbage
collection is implemented as one of their methods, and
thus the system core do not have to know their physical
representation.

KLIC has three categories of generic abjects.

Data Objects are immutable objects without fime-
dependent states. Time-independence means that they
always laok the same fram KL1 programs; their physical
representation may be modified. For example, multiver-
sion arrays are data objects that leok immutable, but
different versions of an array are represented by a phys-
ical array and linked records of their dlt’fm‘encea, which
are mutated on updates.

With a set of macros provided by the systern, users
can define an object class to mterface C programs with
the KLIC system in an object-oriented manper. On
distributed memory implementations, object migration
can be realized by simply providing a method to encode
the object into a message and a corresponding decoder.
Higher level decisions such as when to migrate cbjects
and lower level communication procedures are taken care
of by the KLIC system.

Consumer Objects are data-driven objects with time-
dependent states. They are associated with an uninstan-
tiated logical variable and activated by its instantiation.
When the unifier recognizes that the instantiated vari-
able is associated with & consumer object, the unify
method of the object is called. The object performs the
task specified by the given value and, when the value
is a structured data, may associates itself again with a
variable inside the structure. Consumer objects behave
exactly like a process described in KL1 waiting for in-
stantiation of a variable, except that arbitrary C code
can describe its behavior,

Generator Objects are demand-driven objects. They
are also associated with an uninstantiated variable but
are activated on demand of its value. When a variable
associated with a generator object is found to be required
during goal suspension handling, the generate method

of the object is called. It may generate some value im-
mediately to instantiate the associated wvariable. Alter-
natively, it may initiate some activity that will eventually
do it.

In parallel implementations [14, 15], non-local ref-
erences are represented as generator objects. Their
generate methods send a value fetching message to an-
other worker or read data from shared memory.

No distinetion of the above-described three categories
is made by AGENTS; It have no generators and the fune-
tionality of consumers is provided by ports which are
data chjects. Ports are names of streams rather than
streams themselves,

3.5 Sequential Performance

With careful design of the generated C code, and thanks
to excellent optimization by modern C compilers, the
sequential core of KLIC shows reasonable performance.
For a set of standard benchmark programs that use com-
mon features of Prolog and KL1, KLIC runs about twice
as fast as native machine code generated by a widely
used Prolog system, SICStus Prolog [1]. This was recon-
firmed by the two versions of the KL1 to C compiler, one
in Prolog and anather in KL1 itself ®.

While SICStus generates machine code directly,
KLIC's code generation is indirect through C. Deeper
analysis of the generated code revealed that the lack of
backtracking benefited KLIC considerably, but nothing
seems to be lost by the indirect code generation scheme
through C, while yielding excellent portability [3].

Mote that, with the parallelization scheme of KLIC,
this excellent sequential performance is directly inher-
ited to the single processor performance of its parallel
implementations.

3.6 Shared Memory Implementation

In the shared memery implementation of KLIC, each
worker process has its own local heap area and shares
one common heap area in addition. The local heap may
be physically homogeneous with the shared heap; the
logical distinction is to reduce the needs of locking and
to increase access locality. The principal management
poliey is to allow pointers from a local heap to the shared
heap but not the reverse.

Data structures are created in a loecal heap and stay
there as far as no references from different workers are
made. Data structures created for temporary use by one
worker live their whele lives within the local heap.

When a reference is made from a different worker, ei-

_ther by passing the data structure as an argument of a

distributed goal or by unifving it with a variable in the
shared heap, the structure iz copied to the shared heap.

*The Prolog version is a by-produet of the sardier development
phase of KLIC.

Lacal Memary Lacal Memary Local Memory
1 /l;j |/
h — peneris
objec
Shared Memory

Figure 3: Shared Memory lmpleumﬁat-ion

Local Memory Lacal Memory Local Mumory
Femeri
abfect expar!
tabie

Figure 4: Distributed Memory Implementation

Wested structures are copied recursively down to the bot-
tom in such cases, as they will be indirectly shared.

With the pure semantics of the language, data struc-
tures are read-only and thus need no special care even
when they are shared. Uninstantiated variables in the
shared heap call for special treatment, as their instanti-
ations need locking and copying of the local data unified
with them to the shared heap. Generic objects are used
as handles to access shared variables (Fig. 3).

As garbage collection is an operation without goeod
memaory access locality, garbage collection of the shared
heap may easily saturate the memory bus. By sepa-
rating local and shared heaps, individual workers can
garbage-collect its own local heap independently and
asynchronously. Also, an interesting research is going
on to allow asynchroncus garbage collection of shared
heap [14].

3.7 Distributed Memory Implementa-
tion

The distributed memory implementation of KLIC inher-
its its basic design from the distributed memory imple-
mentation on PIMs [10]. Two level addresses, local and
global, are used with address translation tables called
expert table (Fig. 4).

An important difference is that, unlike on PIMs where
the operating system is built on the KL1 language imple-
mentation, KLIC programs are no more than application
programs running under operating systems. Thus, unifi-
cation failures can be treated as the failure of the whole
program in case of KLIC, This considerably simplified
the distributed unification mechanism [15].

The basic commen part of the distributed memory im-
plementation translates the needs of the KL1 programs

15

into message exchange. Each concrete implementation
then realizes message exchange using some lower-level
mechanism. Portable implementations based on mes-
sage passing libraries PWYM and MPI, and those based
on more systemn dependent features such as active mes-
sages are being developed.

3.8 Portability

The sequential core of the KLIC system has been ported
to many Unix-based systems, including systems prowvided
by DEC, NEC, Hitachi, Omron, SGI, Seny, and Sun,
Porting to other Unix-based systems usually requires
only adding a line or two to the confipuration seript,
if any. The system has also be ported to personal com-
puters running Linux, MS-DOS and 052,

The shared memory parallel implementation is run-
ning on shared-memory multiprocessors provided by
DEC and Sun at the time this manuscript is prepared
(Movember 1984). It can be easily poried to other sys-
tems with shared memory features by rewriting only the
parts of the code for shared memery allocation, locking,
and cache coherence {on systems with weak cache coher-
ence semantics),

The distributed’ memory parallel implementation is
currently running on PVM. It runs on workstations con-
nected via ethernet and is also reported to run on Intel
Paragon. A shared memery implementation of the dis-
tributed memory implementation, which uses the shared
memory for exchanging messages, is also running. An
MPFI implementation and implementations using system
specific interprocessor communication features are also
going on for AP1000, Cenjud, CM5, SR2001, and somse
other systems.

Further details can be found in [68].

4 Distributed Pool

The pool is a table maintenance utility provided by the
PIMOS operating system [5] of PIMs. It provides vari-
ous forme of tables with arbitrary keys and data and has
been extensively used by experimental parallel applica-
tion programs on PIMs.

The original pool iteelf did not run in parallel. All
the dats is managed by a single process, This had the
following problems.

s On systerns where communication between process-
ing nodes iz relatively slow, access latency becomes
problematic.

¢ On a highly parallel system with many processes
accessing a single poal, load concentration makes
the pool the bottleneck of its performance.

¢ The amount of data stored in a pool is limited by the
memory available for a single processing node, while

18

more memory may be remaining on other processing
nodes.

The access latency problem will become more apparent
on systems where the speed ratio of computation and
communication is larger, such as some of the targsts of
the KLIC system.

The distributed pool was designed to solve the above
problems by adopting the following schemes,

& Data are distributed among processing nndea This
alleviates memory use imbalance.

Data aceessed are eached by local cache processes.
Thiz alleviate aceess lateney and load imbalance.

To maintain the semantics of the original pool utility,
a cache coherence algorithm was designed. The algoe-
rithm is similar to ones used in keeping physical memory
cache consistency except that communication between
caches is asynchronous and thus requires special care on
message crossing and ontstripping,

Further details can be found in [16].

5 Kappa: A Parallel Database
Management System

Kappa is a parallel database management system
(DBEMS) for providing efficient database management
facilities for knowledge information processing applica-
tionz. Its data management iz based on a nested rela-
tional model, in which complex structured data can be
handled much more efficiently than in the conventional
relational model.

Kappa was originally developed as a sequential DBEMS
and evelved to a parallel version in the FGCS project.
In the FGCE follow-on project, the parallel version of
Kappa was ported onto KLIC.

Kappa consistz of a number of element DEMSs run-
ning in parallel managing their own data. Each of the
element DBMS has the full functionality of a DBMS. A
global map of relations in element DBMSs is managed
by server DBMSs. The placement of the data can be
configured depending on the amount of and access pat-
terns to the data. One relation can be divided horizon-
tally into subrelations and distributed. From the users,
the relation still looks as a single relation logically. For
frequently accessed data, copies of one relations can be
distributed for increased access locality (Fig. 5).

In the KLIC version of Kappa, some lower level data
manipulation portions of Kappa were recoded in the lan-
guage C directly, This made its sequential performance
close to conventional relational DBMSs on Unix sys-
tems, while retaining its parallel and distributed process-
ing abilities and added fexibility of its nested relational
model.

TFurther details can be found in [12}.

Figure 5: An Example Configuration of Kappa

6 MGTP: A Bottom-Up Theo-
rem Prover

A theorem prover MGTF was built on PIMs in the FGCS
main project. The proof mechanism of MGTP is through
generation of models from a given axiom set and a the-
orem to be proved in a bottorm-up manner.

In a sense, the system was to supplement KL1 with
its more peneral logic programming capabilities. The
MGTP system showed remarkable performance through
highly parallel processing on PIMs for certain classes of
problems. One of its representative results is an au-
tomatic proof of an open problem in quasi-group the-
ory. However, it had relative weakness for problems of
certain classes when compared to top-down provers or
constraint-based systems. Also, its surface syntax was
not easily accepted as a programming la.nguage by ap-
plication programmers.

In the FGCS follow-on project, MGTP has been re-
fined and extended with various features to be useful as
a common tool or a programming language for knowledge
processing and also ported onto KLIC.

To overcome its wealkness on certain cldsses of prob-
lems, a technique called non-Horn magic set (NHM) has
been developed. MGTP generates models from a given
axiom set to prove theorems, but literals irrelevant to the
proof were generated also. The NHM technique controls
the model generation to suppress case splits redundant
or unnecessary for the proof, improving its performance
remarkably.

To solve constraimt satisfaction problems more effi-
ciently, & version with constraint propagation features,
called Constraint MGTP (CMGTPF) has been developed.
For higher level description, & method to translate formu-
las of modal logic inte those of first-order logic has been
developed, so that proofs in modal logic can be handled
by MGTP. For efficiency on systems with slower interpro-
cessor communication, a version with higher data access
locality, called distributed MGTP has also been devel-
oped.

In the course of development of various systems, tc-nls
for visnalizing the progress of proofs were also developed.
Such tools has been essential in tuning the proof strate-

gies.
Further details can be found in [8].

7 Conclusion

The KL1 language system and principal basic software
systems have been successfully ported to the hardware
available in the market. By releasing them as free soft-
ware, many researchers outside of the project started to
base their research on these basic software systemns. Still
wider use of them can be expected in coming years. In
this viewpoint, we may conclude that the research and
development of the basic software systems in the FGCS
follow-on project was quite successful.

On the other hand, there remains much room for im-
provements. Further optimizations with static analy-
ses are needed to make the performance of KLIC pro-
grams approach programs directly written in C. Fre-
quency of interprocessor cormnmunication should be re-
duced through static analyses. Kappa and MGTP also
have rooms for performance improvements and better
user and program interfaces. We expect that a wider
but probably more loosely coupled research community
to be formed after the termination of the FGCS follow-on
project to look into these research topics.

Acknowledgments

Reperts on R&D en individual topics are based on the
papers by and discussion with those who carried out
research and development on individual topics, includ-
ing Koichi Kumon, Hiroyoshi Hatazawa, Tetsuro Fujise,
Masaki Sato, Moto Kawamura and Ryuzo Hasegawa.

References

(1] Mats Carlsson, Johan Widén, Johan Andersson,
Stefan Andersson, Kent Brootz, Hans Nilsson, and
Thomas Sjéland. SICStus Proleg User's Manual,
1993.

(2] Takashi Chikayama. Operating system PIMOS and
kernel language KL1. In Proceedings of FGCS'02,
pages T3-88, Tokyo, Japan, 1992,

(3] Takashi Chikayama, Tetsurc Fujise, and Daigo
Sekita. A portable and efficient implementation of
Ell. In Manuel Hermenegildo and Jaan Penjam, ed-
itors, Proceedings of PLILFP’94, pages 25-30, Berlin,
1984, Springer-Verlag,

[4] Takashi Chikayama and Yasunori Kimura. Multiple
reference management in flat GHC. In Procesdings
of 4th International Conference on Logic Program-
ying, 1087.

7

[5] Takashi Chikayama, Hiroyuki Sato, and Toshihike
Miyazalki. Overview of the parallel inference ma-
chine operating system {PIMOS). In Proceedings of
FGCS’88, pages 230-251, Tokyo, Japan, 1988.

[6] Tetsuro Fujise, Takashi Chikayama, Kazuaki Roku-
sawa, and Akihiko Nakase. Klic: A portable imple-
mentation of kI1. In Proceedings of FGCS'04, 1904,

[7] Atsuhiro Goto, Masatoshi S8ato, Katsuto Nakajima,
Kazuo Taki, and Akira Matsumoto. Overview of
the parallel inference machine architecture (PIM).
In Proceedings of FGCS'88, Tokyo, Japan, 1988.

[8] Ryuso Hasegawa. DParallel theorem provers —
MGTP —. In Proceedings of FGCS'94, 1954,

[9] Hiroyoshi Hatazawa. Parallel database management
system: Kappa. Journal of Information Processing
Society of Japan, 35{10}:2060-2077, October 1904,
in Japanese,

[10] Nobuyuki Ichiyoshi, Kazuaki Rokusawa, Katsuto
Nakajima, and Yu Inamura. A new external ref:
erence management and distributed unification for
KLL. In Proceedings of F(7C5'88, Tokyo, Japan,
1988. Also in New Generation Compu‘t.mg -2, 3
(1950}, Pp- 159177

[11] Sverker Janson, Johan Montelius, Kent Boortz,
Per Brand, Bjém Catlson, Ralph Clarke Haygood,
Bjoérn Danielsson, and Seif Haridi. AGENTS user
manual, SICS technical report, Swedish Institute of
Computer Science, 1994, .

(12] Moto Kawamura and Toru Kawamura. Parallel
database management system: Kappa. In Proceed-
tngs of FGCS'34, 1994,

[13] Koichi Kumon. Evaluation of parallel inference ma-
chine PIM. In Proceedings of FGCS'94, 1994.

[14] Masac Morita, Nobuyuki Ichiyoshi, and Talashi
Chikayama. A shared-memory parallel execution
scheme of KLIC. ICOT technical report, 1COT,
1944,

[15] Kazuaki Rokusawa, Alkihiko Nakase, and Takashi
Chikayama, Distributed memory implementation of
KLIC. ICOT technical report, ICOT, 1994,

[16] Masaki Sato, Masahike Yamanchi, and Takashi
Chikayama. Distirbuted pool and its implementa-
tion, In Preceedings of FGCS'84, 1954,

{17] Kagunori Ueda and Takashi Chikayama. Design of
the kernel language for the parallel inference ma-
chine. The Computer Journal, 33(6):494-500, De-
cember 1890,

