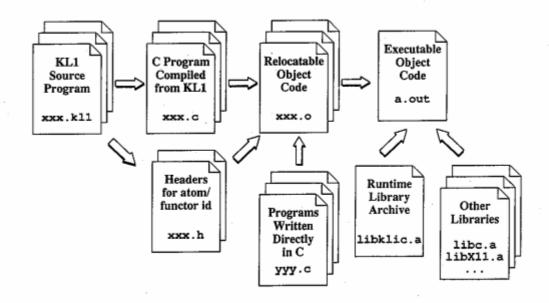
KLIC: A Portable Implementation of KL1

ICOT First Research Department

Tetsuro Fujise Takashi Chikayama Kazuaki Rokusawa Akihiko Nakase

Contents

- Motivation
- C as the Intermediate Language
- Sequential Implementation Overview
- Generic Objects
- Parallel Implementation
 - Common Mechanisms
 - The Distributed Memory Implementation
 - The Shared Memory Implementation
- Concluding Remarks


Motivation

- KL1: A Concurrent Logic Programming Language
- KL1 impl. on PIMs
 - Efficient but not portable (only for dedicated HW)
 - Difficulty in making experimentations
 Much low-level optimization in impl. core
 - ⇒ Portable and Extensible Implementation

C as the Intermediate Language — Merits of Compilation —

- Portability
- System-dependent Low-Level Optimization by C Compiler
- Ease in Linkage with Programs in Other Languages

Compilation and Linkage of KL1 Programs

Efficiency Problems/Solutions (1)

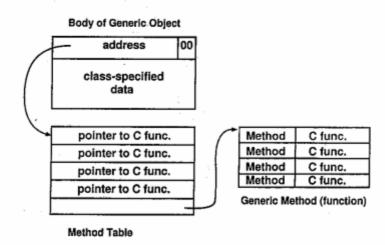
- · Costly function calls
 - One "module" as one function
- Inability to control register allocation
 - Global data are cached on local variables possibly on registers

Efficiency Problems/Solutions (2)

- Cost of provision for interrupts
 - Signal handlers only set a flag
 - The flag check can be combined with heap overflow checks
- Large object code size
 - runtime routines for exceptional cases

Portability of Sequential Core

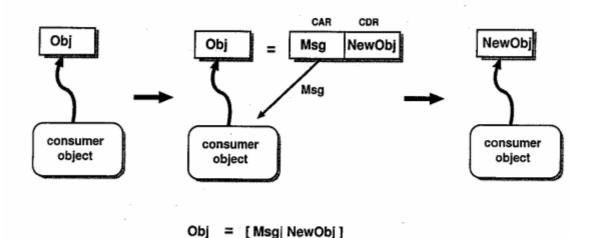
Model	OS	Manufacturer
SparcStation	SunOS, Solaris	Sun Micro.
DEC 3000	OSF/1	DEC
RS 6000	AIX	IBM
HP 9000	HP-UX	HP
IRIS	IRIX	SGI
EWS 4800	EWS-UX/V	NEC
Luna 88k	Mach	OMRON
M-880	HI-OSF/1-MJ	Hitachi
S-3800	HI-OSF/1-MJ	Hitachi
IBM AT clone	MS-DOS, OS/2, Linux	IBM etc.

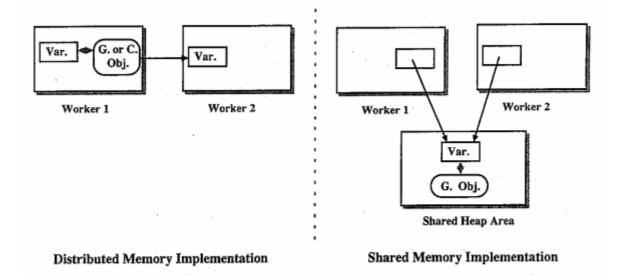

Generic Objects

- Framework for system extension
- No need to touch impl. core for extension
- For various purposes
 - Some of built-in data types
 - Non-local memory references
 Different parallel impl. schemes upon the same core
 - Foreign language I/F better than subroutines
- 3 categories depending on how methods are called

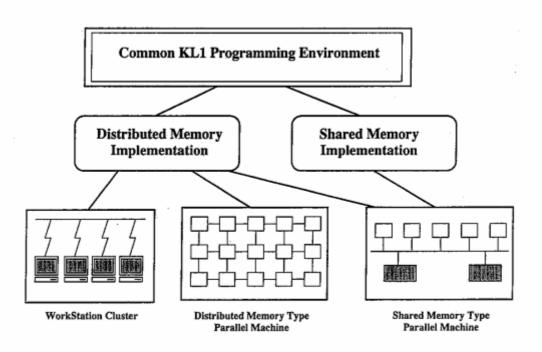
Representation of Body

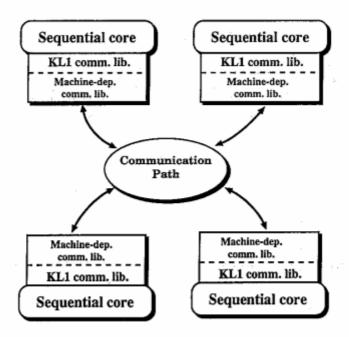
Method tables for:


- Standard: unification, GC, encode, ...
- Class-specific: dispatches on method names

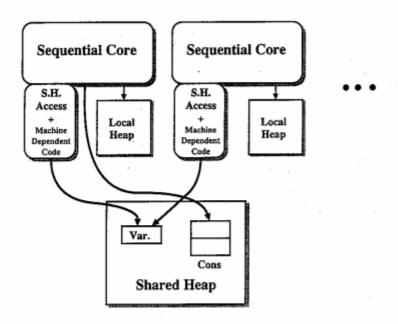

Three Categories of Generic Objects

- Data Objects: Normal "immutable" data
 Manipulated thru explicit "method" calls
 simple data
- Consumer Objects: Data-driven processes
 Associated with a var.; awaken by unification
 = suspended goals
- Generator Objects: Demand-driven processes
 Associated with a var.; awaken by dereference
 no KL1 counterparts


Consumer Object as Process


Parallel Implementation

Target Architecture


Distributed Memory Implementation

The Machine-Dependent Communication Library

- Initiation
- Message passing
 - General purpose message-passing library
 - Shared memory
 - Machine-specific communication path

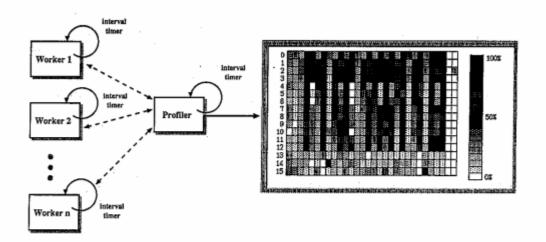
Shared Memory Implementation

Portability of Parallel Implementation (1)

Model	OS	Dist.Impl.	Shared Impl.	Manufacturer
SparcStation	SunOS	PVM		Sun Micro.
	Solaris	PVM		
SparcCenter	Solaris	PVM	0	Sun Micro.
	Solaris	S.M.*		•
DEC 7000	OSF/1	PVM	0	DEC
RS 6000	AIX	PVM		IBM
Paragon	OSF/1	PVM		Intel
CM5	SunOS	CMAML		TMC
AP 1000 [†]	‡	‡		Fujitsu
Cenju-3†	Mach	MPI		NEC
SR 2001 [†]	HI-UX	Express		Hitachi

[†] porting. ‡AP 1000 has a private OS and a communication path.

^{*}S.M. means shared memory.


Portability of Parallel Implementation (2)

Code Lines

	KL1	: C	Asm
Seq. Core	3,400	10,000	
Dist.Mem. Impl.			
KL1 Comm.		1,900	
Machine-Dep.		1,300	
Shared Mem. Impl.			,
Shared Heap Acc.		3,300	٠.
Machine-Dep.		:	150

KLIC: ver.1.511; Comm.Path: PVM; System: SparcCenter 2000

Runtime Monitor

Concluding Remarks

- KLIC can be ported on various systems easily
- Generic objects allowed extensible implementation
- Parallel implementations retain efficiency of the sequential core through generic objects
 - \Rightarrow These are based on the non-strict argument passing feature of KL1
- Various efforts are on-going to make the system more useful in parallel software research