Knowledge Information Processing Software

ICOT Second Research Department

Katsumi Nitta

Contents

- 1. Objectives
- 2. Overviews of Research
 - Knowledge Representation

Quixote

Helios

- Application Systems

Genetic Information Processing

Legal Reasoning

- 3. Towards Large-Scaled Knowledge Processing
- 4. Conclusion

Objectives

(1) Research in the FGCS Project

Knowledge Representation Technologies
A Parallel Constraint Logic Programming
A Knowledge Representation Language
based on a DOOD theory

Application Systems

Genetic Information Processing Legal Reasoning Natural Language Understanding Games Expert Systems

(2) Results of the FGCS Project

Knowledge Processing Technologies GDCC, Quixote

 Powerful knowledge representation, Deductive Objet-Oriented Database, Theoretically sound

Application Systems

Genetic Information Processing, Legal Reasoning

 Deep analysis of domain knowledge Effectiveness of parallel inference Parallel programming techniques

(3) Problems

Knowledge Representation
Large-scaled knowledge processing system
variety of knowledge
variety of inference
unifying problem solvers
Portability
Application Systems
Extending functions
Challenging new subjects
Portability

(4) Example of large scale information processing

(5) Objectives in the FGCS Follow-on Project

- Infrastructure for large scale knowledge processing
- more practical application systems
- portable systems in KLIC
- showing effectivenessof parallel inference

2. Knowledge Representation Technologies

A Knowledge Representation Lamguage Quixote

A Heterogeneous Distributed Cooperative Problem Solving System HELIOS

2.1 Quixote

(1) What is Quixote

Knowledge Representation Knowledge Base Constraint Logic Programming Database Programming Deductive Object - Oriented

X Language System

(2) Logic Programming Language and Quixote

(3) Object Term and Subsumption Relation

Object Term

Bobj:

apple, color, fruit,

Var:

X,Y,Z,.....

Cobj:

apple[color=red],

X@person[employ=X],

Subsumption Relation

apple =< fruit

apple[color=red] =< apple

(4) Rules and Modules

Rule

Module

m1 > - m2

(5) Hypothetical Reasoning

(6) Results in the Follow-on Project

- vesion 3.0

Qmacs, Xwindow

- version 4.0

negation as failure KLIC version

- micro Quixote

С

- applications

Biological KB

Legal Reasoning

Natural Language Processing

2.2 HELIOS

(1) What is HELIOS

A framework for building large - scaled knowledge processing systems

A heterogeneous distributed cooperarive problem solving system

(2) Background

(3) Examples of Heterogeneous Distributed Cooperative Problem Solving

Genetic Information Processing

DBs: DNA sequence, Protein sequence,

Protein structure, motif DB,

Programs: sequence anlysis,

structure prediction, folding simulation, ...

Legal Reasoning

KB/DB: statutes, judicial precedents,

conceptual dictionary,

Programs: Rule base reasoner,

Case base reasoner,.....

(4) Approach

(5) Basic model

(6) Capsule and Environment

Capsule ---> CAPL
Transformation of messages
Definition of methods
Description of solver's function
Environment ---> ENVL
Common message protocol
Common type system
Agent directory and Function directory
Management of execution

(7) Results in the FGCS Follow-on Project

version 1.0
Experiments of communication
between problem solvers
version 2.0
Implementation of CAPL and ENVL

application
Heterogeneous Natural Language Processing

3. Application Systems

Genetic Information Processing
Parallel Applications
Knowledge Information Processing

Legal Reasoning new HELIC-II

3.1 Genetic Information Processing

(2) What is Genetic Information Processing

- sequence analysis

 homology search
 multiple sequence alignment
 motif extraction
- structure analysis
 folding simulation
 prediction of secondary structure
 prediction of tertiary structure

(3) Multiple Sequence Alignment

Protein sequences

HTLV : PVLQLSPAELHSFTHCGQTALTLQGATTTEASNILRSCHACRGGNPQHQMPRGHI
RSV : QATFQAYPLREAKDLHTALHIGPRALSKACNISMQQAREVVQTCPHCNSAPALEAGVN
MMTV : ISDPIHEATQAHTLHHLNAHTLRLLYKITREQARDIVKACKQCVVATPVPHLGVN
SMRV : ILTALESAQESHALHHQNAAALRFQFHITREQAREIVKLCPNCPDWGSAPQLGVN
M-Mulv : LHQLTHLSFSKMKALLERSHSPYYMLNRDRTLKNITETCKACAQVNASKSAVKQGTR
copia : HEKLLHPGIQKTTKLFGETYYFPNSQLLIQNIINECSICNLAKTEHRNTDMPTKTT

Sequence Alignment

```
HTLV : -PVLQ---LSPA-ELHS-FTFCG---QTAL--TLQ----GATTTEA--SNILRSCHAQ---RGGNPQHQMPRGHI---
RSV : QATFQAYPLREAKDLHT-ALHIG---PRAL--SKA---CNISMQQA--REVVQTCPHC-----NSAPALEAG-VN--
MMTV : --ISD--PIHEATQAHT-LHHLN---AHTL--RLL---YKITREQA--RDIVKACKQC---VVATPVPHL--G-VN--
SMRV : --ILT--ALESAQESHA-LHHQN---AAAL--RFQ---FHITREQA--REIVKLCPNC---PDWGSAPQL--G-VN--
M-MULV : -------LHQ-LTHLSFSKMKALLERSHSPYYMLNRDRTL-KNITETCKAQ--AQVNASKSAVKQG-TR--
COPIB : --------------EKKLLHPGIQKTTKLF-GET---YYFPNSQLLIQNIINEGSIQNLAKTEHRNTDM--P-TKTT
```

(4) Example of Motif

Zinc Finger

CxxCxxxxxxxxxxXHxxxH

(5) Parallel Multiple Sequence Aligner

(6) Parallel Multiple Sequence Aligner

(7) Biological KB in Quixote

(8) Stochastic Learning in Hidden Malkov Model

(9) Results in the FGCS Follow-on Project

- Multiple sequence aligner parallel inference, knowledge processsing
- Biological KB Quixote
- Analysis of higher order structure of proteins Hidden Markov Model
- Analysis of patterns of DNA sequences

3.2 Legal Reasoning

(1) What is Legal Reasoning

Legal Reasoning = thinking process of lawyers

- generating arguments Interpretation of rules application of rules
- selecting arguments value judgment

(2) Interpretation and Old Cases

(3) HELIC-II system

(4) Reasoning of Lawyers

(5) Legal Reasoning Model

(6) Defeasible Reasoning

(7) Debate Strategy

Debate by two agents

- making (counter) arguments
- comparing arguments
- finding issues
- modifying a viewpoint

(8) Result in the FGCS Follow-on Project

new HELIC-II system
a legal reasoning model
argumentation + value judgment
+ debate

an experimental tool for legal reasoning

KB of criminal law

4. Towards large-scaled knowledge processing

(1) From viewpoint of KR

Genetic Information Processing Legal Reasoning

good examples of multi-agent system.

incomplete domain knowledge various types of knowledge public databases

(2) From viewpoint of Genetic Information Processing

(3) From viewpoint of Legal Reasoning

Quixote --> a powerful KR language
legal rules, precedents, theories,...
+ α --> higher order inference mechanism
selecting arguments

HELIOS --> a paradigm for unifying problem solvers and databases a total sysem

5. Conclusion

Knowledge processing technologies

- Knowledge Representation

Quixote: new functions + KLIC HELIOS: a new paradigm for

large - scaled KB systems

- Application Systems

GIP: analysis tools + KB approach + Hidden Markov Model

Legal Reasoning:

legal reasoning model + KR language