Tanaka: Good afternoon, ladies and gentlemen,
From now we would like to have an invited lecture
given by Professor Charles Antony Richard Hoare
from Oxford University. Today's title of the
speech is, “Programs are Predicates™. It is my
great honor to introduce Professor Hoare.

Professor Hoare has a degres from Oxford in
1956 in classical languapes, Latin and Greek. He
has always taken an interest in program languages,
His first job was with a small computer manufac-
turer and his first task was an implementation of
ALGOL 60. After eight vears in industry he
moved as a professor to the Queen’s University,
Belfast. There, he pursued his research interest in
the logical foundations of programming and pro-
gramming notations. In 1977 he moved to Oxford
University and began to transfer some of ther re-
sults of the basie research into practical and profit-
able application by industry. He has made a lot of
contribution to conventional programming, ob-
ject-oriented programming, and parallel program-
ming, Occam and the Transputer are now quite
famous,

Recenily, he has turned his atention to logic
programming. His research goal is to discover
theories which aid in the specification and design
of hardware and software. He aims to achieve a
level of abstraction to cover wide range of pro-
gramming paradigms and products constructed
from a mixwre of technologies. Such a theory
would help to avoid expensive errors occurring at

C.A.R.Hoare
2l Professor
i Oxford University

system interfaces. It would also clarify the struc-
ture of computer science as an academic disci-
pline. Today, he will talk about an inspiration he
derived ten vears ago at the initiation of the Fifth
Gengration Computer Project. The title is, “Pro-
grams are Predicates”. Professor Hoare, please,

Hoare: Thank you very much. Itis a great honor
for me to address at this conference which cel-
ebrates the termination of the Fifth Generation
Computer Systems Project. | can add my own
congratulations to those of vour many admirers
and followers for the great advances and achieve-
ments that vou have made,

The project started with ambitious and noble
goals, aiming not only at radical advances in com-
puter technology but also at the direction of that
technology for the use and benefit of man. Many
challenges remain, but the goals are ones that have
inspired the best efforts of scientists and engineers
throughout the ages.

[admire the foresight of the Japanese Ministry
of Trade and Industry which has recognized the
need for a ten-year funding period to allow radi-
cally new ideas to emerge and to achieve maturity.
I admire the courage and dedication of the many
who led and worked on this project, many of you
are here today. You have made both theoretical
and practical advances in computing science. And
even more important, you have discovered and
taken advantage of connections between the

-55-

theory and the practice of the subject.

From the beginning, you have concentrated
your efforts on two of the most important prob-
lems of practical computing science, They are the
efficient use of highly parallel processing technol-
ogy and the advanced application of highly sym-
bolic data processing. You took your inspiration
from the logical properties of logic programming
and of the langoage Prolog, You took a view that
only a logical approach could solve the daunting
task of writing programs for the new generation of
computers and their users,

[have been inspired by the same philosophy.
1 have long shared the view that the programming
task should always begin with a clear and simple
statement of the vsers” requirements and objec-
tives, which can be formalized as a specification of
the purposes which the program is desired to meet.
Such specifications are predicates which describe
all permissible observations of the behavior of the
program that you want,

Predicates

The free variables of the predicate stand for
observations that can be made of the behavior of
that program under execution; the behavior, under
all circumstances. A predicate describes all per-
mitted values which these variables may take
when the program is executed. And the overriding
requirement on a specification is clarity, which
can be achieved by a notation of the highest pos-
sible abstraction, modularity and expressive
power. 1T the specification does not obviously de-
scribe what is wanted, there is a great danger that it
describes what is not wanted; and it can be diffi-
cult, gxpensive, and any way mathematically im-
possible to check against this risk.

A minimum reqoirement on a specification
language is that it should include in full generality
the elementary connectives of Boolean logic, so
that specifications can be connected by conjuction,
disjunction, and negation: simple ‘AND’, ‘OR’,
and ‘NOT", Conjunction is needed to connect re-
guirements both of which must be met; for ex-
ample, the program must control pressure AND
temperature, Disjunction is needed o allow toler-
ances in implementation. The system may deviate

from the optimum by one OR two degrees; and
negation is needed for even more important rea-
sons: it must NOT explode.

As a consequence of the expressive power of
ordinary logic, itis possible to write specifications
like *P or not P*, which is always true, of course,
and s describes every possible observation of ev-
ery possible program. Such a tolerant specification
is easy to implement, It can be implemented by a
program even that goes into an infinite loop.

Another extreme case is the specification ‘P
and not P, which, of course, is always false. No
product could ever meet such a contradictory
specification, It is a symptom of an error that
should be removed before implementation starts.

Another inspiring insight which I share with
the designers of logic programming languages is
that programs too are predicates. When given an
appropriate reading, a program describes all pos-
sible observations of its behavior under execution.
A programming language provides a number of
connectives for assembling complex programs out
of simpler components, For example, Prolog pro-
vides a form of sequential composition denoted by
a comma (,) and pronounced ‘and then’; a form of
sequential disjunction denoted by a semicolon §;)
which is pronounced ‘or then', and a form of
strong negation denoted by a tilde (~) and pro-
nounced, perhaps, ‘impossible’. These operators
are specifically designed for efficient execution on
computers, and they are quite different from the
Boolean connectives used for specifications,
which are intended to be clear and simple rather
than executable,

Mevertheless, even executable operators can
be given an accurate (though somewhat more
complicated) interpretation entirely within the
predicate calenlus, as T will show in this talk, I
believe the insight is much more general than just
Prolog, and it applies to many other languages
and, indeed, 1o any engineering product that can be
described in any meaningful design notation.

This view gives rise to a philosophy of engi-
neering which I will illustrate briefly by applica-
tion 1o hardware design, to conventional pro-
grams, and to the procedural interpretation of
Prolog programs. But it will be wholely invalid to
claim that all predicates can be read as programs.

-S@-

Consider the example we've seen before; the con-
tradictory predicate, ‘P and not P*, which is always
false. No computer program could ever produce
an answer with this contradictory property. So,
this predicate is not a program, and no processor
could translate it into one; and any theory that [
might invent, which abscribes to an
implementable program a behavior which is
known to be unimplementable must be an incor-
rect theory and dangerous to use.

I contrast, of course, if *P7 i$ a program ex-
pressed wholly in Prolog notation, the program (P,
~ P} is a perfectly meaningful program, although it
will always fail either finitely or infinitely. My
reading of Prolog program as predicates will de-
scribe exactly this behavior of the failing program.

A programming language can therefore, be
identified only with the subset of the predicate cal-
culus. Each predicate in this subset is a precise
discription of all possible behaviors of some pro-
gram expressible in the language. And the subset
is designed to exclude contradictions and all the
other unimplementable predicates, and the nota-
tions of the language are carefully designed to
maintain this exclusion,

In principle, restrictions in the expressive
power make a programming langnage less suitable
as a notation for describing requirements in a
modular fashion at an appropriately high level of
abstraction.

Since both pregrams and specifications are
predicates, the correctness of the program can be
established by a simple implication. Given a
specification *S', the programmer's task is to find
a program ‘P* which satisfies it in the sense that
every possible observation of every possible run of
the program ‘P’ will be described and therefore
permitted by this specification *S°, In logic, this
can be assured with mathematical certainty by a
proof of the simple implication: ‘P implies §°.
This simple explanation of what it means for a pro-
gram ot a product to meet its specification is one of
the main reasons for interpreting both programs
and specifications within the uniform predicate
calculus.

Now we can explain the necessity for exclud-
ing the contradictory predicate ‘false’ from a pro-
gramming notation, It is a theorem of elementary

logic that ‘false’ implies § for any specification S.
So, ‘false’ enjoys the miraculous property of satis-
fying every specification whatsoever. Anything
that you want to do, that program will achieve.
Such miracles do not exist, which is fortunate, be-
cause, if they did, we would never need anything
else, certainly not programs or programming lan-
guages, nor Computers, nor even computer scien-
tists OF prograrmmers.

A very simple example of this philosophy can
be taken from the realm of conventional proce-
dural programming. Here, the most important ob-
servable values are those which can be observed of
the states of the machine before the program starts,
and the state which can be observed when the pro-
gram has terminated.

Let us use the name X to stand for the initial
value of some variable, perhaps called X, and let
X" to be the final value of that same integer vari-
able; the only one that need be of concern to us
o,
Let the specification S say that ‘X' is greater
than X'; in other words, the value of the variable X
must be ingcreased. Let the program P be defined
as adding one to X. When this program is inter-
preted as a predicate, its effect is always that *the
final value X' is equal to one plus the initial
value, X", (Fig. 1)

Procedural Program

Let x be initial value
Let x* be final value
LetS={x"=x)
Let P = (x: = x+1)

= (x"=x+1)
Conclusion;
P=>3§

Fig. 1

Every observation of the behavior of P in any
initial state (independent of the initial value of X)
will satisfy this predicate. Consequently, the va-
lidity of the implication that ‘P implies 8' will en-
sure that P correctly meets the specification that it

-57-

strictly increases the value of X,
Hardware Design

To illusirate the generality of my philosophy
my next examples will be drawn from the realm of
combinational hardware circuits. These too can be
interpreted as predicates. A conventional AND-
gate with two input wires named A and B, and a
single output wire named X is described by the
simple equation ‘X aqual the lesser of A and B'.
The values of these free variables are taken to be
observed as voltages on the named wires at the end
of a particular cycle of operation. At that time the
voltage on the outpot wire X is certain 10 be the
lesser of the two voltages on the input wires A and
B.

Similarly, an OR-gate can be described by a
different predicate with a different set of wire
names: ‘D is equal to the greater of Y and C°'. A
simple wire is device which maintains the same
voltage at each of its ends. For example, in this
case, ‘X equals Y. (Fig. 2)

Circuits are predicates
B .

b A2 s x=ahb
.
A

& V—d- is d"—'}""-"rf-'
i S—

X . :
3 8 x=y

Fig. 2

Now, consider an assembly of two compo-
nents operating in parallel. For example, the
AND-gate together with the OR-gate. The two
predicates describing the two components have no
variables in common. This reflects the fact that
there 18 no connection between the two compo-
nents. Consequently, the simultaneous joint ob-

servations of the behavior of the assembly consists
solely of their two behaviors evolving in paratlel
concurrently and independently of each other,
And these behaviors are correctly described by
just the conjunction of the two predicates describ-
ing their individual behaviors. (Fig. 3)

Parallelism is conjunction
)
v}
W

(x=alb)&{d=yVec)}

]

L

A

e

b

Fig. 3

This simple example is a convincing illusta-
tion of the principle that parallel composition of
components can often be modeled by a conjunc-
tion of the predicates describing their behavior, at
lgast in the case when there is no possibility of in-
teraction between them.

The principle often remains valid when the
components are connected by variables which
they share. For example, the wire which connects
X with Y can be added to the circuit giving a triple
conjunction shown in Fig. 4. The wiple conjunc-
tion still accurately describes the behavior of the
whole assembly. 1 have simplified the predicate to
a mathematically equivalent form which is shown
on-the last line of this figure,

Shared Variables

hx

¥

s e

(x=afb)&(y=x)&({d=yVc)
=(d=(@Nb)Ve)& (x=y=alb)

Fig. 4

-58-

When components are connected together in
this way by the sharing of variable names, for ex-
ample, X and Y in this case, the values of these
shared variables are usually of no concem or inter-
est 1o the user of the product; and even the option
of observing them is removed by enclosure of the
assembly {as it were) in a black box, The vari-
ables, therefore, need to be removed from the
predicate which describes the behavior of this
black box. And the standard way of eliminating
such free variables in the predicate calculus is by
quantification.

In the case of engineering design, existential
quantification is the right cheice, It is necessary
that there exist polentially observable values for
the hidden variables, X and Y, but no-one cares
exactly what those values are going to be. In our
hardware example, the existentially quantified for-

mula shown on the figure (Fig. 5) can be very sim-
* ply reduced 1o just ‘D equals the lesser of A and B,
and the maximum of that with C". The final for-
mulg mentions only the visible external wires of
the circuit, and probably expresses the intended
function or specification of our little assembly.
And if that is so, then what I have shown is just a
simple proof that the assembly meets its specifica-
tion,

Hiding is =

Sap)

ey

¢ W

Hy,y (x=y=alb
&d=(@’bI)Ve)
=(d={a\b)Ve)

Fig. 5

* Unfortunately not all conjunctions of predi-
cates lead to implementable designs in this theory.
Consider, for example, the ¢conjunction of a nega-

tion circuit ‘X equals not Y, with the wire ‘Y
equals X', which connects its output back again to
its input. In practice, this assembly leads to some-
thing like an electrical short cirenit or an infinite
oscillaion which is completely useless. In fact it
Is even worse than useless, because it will prevent
the proper operation of other circuits in its vicin-
ity; it might even interfere with your transistor ra-
dio. (Fig. 6) '

Shortcircuit is a problem

< o

y=1x

is{
& x=y

=False
which satisfies all specs
I false => § forall §

Fig. 6

50, there is no specification other than the
trivial specification TRUE which can be met in
practice by that circuit. But, in the oversimplified
theory which I have just described to you, the pre-
dicted effect is exactly the opposite. The predicate
describing the behavior of this circuit is a contra-
diction, false, which is necessarily unimplement-
able,

The standard selution to this kind of problem
is to introduce into the theory a sufficient number
of new values and new variables to ensore that one
can describe all possible ways in which an actual
assembly can go wrong. In the example of circuits,
this requires, perhaps, a three-valued logic. In ad-
dition 1o high voltage and low voltage, we intro-
duce an additional value called bottom and written
as L. And this is the value which we take to be
observed on a wire which is engaged in oscillation
or shert circuit, (Fig. 7)

Solution: three-valued logic

L means “shortcircuit™
- L=L, LA Ax=_1, et
Fy==y=y=1
Maoral:
Don’t ignore errors.

Fig. 7

We define the result of any Boolean operation
on the bottom element to give the answer bottom.
And now, we can solve the problem of the circuit
with feedback whose behavior is described by the
conjunction ‘X equals not Y*, and 'Y equalzs X', In
three-valued logic this no longer a falsehood; in
fact it correctly implies that both X and Y are short
circuitted.

And the moral of this example is: ‘don’t ig-
nore errors’. Predicates must describe the behav-
ior of a design including all the ways in which that
design can go wrong. It is only in a theory which
mathematically models the possibility that your
design is incorrect, that you can actually prove or
calculate that your design does not fall into that
particular kind of error,

Pregramming Languages

If parallelism is just a conjunction of predi-
cates, disjunction is equally simply explained as
introducing non-determinism into specifications,
designs, and implementations. If P and) are
predicates, their disjunction *P or Q' describes a
. product which may behave like P, or it may behave
like (), bt it does not determine which of these it
shall be. Consequently you cannot predict or con-
ool the result. If you want 'P or Q7 to satisfy a
specification §, it is necessary and also sufficient
to prove both that P satisfies 5, and that Q satisfies
5. This is exactly the defining principle of disjunc-
tion in the predicate calculus. It is the least upper
bound in the implication ordering of predicates,

The most important feature of a programming
language is recursion. Itis only recursion {or itera-
ton, which is a special case) that permits a pro-

gram to be shorter than iis trace of execution. The
behavior of & program defined recursively can
most simply be described by using recursion in the
definition of the corresponding predicate.

Let *P of X' be some predicate containing oc-
currences of a predicate variable, X, Then, X can
be defined recursively by an eguation stating that
X is a fixed point of P. The existence of such a
fixed point and its unique identity as a least fixed
point is guaranteed by the famouns Tarski theorem,
provided that ‘P of X7 is a monotonic funetion of
X, in the space of all predicates regarded as a com-
plete lattice. This is a completely non-operational
definition of recursion, equally applicable to pro-
grams and specifications,

In & conventional sequential programming
language, it is essential to distinguish the values of
program variables in the initial state from those in
the final state. Let X stand for an observation of
the initial values of all the variables of the pro-
gram, and let X7 stand for the final state, Either or
both of these maybe take the special value bottom,
which, in this case, stands for non-termination, or
infinite failure, which is one of the worst wayvs in
which a recursive program can go wrong. Each
program is a predicate describing a relationship
between the initial state X and the final state X7,

For example, the identity program, which I
call * I and is otherwise known as a null-opera-
tion; it does nothing, but terminates successtully
without making any change to its inifial state. But
il can be guaranteed to do this only if it starts in a
proper state: one which has not already failed. So,
the null-operation program can be defined 25 an
implication that if the starting state is not bottom,
then the final state is equal to the starting state.

Sequential composition of P and Q in a con-
ventional language means that the initial state of
is the same as the final state produced by P. How-
ever, the value of this inlermediate state passed
trom P to Q is hidden by existential quantification,
5o that the only remaining observable variables are
the initial state X of P and the final state X' of Q.
A formal definition of the composition of two
predicates is the same as the definition of conven-
ticnal relationzl composition in the relational cal-
culus. (Fig. &)

Sequential Programming

Let x be initial state

Let ¥ be final state

Let L be infinite failure
II does not change the state

8@ L=y =x)
(P, @) does P then ¢

(P, O¥x, VS Sy, P (r,y) & Q (1, %)

Fig. 8

Now, care must be taken in the definition of a
programming language to ensure that sequential
composition never becomes self-contradictory,
For example, if P states that its final value is non-
zero and (Q states that its initial value is zero, then
their composition immediately reduces to the con-
tradiction ‘false’, o

The solation in this case is to ensure that all
programs exprassed in the restricied notations of
your programming language do in fact satisfy cer-
tain ‘healthiness conditions’. In the case of se-
quential programs, these conditions staie that
whenever X or X" take the failure value bottom,
then the behavior of the program is entirely unpre-
dictable; anything whatsoever may happen. (Fig.
9)

Problem
((% 0), (x=0)) = False

Solution
All programs P satisfy
healthiness conditions

FP(L,xN,
FP (x, L)=2 Pz, x"),

all x'
all x*

Fig. 9

The imposition of these conditions cﬁ‘tainl:,r
complicates the theory and it requires the theorist
to prove that all programs expressed in the pro-

gramming notations do satisfy the healthiness con-
ditions. You may note that the predicate false does
not satisfy these healthiness conditions, and there-
fore, the same proof will guarantze- that the theory
does not make the mistake of ascribing the value
‘false’ to any of the programs in the language.

Now, the reason for undertaking this work is
to enable us to reason correctly about the proper-
ties of programs and the languages in which they
are written. The simplest method reasoning is by
symbolic caleulation wsing algebraic equations
which have been proved to be correct for the
theory. For example, to compose a null-operation
I, either in front of or afler any program P, leaves
the observable effect of that program unchanged.
Also, composition is associative: to follow the pair
of operations P, Q) by the operation R is the same
as foliowing P by the pair of operations @ and R.
And finally, composition of programs distibutes
through non-deteministic choice *or®, in both di-
rections. (Fig. 10}

LAWS

UL PY=P=(P I
((P.@)R)=(P,(Q.R))
(PVQLRY=(P.R)VIQ.R)
PQVR)) =(P.QIVIPR)

Fig. 10
Prolog

I now come to the boldest and most frighten-
ing claim of my whole talk; itis the claim that even
Prolog programs are predicaies, Each predicate
describes the possible behavior of the program
when it is actually executed. [am talking about
the procedural reading of Prolog in which the Jan-
guage is much more like a sequential program-
ming language. It has an initdal state and a final
result, and its behavior is defined as a relation be-
tween those two. Of course, this is quite different
from the predicate aseribed to the program by the
logical reading. T am interested in describing the
actual behavior of computing a Prolog program,
namely jts procedural reading.

-61-

The initial state of a Prolog program is a sub-
stitution which allocates to each relevant variable
a symbolic expression standing for the most gen-
eral form of valee which that variable is known 1o
take. Such a substitution is generally called #.
The result § ' of a Prolog program differs from that
of a conventicnal language; it is not a single sub-
stitution but rather a sequence of answer substito-
tions, which may be delivered one afier another on
request, o

I can now define the two simplest of all Prolog
programs, namely the program NO which is de-
fined always to fail finitely, when started in any
properinitial state @ , it will deliver a result &7
which is equal to the empty sequence of answers.

(Fig, 11)

append (X, ¥, Z)

PROLOG programs are predicates

Tet & be the initial substitution
Lat §7 be the sequence of answers
L denotes infinite failure

[] denotes finite failure

NO(E, 0)E(g2L = §'=[]

YES (0. 892 (02l = 8'=[0])

Let & =%Z=[1,2]"

Then #°'=

“X=[1], Y=[1,2), Z=[12]"

“X=[11, ¥=[2, Z=[12]

“X=112], ¥=[], Z=(1,21"
Fig. 12

Y, and in the third answer the X will take the value
of the full sequence, and Y will be empty.

The effect of Prolog OR (sequential OR), is
obtained by just appending the sequence of an-
swers produced by the first operand in front of
those porduced by the second operand. Each of P
and @ start in the same initial state &, The pro-
gram P produces the answers X, the program
produces the answers Y, and the answers produced
by (P; Q) are obtained by appending X and Y to
give § . (Fig. 13} The definition of APPEND is

Fig. 11

The next simplest program is the program
YES; when started in any non-failing state &, it
will give an answer which is exactly the same as
the original state # which it started with but
wrapped up as a sequence with only one elsment.

Lat me give you a more substantial example,
the familiar Prolog program APPEND. ' Suppose
we start this in an initial state 4 equalto Z = [1,
2] '
Then, if you apply APPEND (X, Y, Z) to that
initial state, it will produce a sequence of answers
shown on three successive lines of figure? (Fig.
12} In the first answer X will take the empty se-
quence, Y will take the full sequence, and Z will be
unchanged. In the second answer, the two ele-
ments of the sequence will be split between X and

PROLOG or {3) is append

P o)e, 60E
SXY.P(O,X)Y&Q(0,Y)
& append (XY, 8 ")

where append ([L], Y, £)
gppend ([.Y, Y)

append (X X5], ¥, (X [Zs])
if append (Xs, ¥, Zs)

Fig. 13

the same as you will usually see, except I have an
additional clause to define an arbitrary resultin the
case that the initial sequence is an infinite failure.

In all good mathematical theories, every defi-
nition should be followed by collection of useful
and memorable theorems. For example, since NO
gives no answer, its addition to a list of answers
supplied by P makes no difference. So, NO is a

-62-

unit of the Prolog semicolon. Similarly, the asso-
ciative property of appending lifts to the composi-
tion of programs. And finally, the sequential OR
of Prolog distributes through the truly non-deter-
ministic OR, which I have described as Boolean
disjunction. (Fig. 14)

LAWS

NG, P=F=P,NO
(P,QxR=P,{O:R)
PVQRR=(FRVIGR)
PLQVR)=(P.QIV(PR)

Fig. 14

Prolog conjunction is very similar o sequen-
tial composition of a conventional language,
modified systematically to deal with the sequence
of results instedd of a single one. Each result of the
sequence X produced by the first argument P is
taken 4§ an initial state for an activation of the sec-
ond argument £}, and the sequences are all concat-
endted together using the concat function, compli-
cated but it obeys quite simple algebraic laws.

(Fig. 15)

PROLOG and (,) is concat’

P08, 8%
AX,Y.P(8,X)&each Q (X, ¥)
& concat (¥, #)

* Fig. 15

The first law states that the answer YES is a
unit of the sequential compositon, and makes no
difference to the behavior of the program. Se-
quential composition as you would expect is asso-
ciative, and it has a zero NO. But note that this is a
left zero only; the converse law does not hold ex-
actly because of the possibility that P may fail infi-
nitely. (Fig. 16}

LAWS

(YES,P)y=P = (P YES)
(F.QNWR=F,(Q, R}
(NO,Py=NO
NO = (P, NO)

P Q)NR=(PRYI(Q.R)
(FVQ)LR=(P.RIWI(O.R)

Fig. 16

Finally, sequential composition distributes
leftwards through the Prolog sequential OR, and
through disjunction or non-determinism; but the
complementary laws of rightward distribution do
not hold,

The test of our procedural semantics for a
Prolog is its ability to deal with the so-called non-
logical features of the lanpuage like the CUT,
which I will treat here in a slightly simplified form.
A program that has been cut can produce at most
one result, namely the first result that it would
have prodoced any way. (Fig, 17) This result is

Cut* is truncation

CPI(E, B YE
X, P8, X)& trunc (X, 87)

where une ([L], ¥)
trunc ([1. 1)
trunc {JX Xz LX)
* slightly simplified

Fig. 17

chiained simply by mruncating the sequence. The
truncation operator is defined to preserve bath in-
finite failure and finite failure, but in other circum-
stances it merely removes the redundant elements
of the list of answers produced by its argument.
And the laws describing the behavior of this CUT
are really also guite simple. The first law stales
that cutting is idempotent, and expresses the obyi-

63~

ous fact that if you cut a2 program which already
produces at most one answer, you will not change
its observable bahavior,

The next two laws are interesting, bacause
they show that, if enly one result is wanted from
the compositive of two programs, then in many
cases it is sufficient to compute only one result

The laws governing Prolog nagation of truth
values are the same as those for Boolean negation
in the case of YES and NO. The classical law for
double negation does not hold; it has to be weak-
ened to an intuitionistic miple negation law. (Fig.
200 0

from the m@pmmnts. (Fig. 18) For example, if LAWS
LAWS ~YES=NO ~NO=YES
PP =P}

P!l =Pl et P= o P)
FoN=Fha ~FiQ)=(C-P,~Q)
Eo)N=(F o) ~ (rue = rue

YES! = YES NO!=NO w X ~X=1mne

Fig. 18 Fig. 20

you cut the Prolog OR (semicolon), you might as
well cut the two operands P and Q first; and the
same is true of just the second operand of sequen-
tial conjunction. These laws, of course, may be
used significantly to improve the efficiency of ex-
ecution of programs involving cuts, Finally, it is
obvicus that both YES and NO produce only one
answer anyway, and so they are unchanged by cut-
ting. :

Prolog negation is no more difficult 10 treat
than the cut. It, too, just applies a simple list op-
eration NEG to the result produced by its operand.
The NEG predicate is defined to preserve infinite
failure, to turn finite failure into success, and in all
other cases to give finite failure, (Fig. 19}

Negation is not illogical

~P(8,89F
AY.P(O, Y &neg(d,Y, 87

where
“neg(#,[L1].Z)
neg (60, [1[4
neg (&,[(YI¥s],[])

| Fig. 19

Finally, there is an astonishing analog of one
of the familiar laws of De Morgan in Boolean al-
gebra. Negation distributes through seguential
OR, changing it to sequential AND. The AND
formula is obviously much more efficient to com-
pute than the OR formula, so this could be effec-
tive in optimization. The dual De Morgan law,
however, does not hold,

That concludes my simple accoont of the ba-
sic structures of Prolog. All these stroctures are
deterministic in the sense that, in the absense of
infinite failure, for any given initial substitntion & ,
there is at most one answer substitution sequence
& that can be produced by the program. Bat the
great advantage of reading programs as predicates
is the simple way in which we can introduce non-
determinism.

For example, many researchers have proposed
to improve the sequential OR of Prelog. (Fig. 21)
One improvement 1o the sequential OR is 1o make
it commuie like Boolean disjunction, and another
is'to allow parallel execution of both the operands
with an arbitrary interleaving of the resulis. These
two advantages can be combined simultaneously
by the definition of a paralle]l OR, in which the re-
sults X and Y produced by P and () are interleaved
instead of being appended to each other.

Now, the parallel OR preserves many of the
algebraic laws of the sequential OR and, in addi-

Or - Parallel

®IYs, 6%
EJ{,Y,P{B,K}&Q{H,Y}
S inter (X, ¥, 87

where inter ([.L], ¥, Z)
inter ([1, ¥, ¥)

inter ([X Xx |, Y, [X1LE])
if inter(Xs, ¥, Z}

Fig. 21

tion, it is symmetric. Because appending is just a
“special case of interleaving, we know that AP-
PEND (X, ¥, Z) implies interleaves (X, Y, Z).
(Fig. 22) Asaresult, the sequential OR is a special

LAWS

PIQ)=(QIP)
PIEQIRY=(PIQ)IR
Pi@={PIQ)

becanse
dappend (X, ¥, Z)=>inter (X, ¥, Z)

Fig. 22

case of parallel OR, and is always a valid imple-
mentation of it, Sequential OR is more determinis-
tic than parallel OR. It is easier to predict; it is
easier to control, and it meets every specification
that is met by the other. In short, the sequential
OR is, in all ways and all cireumstances and for all
purposes, better than the parallel OR., In all ways
except one: it may be slower to implement on a
parallel mackhine,

In principle, my non-determinism represented
by Boolean disjunction is demonic; it never makes
programming easier becanse the programmer has
to assume that the machine (or the demon) will al-
ways choose the alternative that he or she does not
want. However, in many cases including this one,
non-determinism simplifies specifications and de-

signs, and facilitates reasoning about them at
higher levels of abstraction.

KL1

At the beginning of my talk, I gave credit for
what I have leamed from the original designers of
the Preleg language and the logic programming
movement. To conclude my talk, T would like to
summarize what I have learned from the designers
of the KL1 language, designed, implemented, and
used by the Fifth Generation Computing Systems
Project.

I would like to compare it briefly with the
occam pregramming language designed ten years
apo by David May and his colleagues at Inmos in
England, In September 1982, 1 visited Japan with
them to announce and present this language occam
to the newly formed ICOT. Like KL1, occam was
designed for parallel execution on a new genera-
tion of parallel computers known as the transputer,
And transputers were designed primarily for em-
bedded real-time applications running on small
networks of machines. This required the utmost
efficiency of implementation, with static alloca-
tion of processors and storage to logical processes,
Your language KI.1 was designed ten years later,
when networks of 4 hundreds of machines have
become feasible. That means that from the stant
you must aceept the overhead of dynamic proces-
sor allocation. Your language KI.1 was designed
for a different but equally challenging range of ap-
plications, which require the processing of highly
irregular and dynamically evolving symbaolic data
structures. That means that from the start you have
to accept the overhead of dynamic storage alloca-
tion and re-allocation. These, I believe, are the
main reasons for the radical differences between
KL1 and occam. But the qualitative similarities
between the languages are even more remarkable,
Both languages are small and simple; they can be
quickly learned and used by specialists in other
domains who are not professional programmers,
But because of the dynamic storage allocation,
KL1 is simpler,

Both languages are highly efficient and permit
full advantage to be taken of the power of the indi-
vidual processors of the system. But, because of

static storage allocation, perhaps occam is still
somewhat more efficient. Both languages have a
clear abstract semantics independent of the opera-
tional interpretation. This permits a complete
compatability of implementation on parallel ma-
chines with widely differing suuctures and archi-
tectures,

The semantics of both the languages is ex-
pressible in terms of predicates describing the ac-
tual behavior of an exécuting mechanism. This
permits a reliable development path from specifi-
cations expressed as more abstract predicates de-
scribing the user requirements in the real world,
The semantics permits the derivation of a number
of elegant and understandable algebraic laws.
These are not only an aid to the human intellect
and understanding; they validate both local opti-
mizations and global restructuring of programs to
match the architectural features of a particular ex-
ecuting mechanism. I'would much rather optimize
a non-deterministic K11 program than try to look
for probably non-existent parallelism in a FOR-
TRAN program,

Both languages promote a high degree of
concurrency, and permit fine lavel of granularity,
but KL.1 permits an even finer degree of granular-
ity than occam, The fine granularity ensures that
each physical processor in the system can be time-
shared betwean many logical processes, and the
user need not worry whether this is being done or
not. This is called parallel slackness, and it en-
sures a high machine utilization and conceals the
effects of message latency and cache faults on the
gxecution efficiency. -

Further efficiency is gained by a Lal'l.‘-ﬁlll)"
controlled degree of non-determinacy in the se-
quencing of the execution of the program, and this
permits even further reduction of latency delays.
But both languages, occam and KL1 have this
most important characteristic that they give com-
plete protection to the programmer against the un-
speakable horrors of updating shared siorage by
paralle] processes.

And finally, both languages have inspired the
design and implementation of a new generation of
actual parailel programming architectures, a fam-
ily of releases of the transputer and a family of
various shapes and architectures of parallel infer-

ence machine. These have made available suffi-
cient crude computing power to persuade new
classes of potential users to learn new methods of
programming to solve new classes of problem.

And that is my brief survey of the technical
merits that [have discovered in the KL 1 language.
I sincerely wish it and you a brilliant future and I
would like to meke a prediction to that effect. Bt
the fumre will depend on many accidental, com-
mercial, political, and economic factors of which 1
have little knowledge and competence. The mag-
nitude of the technical achievement is undeniable,
It is measured partly, at least, by the skeptelsm,
disbelief, and even laughter of your critics and
detracters. The more they tell you that it could not
be done, the greater your achievement that you
have actually done it.

In additdon to your technical and scientific
qualities of insight and judgement and invention
you have displayed a high degree of sheer conrage,
I thank you for your courage, and thank you again
for inviting me to address yow in this last session of
the last day of the final conference devoled jusily
to the celebration of your achievement. Thank
you,

Tanaka: Thark you very much for your insight-
ful and heartful talk. We would like to have some
discossions if you can, Are there any commenis or
questons?

Question: 1 was struck by the examples that you
gave in the very beginning of AND and NOT,
when you said things like the specification must
control the temperature AND the pressure, or
MNOT explode. And 1 was wondering, from every-
thing that I've seen about this kind of literature,
there’s very little connection to how specifications
really interface with the real world where there’s
cansality; there's other agents in the real world
that are changing things; and obvicusly it could
explode if somebody else does something to inter-
fere with things. So, I was wondering if you could
comment on how this view fits in with programs
that really have to control and interact with the real
world.

Hoare: Thank you for the guestion. There is al-

ways a problem of establishing a link between a
mathematical and scientific theory and what you
can observe or want to observe in the real world.
That is a question that will continue to exercise
philosophers for many years to come. The only
way in which I know of establishing that vital link
is to do it informally; no formal mechanism could
ever do it. And the informal mechanism is to rely
on the understanding of domain specialists to
check that the first formalization of the capture of
requirements does indeed correspond to the physi-
cal reality of the process which is to be controlled.
The way that I would look at the formal specifica-
tion of a real-time process control system is much
more as a description of the plant — of the phys-
ics, of the behavior of the plant, and the failure
modes of the plant. If you konw those things, then
the: behavior of your program can be specified (as
it weere) just by the mirror image or the inverse im-
age of all the states of the plant which are conzid-
ered to be desirable, optimuom, or at least tolerable,

Since [am not a process physicist, | would not
expect to be able to check the validity of the formal
capture of specifications at this level. Butitseems
to me that it is at this level that the formalization of
the development process for eritical programs
must start. 'We must find a development path for
critical programs which permits a computing sci-
entist and software engineer reliably to carry
through the exact specifications which have been
laid down by those who understand the physical
reality being controlled. I think, in the first invited
speech of this conference, Dines Bigrner has al-
ready described our mutual interest in developing
these techniques in a project which we know, in
Europe, as PROCOS.

Question: You compared two congurrent pro-
gramming languages occam and KL1. Would you
care to comment about other approaches to
concurrency being investigated? They are on the
road.

Hoare: Would [care to comment on other ap-
proaches to concurrency? I would like to spend all
evening commenting on other approaches to

CONCUITENCY.
The problem of concurrency and highly paral-

lel computers is still with us. It is extremely diffi-
cult to foresee how it is that we can persuade the
world simultaneously to adopt rew paradigms of
programming and new hardware structures. The
world has leamed from bitter experience that the
most important consideration is that your next
computer should execute exactly the same pro-
grams as your previons computer did. And so, the
manufacturers of computers cannot find markets
for a computer architecture which requires any
new programs to be run. 1donot have skill in fore-
seeing the outcome of this. 1 am quite convineed,
though, that when programmers first discover that
non-determinacy makes program testing impos-
sible, they will reject the new technologies and the
new machines and the new power out of hand, Itis
only by the use of languages like cccam and KL1
that give sound scientific control over non-
determinacy that we will ever reliably be able to
use these machines; it will be very muoch a profes-
sional programmers’ task to make sure that these
mackines do not contain errors which will not ap-
pear during program testing, but will retern to
plagus the user afterwards. 1 am quite convinced
that people who are determined to program using
methods and languages which give them no handle
and no protection against that kind of ervor, will in
the end, find that the errors accomulate to destroy
them.

Tanaka: Is there another small guestion?

Okada: 1hope this is a small question. You col-
lected the predicate: that is the logical concepis
and programs --- extending, maybe, traditional
doetrine like predicate. For axample, specification
is predicate; and you said the program is predicate.
Then, at that time, if vou consider, for example,the
correciness proof of the logical implications which
you showed, like, the program predicates implied
specification. Now, at that time, that is the logical
concept or mathematical concept; and this is re-
lated to some concept in programming language
theory or computer science. Then, at that time,
what is the correspondent things of proof in that
case 7 1 mean, you have the proof of the correct-
ness; that is the proof for the logical implications;
then, that proof is interpreted by what? Whatis the

-57-

proof in computer science sense in your frame-
work? -

Hoare: Thank you, [have, [am afraid, no skill at
all in proof theory, The proofs that I am consider-
ing are ones which are as close as I can make them
to the conventional practice of mathematical prov-
ing, which clearly have been well formalized by
logicians and set thegrists. 1 believe that math-
ematical proof and calculation is something that
can be done quite reliably by human beings, and
even more reliably checked by other hurnan be-
ings. Therefore, I have not given a great deal of
attention to proof as a formalized or mechanieally
checkable activity, [think of proof at the design
phase as being no different from proof of the kind
that you will see in any mathematical textbook.

Okada: ..in the sense of Hoare logic, for ex-
ample, in your earlier, former work, you specified

the proof system of the correciness of the program;
that is so-called the Hoare logic. And vou don"t
think you consider any more that kind of formal
framework of your current theory?

Hoare: You're quite right, T think there are now
much better ways of specifying and establishing
the correciness of programs than Hoare logic.
Ever since 1974, when Professor Dijkstra pub-
tished his work on weakest pre-conditions, I have
regarded Hoare logic as obsolete,

Tanaka: Okay. Time is up, and I would like to
say thank you again for your distinguished and in-
fluential talk. I would like to close this session
with.... '

From now, about twenty minutes, we will take
a coffee break. And at three thirty, we will begin
the last plenary panel.

