{1 J.A.Robinson
Professor
Syracuse University

Good Morning. It is an honor and a pleasure
to be invited to give a lectore at this conference.
The topic was proposed to me by Dr. Keichi
Furukawa and Professor Hidehiko Tanaka, and 1
welcome the opportunity they have offered me to
discuss the part played by logic and logicians, both
now and in the past, in the development of com-
puter science and artificial intelligence.,

In my view, the conceptual origing of the com-
puter are to be found in the work of certain pio-
neering logicians. Logic has, from the start, been
the main component of computer science, and will
continue to be that. Although logic has in the past
also had an important apart to play in artificial in-
telligence, its contribution to the future of that par-
ticular sub-field of computer science is likely to be
a relatively minor one.

When the Fifth Generation project was an-
nounced at the beginning of the 1980s, the orga-
nizers, as you all know, chose logic, and in particn-
lar logic programming, as the principle theme of
the project. They emphasized the role of logic as a
unifying and guiding principle in the design of
computers and of programming languages. This
choice, as you all remember, cansed some sur-
prise, Many people viewed it as a startling and
risky change of direction in dealing with comput-
ers and computing. Some even saw it as the begin-

ning of a kind of revolution. This reaction was
quite understandable, but in my opinion it was a
mistaken one. The emphasis on logic was indeed
radical, but only in the literal sense. [t took us
back to the roots of the computer and of computer
science. 1 belisve that logic was a most natural
choice,

The topic is structured, it seems to me, as
shown in slide 1. We ask: who did what, and
when? Who was it who, for the first time, thought
of the idea of the general purpose digital computer,
the so-called universal machine? Where did what
we now call the theory of computation get its start?
Where did what we now think of as computational
logic begin? What about artificial intelligence?
We should consider not only how these ideas got
startec, but also how they then flowed down to our
owi times; and who transmitted them, and how.

We must not only talk about the people and
the events but also about the ideas themselves.
The distinction between abstract and real will re-
cur throughout the discussion, We will constantly
abstract from processes and structures what seem
to be their essential features, This means discard-
ing the details that don't matter for the analysis
and for understanding. So for example we will be
talking about abstract and real machines. Indeed,
we shall talk about abstract and real people, since

* The original title in FGCS'92 Proceedings is “The Role of Logic In Computer Science and Artificial

Intelligence”.

22

1
« Creation of ideas (who first thought of what)

* the general-purpose digital computer
+ theory of computation

+ abstract and real engineering

* computational legic

= artificial intelligence

* Transmission of ideas (who influenced whom)
+ History (how things happened)

* People
« Evanis

= Conceptual analysis of ideas {what is essential)

= the abstract nature of information
* |ogical abstractions and progesses
» abstract and real machines

+ abstract and real minds

that, it seems o me, is a good way to look at what
we do in artificial intelligence: we try to discard
all irrelevant details in intelligent creatures so that
we can deal only with what is essential to intelli-
gence.

It 15 most important to keep the distinction be-
tween abstract and real clear when we seek to un-
derstand computers. 1 hasten o say that in concen-
trating on the abstract side of the distinction I am
not at all somehow relegating the engineering de-
tails of computers o a lower level of impontance.
Quite the contrary. In fact in order to give a proper
view of the marvels that the engineers have per-
formed over the past several decades of actually
building computers one really is forced to make
this same distinction. It then becomes all the
clearer how extraordinary it is that some of our
most refined abstractions can in fact be realized in
practical machines.

If you do look more closely (slide 2) at what
we will now begin to call abstract computers, you
realize that they are really formal logical systems.
They are sets of definitions, rules of inference, and
#xioms, such as logicians and abstract mathemati-
cians have been studying and developing for a
very long time. As for real computers, well: they
ate physical machines, made out of electronic cie-

cuits and electromechanical subcomponents.
Their behavior is causally determined, according
to physical laws, by their design and by the inputs
which are submitted to them from the outside
world. Every real machine, and in particular every
real computer, is in a straightforward sense the
physical embodiment of an abstract machine. But
to understand a real computer is to simply grasp
the abstraction that it embodies: it is not necessary
to be able to follow the ‘causal logic® of its physi-
cal organization in order to program it intelli-
gently.

Many people, myself included, learned to pro-
gram on abstract Turing machines, There were of

-course no real ones, only abstract ones, We found

their definitions and rules of operation in logic text
books and in Turing's 1936 paper, and we pro-
grammed them on the basis of this purely logical
description, .

To *run’ the programs we had to *simulate’ the
machines ' behavior by the pencil-and-paper appli-
cation of the transition rules. From the logical
point of view, from the point of view of under-
standing the computational process, it was just the
same as if we had ‘real” Turing machines made out
of electronic components to deal with, It was just
a matter of irrelevant detail: the essence of the
situation was no different.

We usually encounter Turing's name just as
the label in the phrase *Turing machine’, but in this
lecture 1 shall claim (and not evervbody may
agree) that Alan Turing was the major of two out-
standing figures (John von Mewmann was the
other) in the history of the modern computer, Both
of these men were extraordinary people. They
were both intellectual giants, but they could hardly
have been more ditferent from each other in every
other respect. Although Turing was younger than
vorn Meumann by almost ten years he probably
was, in some sense, the senior person intellectu-
ally. He was in fact the originator of ideas that we
have come to associate with von Nenmann,

Turing’s life was not & very long one (slide 3),
He was born'in 1912, and died in 1954 just before
his 42nd birthday. But it was an enormously busy
and fruitful life. In 1936, he published what soon
became a classic paper. It was only partly a sofu-
tion to a long-standing problem in the logical

-23-

turned abstractions into practical realitias.

from the external world.

2 ABSTRACT AND REAL COMPUTERS

« This lecture looks at computers from the abstract point of view, but it is dedicated, with
admiration and awe, to all those engineers whose utterly marvallcus technology has

« Abstract computers are formal logieal systems—sets of definitions, axioms and rules.

= Real computers are machines made out of electronic circuits and electromechanical
components, They are totally governed by physical laws and the inputs they receive

« Evary real compuier embodies an abstract one.

» When | started programming forty years ago, my first computers were abstract Tuning
machines. Simulating them on paper was slow and tedicus. From the logicai point of
viaw it was the same as dealing with ‘real’ machines.

foundations of mathematics, the so-called decision
problem of Hilbert. In solving this problem, Tur-
ing invented the computer. The so-called univer-
sal Turing machine which was defined and folly
developed in his paper is, in fact, the protolype,
both conceptually and historically, of all subse-
quent general-purpose digital computers.

Right after the war, in 1945, Turing designed
the ACE computer in England. In the course of his
very accessible and readable account of that
disign, he proposed the idea of a stack, the idea of
stored-program device, and the idea of subrou-
tines. These now very familiar notions appear for
the first time in this discussion of Turing’s. A little
later, in 1949, in his lecture Checking a Large
Routine, he introduced the methodology of formal
reasoning about programs, in particular of proving
that they meet their specifications. Turing is of
course very widely known today for his initiafion
of artificial intelligence (Al). Heis often accorded
the role of founding father of that subject, I think
quite properly. What is not so widely known is
that two years before his famous philosophical
‘Turing Test” paper in 1950, he had given a very
thorough discussion of the more technical content
of the subject, going over its ideas and its difficul-
ties as he then saw them. There is no doubt that
Turing really does tower over those early years of
Al

Let us turn to von Neumann (slide 4).

Whereas Turing was an immepsely gifted genius,
he was also a really quite eccentric person, highly
unorthodox in most ways. You might say he was
an ‘outsider’. But von Neumann was just the op-
posite, an *insider’ in the fullest sense of the word.
He had prodigious intellectual gifts. He outshone
evervbody, including even Turing, in that way.
There may never have been anyone else quite like
von Neamann, _

He was uniquely brilliant. He was also a po-
litically shrewd and a conservative, immensely in-
fluential practical person. He pardcipated in sci-
entific leadership at the highest levels of industry
and government research, and he helped to make
national policy right 1o the end of his life. He wo
had only a short life. Both he and Turing came to
tragic ends while still relatively young. But even
though von Neumann was exiraordinarily influen-
tial in the history of computers, I believe that his
role was secondary to, and derivative from, that of
Turing.

The historians have been busy and have shed
much light on the interactions between the two
men, We can now see clearty that von Neunann
was inspired by Turing and specifically by his .
1936 paper, and that he then went on with his in-
comparable force of personality and mind to pro-
mulgate Turing's ideas and make them come
alive, The so-called von Neumann computer re-
ally should be labeled the Turing computer,

24-

3 ALAN M, TURING

ENTSCHEIDUNGSPROBLEM, 1936

digital computers

* Turing's Princaton Ph. D. thesls
ACE REPORT, 1245

CHECKING A LARGE ROUTINE, 1949

INTELLIGENT MACHINERY, 1948
« detailed discussion of Al technology

1812-1954
ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE

* The universal Turing machine in this paper is the prototype of all general-purpose

SYSTEMS OF LOGIC BASED ON ORDINALS, 1938

« stack, stored-program, subroutine concepts

« first formal cormectness proot of a program

COMPUTING MACHINERY AND INTELLIGENCE, 1950
+ Intreduces famous Turing test for artificial inelligence

Yon Neumann was perhaps the leading,
young logician of the 1920s. He was already fa-
mous when he and Turing first met, when Turing
was a praduate student, 23 vears old, at Cambridge
University. Subsequently they had quite regular
contacts in Princeton, where Turing spent the
years 1936 and 1937 as a graduate student work-
ing with Alenzo Church. Both Turing and von
Neumann had offices in the same small building,
Fine Hall, in which were located the Mathematics
Library and the offices of the Princeton University
Mathematics Department. Fine Hall was designed
to encourage mathematicians to get together, and
it provided an ideal research environment. There
was at that ime a newly founded research organi-
zation in Princeton called the Institute for Ad-
vanced Study, of which von Neumann was a mem-
ber, and which had nothing to do with the Univer-
sity except that at that dme it was housed in Fine
Hall. 3o von Neumann and Turing were thrown
together. We now have a lot of evidence that they
interacted with each other. It seems very probable
that one of their main topics of discussion would
have been the concepts and results from Turing's

1936 paper. .

Onee the war began, in 1939, both men were
off to very important war work, Turing in
cryptology, von Neumann in almost everything
else. We know that from November 1942 to
March 1943 Turing was in the United States, inter-
acting with many people. Two of these months
were spent visiting Claude Shannon at Bell Tele-
phone Laboratorizs. It has not been shown that he
and ven Neumann got together during that time,
but many people have conjectured that surely they
must have, I believe that the two of them actually
did meet, and that they did exchange ideas about
avtomatic computation which represented the
1943 state-of-the-art,

In 1943 vacuum tube technology for digital
computation was just beginning to be exploited in
both countries. In the United States, this was pri-
marily at the University of Pennsylvania’s Moore
School, in the famous ENIAC and EDVAC com-
puter projects, In England, it was primarily the
Bletchley Park code-breaking machines. It is
quite clear that the British and the Americans were
sharing all of the relevant technology with each

-25-

other at that time in the scientific war effort. Sol
conclude that the Turing-on-von Neumann influ-
ence continned throughout the war. We have the
testimony of several people that von Neumann
urged his colleagues to siudy Toring's 1936 paper,
saying essentially that this paper was absolutely
fundamental to what they were tryving to do (in de-
signing a general purpose digital computer), Von
Meumann went on to play a major part, as you all
know, in the design and construction of one the
first general-purpose machines, the EDVAC,
There is some question about which real computer
was the first really universal machine, with stored
program and so on, to work, Perhaps the EDSAC
{at Cambridge University, based on the Moore
School's EDVAC) was, or the Manchester
University's prototype machine. But just which
machines were the first to fly is not particnlarly
interesting here. We are talking, after all, about
the abstraction which was there for ten vears be-
fore the first physical machine embodying it actu-
ally ran.

Von Neumann did have a great deal to do with
physical machines—in particular, with the Insti-
tute for the Advanced Study machines, the IAS se-

ries, which were ki machines in the sense thai he
oversaw their basic design. He soon went on be-
yond this to other matiers which impinged more
directly on Al. He essentally founded what we
now think of as the theory of antomata, especially
that of cellular, quasi-biclogical automata. In par-
ticular he solved the impossible-sounding problem
of specifying how his automata could automati-
cally reproduce themselves. Amazingly, his con-
struction is abstractly the same one nature seems
to have hit upon, but von Neumann discovered and
described his scheme before Crick and Watson's
1953 discovery of the structure of the DNA mol-
ecule. A remarkable feat!

Let us next look at Turing’s non-abstract ac-
tivities in the history of the computer (slide 5). He
was responsible for the design of a real machine,
citlled the ACE, in England in the immediate post-
war period. It was only because he was a rather
naive, non-administratively-subtle, nonpolitical
person, that the ACE wasn't the first one to run.
He was simply unable to push the actual construc-
tion along at the speed that would have made him
first in the field, Others got there first, but that is
not & part of the thesis here. What must be said is

19211930

mathematics, 1930-1944

= they may have met again in 1843

to the design of computers '

processing, 1943-1867

4 JOHN von NEUMANN 1803-1957
+ top young mathematician and logician in 1920s
+ dominated axiomatic set theory and Hilbart's formalist program at Géttingen,

« after Gbdel's 1830 bombshell, concentraied on physies and applied

« first met Turing in 19835 In Cambridge University
+ regular contacts with Turing at Princaton, 1938-1937

- urged his associates to study Turing's 1936 paper, as being fundamental

« major rale in Eckert-Mauchly projects (EMIAC, EDVAC), 1944-1846
+ designed and built IAS computer, 1945-1952
+ self-reproducing automata; theoretical neuroscience, biolagical information-

“26-

COMPUTING ENGINE, 1845

Physical Laboratory in England

* stack = subroutine

= In 1947 Turing wrote:

5 TURING'S ACE DESIGN,
PROPOSAL FOR DEVELOPMENT IN THE MATHEMATICS DIVISION OF AN AUTOMATIC

+ Real stored-program digital computers, the Filot ACE and the DEUCE, based on the
design in this proposal, were later constructed and operated successfully at the National

= ACE was a conceptual descendant of the universal Turing machine

Some years ago | [made] an investigation of the theoretical possibilities and limitations of
digifal computing machines. | considerad a type of machine which had a central
mechanism, and an infinite memory. Machines such as the ACE may be regarded as
practical versions of this same fype of maching

1945

= stored program

that regardless of which machines were actually
first to operate, the ideas certainly were Turing's.
I the 1947 survey of the situation for the London
Mathematical Saciety he directly linked the real
machines of that postwar period with his 1936 ab-
stracl one. :

Slide 6 displays a few quotations from
Turing’s writings illusirating how he connected
digital computing with logic. The last guotation,
for example, shows that he clearly foresaw the
idea of formal symbol manipulation. The general
overall impression these passages give is that Tur-
ing was always aware that the importance of the
basic ideas underlying computing machines lay in
their essentially abstract and logical character. The
fact that they counld be realized or embodied in
electronic devices or indeed in any other kind of
physical device, although interesting and practi-
cally important, is relatively uninteresting from
the purely scientific point of view. What gives
these ideas their great power is that they are not
dependent on the volatile nature of rapidly shifting
technology.

Professor Michie and Professor Good have
testified that towards the end of the war Turing
was alréady making plans to build his universal
machine. His motivation for doing so was to do
AL This is why he designed the ACE machine.
He wanted, as he put it, to build & brain. Every-

thing else was unimportant. He simply wanted to
start Al and to have a useful tool. He believed that
because of the universality concept there was no

" need to build more than one machine, the universal

machine. Just get it built, and thereafter every-
thing else was a matter of merely of programming
it, of making software for the universal machine.
Slide 7 has some of Turing’s thonghts about
Al. You can see that he took seriously the distine-
tion between real and abstract in the case of human
beings. His approach to AT was to think away all
of the imrelevant details of a physical real human
being and just consider reproducing, in the form of
computer software, computer programs for his
machine, only what was essential about a human.
It is what the brain is doing that is essential—this
was what Turing thought. He thought that what
the brain does could also be made to happen in his
universal machine by suitable programming.
This, then was his key to Al. So he said that 10
build a thinking machine, all vou need to do is to
take a man as a whole and replace him part by part
with artificial subsystems. This, you might say, is
prosthetic extrapolation. We can already, in
today’s technology, give a man artificial teeth,
limbs, bones, joints and heart, and s on, Where
will this stop? Itis an entrancing thought, that you
can just keep on replacing parts (as technology
improves) until you are replacing the very neurons

37

symbolic logic

language

mathematical fonnulae

6 TURING ON LOGIC AND COMPUTING
- the property of being digital should be of greater interast than that of being electronic
« | expect thaf digital computing machines will eventually stimulate a considerable interest in

« One could communicate with these machines in any language provided it was an exact

* In pringiple one should be able fo communicate in any symbolic logic
« there will be much more practical scope for fogical systems than there has been in the past
» Some attempts will probably be made fo get the machine to do actual manipulations of

machine?

7 TURING ON MACHIME INTELLIGENCE

= A great positive reason for believing in the possibility of making thinking machinery is that it
is possible to make machinery 1o imitate any small part of a man.

= One way of setting about building a ‘thinking maching’ would be 1o lake a man as a whole
and to try o replace all the parts of him by machinery

* What we want is a machine that can learn from experience. The possibility of letting the
machine altar its own ingtructions provides the mechanism for this

+ If a machine ie expected to be infallible, it canno! also be infalligent
+ No man adds very much to the bady of knowledge, why should we expect more of a

in the brain,

In slide 8 we give some items of evidence sup-
porting what I claimed earlier, that Turing’s ideas
were transmitted, amplified and promulgated
through von Neumann., There are excellent biog-
raphies of each man now available: Andrew
Hodges® Alan Turing: the Enigma, and William
Aspray's John von Neumann and the Origing of
Modern Compuiing.

In Hodges® book we read that von Neumann
wrote a letter of support for Turing during
Turing’s graduate student years in Princeton. He
wrote that he knew Turing very well, admired him
and his work, and urged that he be given a fellow-
ship. At the end of Turing’s two years in
Princeton, von Neumann offered him a research

assistantship at the Institute of Advanced Study,
quite an accolade, but Turing turned down the of-
fer in order to return to Cambridge and, as it soon
turned out, to the war work at Bletchley Park. 1
already mentioned how von Neumann praised
Turing's work to other people who have put this
fact in the record, For example, Julian Bigelow,
who was von Neumann's chief engineer and chief
designer on the Institute for Advanced Study
project, was told that his first assignment on join-
ing the project was to stdy Turing's paper.
Stanislaus Ulam, the famous mathematician who
was perhaps von Neumann’s best friend, writes in
his Adventures of a Mathematician how von
Neumann often expressed to him his admiration
for Turing and for Turing’s brilliant ideas.

(developed eight years later)

and his “brilliant ideag”

studied it with care

B TRANSMISSION OF TURING'S IDEAS VIA VON NEUMANN
+ The universal Turing machine is 2 model of the stored-program computer

« von Neumann's letter of suppert for Turing, 1937
« von Meumann offered Turing & research job, 1938

+ von Neumann praised Turing’s work to others. He made Jullan Bigelow, his chief 1AS
designer and engineer, study Turing's 1936 paper

* Stanislaus Ulam reported that in 1939 von Neumann expressed great admiration for Turing

* Many people have acclaimed von Neumann as the father of the computer but he would naver

_ have made that mistake himself. He firmly emphasized to me that the fundamental
conception is due to Turing. Von Neumann was well aware of the fundamental
importance of Turing’s paper of 1936. [He] introduced me to that paper and at his urging |

Williarm Aspray, 1880

Stanley Franksl, 1972

Stanley Frankel and Nicholas Metropolis
wrote the first major program to tun on the ENIAC
when that machine started. It was some kind of
shock wave computation, very secret. Later,
Frankel wrote a letter to Professor Brian Randell,
the computer historian, from which we take the
last guotation in slide 8. Frankel was neither a
computer engineer nor a programmer; he was a
user, a physicist who needed to solve a practical
computation problem. '

Slides 9 and 10 are glimpses of Turing’s con-

tacts with another person who, of course, is very

well known, Claude Shannon.

[don’t think many people in computer science
today are intimate with Shannon’s wortk, but I
think his ideas were probably also in the back of
the von Neumann's mind when he moved strongly
into the computer field. Shannon’s 1938 paper, in
which he linked Boolean logic (that is, the abstract
notation of essentially the propositional calculus)
with relay and switching circuits, had a major im-
pact on many people at that time. It introduced a
theoretical way of getting a grip on logic design
and invited the development of algorithms for the
minimization of the number of switching compo-
nents, and so on, topics which suddenly became

very much everybody’s concarn who was in-
volved in the problems of computer design. T was
struck by the fact that Turing and Shannon had a
good relationship and spent a lot of time talking to
each other in late 1942 and early 1943, Ostensibly
and officially, they met only to discuss speech
scrambling devices. However, it defies the imagi-
nation to suppose that they did not also talk gbout
the somewhat different topic of digital computing.
I think it was, during this visit that Turing and von
Meumann probably had some quite secret, and in-
deed still secret, meetings. These meetings, 1 am

- sure, will eventuaily emerge into light of day when

the relevant archives are at last opened (o public
view, . _
As slide 10 reminds us, Shannon was the great
pioneer of the mathematical theory of communica-
tion, or information theory, Since Turing was in-
terested in everything. certainly this theory of
Shanmon’s would have fascinated him. It is an-
other, excellent, example of an exercise in ab-
stracting the essential features of a sitnation from
the irrelevant physical details that embody them.
It is very interesting that in the 1956 volume Ap-
tomata Studies, which Shannon edited together
with John McCarthy, Shannon contributed a curi-

20.

and switching circuits,

computing problems.

9 CLAUDE SHANMNON
« A BYMBOLIC ANALYSIS OF RELAY AND SWITCHING CIRCUITS, 1838

= The first explicit study of the realization of abstract logical expressions in electrical circuits
This was a major thearetical advance, It exploited the formal analogy betwean syntactic and
semantic properies of the propositional (Boolean) calculus and operational behavior of relay

» Turing visited Shannon for two months at Bell Laboratories in early 1943, to discuss
speech scrambling. Surely they would also have discussed digital computing? During this
same visit to the USA Turing may also have met with von Neumann o discuss wartime

ous, ingenious paper on the ‘plasticity’ of the
structure of the universal Turing machine.

In slide 11, we find rwo important names
which, although they may be half-forgotten now,
will perhaps soon become well known again be-
cause of the current renaissance of ardficial nerve-
networks (“neural networks™),

MicCullogh and Pitts invented the artificial
nerve-network idea in 1943, the same vear in
which Turing visited Shannon (and possibly also
von Neumann), '

MeCullogh and Piits introduced a certain two-
dimensional dalaflow-like notation in which they
could represent discrete-state automata as net-
works of basic units. The basic units were thought
of as artificial neurons, which had input and output
lines connecting them with other similar units, and

which behaved as finite-state switching elements,
Their work was an attempl to do abstract neuro-
science. Tt had an enormous impact, but of a dif-

ferent kind than perhaps they had anticipated. In

particular, their notation with its accompanying
abstract model was immediately seized upon by
von Neamann as the right way to think about com-
puters, He saw that computers can be represented
abstractly as networks of connected finite-state de-
vices, which would have physical realizations in
electromechanical or electronic components. But
with the McCullogh and Pitts notation you design
computers abstractly and study their behavior
logically without needing actually to build them.
When you felt you had got it abstractly and logi-
cally right, but only then, you could go ahead and
realize the abstractions in actual hardware. So

coding

Laboratories in early 1943

10 CLALDE SHANNON
A MATHEMATICAL THECORY OF COMMUNICATION, 1848

+ The first deep analysis of the concept of information in the abstract. Separated informa-
tion {and computation) from its embadiment in hardware. Emphasized representation and

A UNIVERSAL TURING MACHINE WITH 2 INTERNAL STATES, 1856

* Ingenious construction to convert any Turing machine with n states and m symbols info an
equivalent Turing machine with 2 states and no more than 4m {n+1) symbols.

= Shannon and Turing surely also talked about Shannon's ideas on digital communication and
Turing maching theory during their twe manths of “speech scrambling” dism,lssmns at Beil

-30-

11 W. S. McCULLOGH AND W, H. PITTS
A LOGICAL CALCULUS QF THE IDEAS IMMANENT IN NERVOUS ACTIVITY, 1943
.+ artificial nerve networks are general abstract digital switching circuits

* MeCullegh and Pitts cited Turing's universal machine, pointing out that any Turing machine
can be implemented as an artificial nerve network

» artificial nerve networks were used by von Neumann and Turing in their 1845 dasigns and in
expounding the EDVAC, IAS and ACE computers

* Kleene 1951 introduced the concept of regular expressions and proved that they exactly
reprasent those events which are recognizable by MeCullagh and Pitts nerve networks

MeCullogh-Pitts nerve-networks became a com-
puter design methodology for von Newmann and
others. Turing, in fact, in his ACE report, also
adopted this notation.

Some of the specialists in the audience might
also be aware of the conncction between
MecCullogh-Fitts nolation and the so-called regu-
lar expressions of abstract computer science,

Slide 12 concerns an influential pioneer of the
logical approach to both computer science and ar-
tificial intelligence—John MeCarthy—who is still
active in research. He is perhaps most widely
known and honored for his invention of the im-
mortal programming language LISP (literally im-
mortal: people will no doubt be writing LISP pro-
grams centuries from now!) Historicaily, LISP
was the first great fogic programming language, It
is essentially a system of formal logic, the so-
called fambda calculus of Church, with only a few
additions and modifications. McCarthy has had a
big influence on our thinking, starting with the
first paper mentioned in the figure. This paper ex-
pounded the logical ideas underlying LISP, but
went far beyvond that in studying the role played by
inductive definitions and recursion. The now-fa-
miliar conditional expression was McCarthy’s in-
vention, introduced in that paper. It is a very im-
portant paper. It was not only in the theory of
computation and programming languages, in this
way, that McCarthy started things rolling, but he
gave a strong impetus to the logical approach to
artificial intelligence. His 1958 paper, interest-
ingly, was first given at National Physical labora-
tory in Teddington, England where Turing had

worked for a brief time writing the ACE report.
MeCarthy proposed this wonderful idea of a pro-
gram to which you could simply tell knowledge.
The program would be in effect the embodiment
of a axiomatic deductive system—a deductive
knowledge base which would be the platform for
planning and for controlling actions in a robot, and
s0 on. A commonplace idea now, but hers is
where it began. Itis almost as if Turing handed the
logical torch in 1954 to the young McCarthy, fresh
out of graduate school, as indeed alse was Marvin
Minsky, about whom we shall soon say more, and
who was setting out at that time 1o “make a brain”
in the spirit of Turing, but not by a purely logical
approach. .

We must of course, at some point mention
logic programming!

The famous equational aphorism in slide 13,
coined by Professor Kowalski and often cited, suc-
cinetly points out that in programming you have to
separate two components: the knowledge you are
using and the way you are using it. You can then
deal separately with each component. Tt must be
emphasized that there have 1o be both compo-
nents. You cannot ignore either of them. We can
find both extremes in actual practice. Some
people throw all the logic away and leave only
control behind, by writing purely imperative pro-
grams, Oddly enough, programming Turing ma-
chines is like that. You simpiy 1ell them what to
do, step by step—giving the control only,

As for using logic only: perhaps itis only the
logicians and philosophers who have done thisina
pure form. When one organizes knowledge in this

-31-

processes

FROGRAMS WITH COMMON SENSE, 1858

tences in formal languages.

12 JOHN McCARTHY
A BASIS FOR A MATHEMHTIGAL:'IHEDHY OF COMPUTATION 1261
« computer sclence is the sclence of how machines can be made to carry ou! intellectual

= it iz reasonable to hope that the refationship betwesn computation and mathematical logic
will be as fruitful in the next cenfury as that beiween analysis and physics in the last

+ The ADVICE TAKER is a proposed program for solving problems by manipulating sen-

« A program has common sense if it automabically deduces for itzelf a sufficiently wide class
of immediate congequences of anything it is told and what it already knows

way, nothing happens. It is just a Platonic and
timeless set of propositions, some of which are
axioms and the rest of which are theorems. These

dre the—static—consequences of the axioms,

whether you derive them or not, Nothing happens.
That 5 not a basis for computation. In computa-
tion, something actoally happens. PROLOG, for
example, illustrates both the Kowalski equation
and the Colmerguer maxim: just describe it, sim-
ply say what it is, and then the compulting sysiem
will take that description and will build it, if itis an
object, or will do it, if it is an action. That's very
neat way of expiessing what logic programming
feels like.

The logical origin of PROLOG is quite grati-
fying 1o me personally because it is based on ideas
that [happen o have been invelved in developing

in the early 1960s—the resolution versions of the
first-order predicate calculus. However, the his-
tory of logic programming goes back much earlier,
to the early 1930s when Turing was an under-
graduate in Cambridge. Jacques Herbrand and
Kurt Gédel had just recently published their semi-
nal work, Herbrand's particolar contribution to
logic was a specific precorsor of what we now call
computational logic, In Herbrand's PhD, thesis
of 1931 we find, for cxample, what we now call
wnification. It is somewhat obscurely described,
but definitely it was he who first thought of that.
As we all know now, as for example in
Colmeraver PROLOG-3, these ideas are being
much genéralized and extended, so that instead of
just unification we now think more generally of
constraint solving as being the guiding principle

* Algorithm = Logic + Controf
* Just describe it!

constraint solving

lambda-calculus

13 LOGIC PROGRAMMING

* logic programming in PROLOG is based on the Hom-clause special case of rrry 1985
resolution version of the predicate caleulus which exploits Herbrand's unification pro-
cess. Colmerauer's Prelog il goes bayond basic Prolog by replacing unification with

+ Logic programming in LISP uses a different logic, based on MoCanthy's \rersinn of Church's

{Robert Kowalski)

{Alain Colmerauer)

behind logic programming systems, The basic
idea is still the same. And whether we like it or not
{and I don’t mind at it all) LISP must be classified
as ancther logic propramming language: it is just
that the logic is a different logic, the lambda calcu-
lus of Alonzo Church. Thus McCarthy was so to
speak the Kowalski and Colmeraver of LISP, be-
capse he saw what you could do computationally
with that abstract logical system, :
Stide 14 is a list of names, in roughly chrono-
logical order, divided into three groups to suggest
the way the history of computational logic has
taken place. Frege invented the predicale calculus
almaost out of thin air, and Hilbert presided over the
first several decades of its development at the start
of this century. Von Nenmann belongs in there
because of his immensely important contributions
to the logical formalization of set theory. Post,
Godel, Church, Curry, Kleene and Rosser were all
pioneers in the 19305 in developing logical sys-
tems which probed very deeply the logical theory
of computation and computability. Most of the
central results of the field were obtained before
1940, Turing’s work was of course a major part of
this. In about 1955 the computer bagan to be
widely available for all kinds of research, includ-
ing computational logic. Starting then, there was
very important work done over a period of 135
years by Wang, Gilmore, Davis. Puinam and
Prawitz, all of whom were directly influential on
me and others of my generation. It was they who
taught us, and who intrigued us with the enormous
possibilities that they could see. They did not
quite work these out for themselves, bui they cer-
tainly laid the framework for what scon became
possible. In the third group of names 1 put the
names of Bledsoe and myself first because of our
ages—the others in the group are all younger.
Wos and George Robinson in the mid-1960s
founded the Arponne group, which has since gone
on to fame and success, Loveland's Model Elimi-
nation version of the predicate calculus is essen-
tially the same as the Kowalski-Kuehner SLD-
resolution underlying PROLOG, Huer general-
ized the unification algorithm to the higher order
predicate caleulus, a very important step towards
higher-order logic programming and theorem

proving. Woody Bledsoe has spent his career asa

13-

professional mathematician specializing in com-
putational logic theory and in developing systems
for proving hard ‘real” theorems on the computer.

Kowalski and Colmerauer have given us logic
programming in the predicate calenlus sense, and
we must, 1 think, mention Keith Clark here, who
has made spch an important addition to the ab-
stract logical framework for logic programming
with his identification and explication of the nega-
tion by failure concept as well as his pioneering
work in concurrent logic programming. There are
of course many more names which should be in-
cluded as we come down to the present day, but we
cannot undertake to write the complete history of
computational logic in a two minutes, I just
wanted to remind you of some of the people who
were involved in computational logic and how
various have been their contributions,

14 COMPUTATIONAL LOGIC

1870-1835 GOTTLOB FREGE
DAVID HILBERY
JOHN VON NEUMANN

JACGQUES HERBRAND
EMIL POST
KURT GODEL

ALONZO CHURCH
ALAN TURING

HASKELL CURRY

STEPHEN KLEENE

JBARKLEY ROSSER

HAD WANG
PAUL GILMORE
MARTIN DAVIS

1955-1960

HILARY
DAG

wooDy
ALAN
LARRY
GEORGE
DON
GERARD
ROBERT
ALAIN
KEITH

1960-present

PUTNAM
PRAWITZ
BLEDSOE
ROBINSON
wos
ROBINSON
LOVELAND
HUET
KOWALSKI
COLMERAUER
CLARK

Slide 15 notes that the idea of the logical in-
terchangeability between hardware and software,
an idea which we all take for granted, is really just
another version of Turing's universal machine
concept: vou only need to put a certain minimal
‘something” in hardware form so that everything
glse can then be realized as software, created sim-
ply by programnming that hardware, In today's
terms, you meet this idea in reduced instruction set
computers, which are almost a serious engineering
form of the game of minimizing the universal ma-
chine, of seeing how small you make it. How
much hardware do you really have to have, at 4
minimum, in order 1o be able to do everything by
programming? We are reminded of Turing, then,
even by the RISC concept. '

Slide 16 mentions a practical way in which the
distinction berween real and abstract computers
turns out to be really very important, For von
Meumann in particular it became a very big thing.
He became involved in litigation and some very
unpleasant friction, with the ENIAC/UNIVAC de-
signers Eckert and Mauchly.

What can yvou get a patent on? The law has
always been generally that you can only patent
hardware. You can't patent an idea. Yet, it 15 of-
ten the ideas which drive progress. In the balance
between hardware and software, or between ab-
stract and real, one would like te acknowledge the
importance of the abstract side. In order to provide
an incentive to concentrate on abstract invention

would it not help if abstract inventors could obtain
a patent on their discoveries? It is noteworthy, for
example, that Turing could not have patented the
universal machine idea, which is one of the most
important and fruitful discoveries of the 20th cen-
tury or indeed of all time.

Von Neumann's expository notational tech-
nique, as I have already mentioned, in setting out
the design of the EDVAC, was to throw away all
the hardware ideas and just leave behind the
McCulloch-Pitts nerve-network description of the
abstract layout and function of the digital com-
pirter, including the stored program idea. It was
this which caused the friction with Eckert and
Mauchly, whose engineering ideas he abstracted
away, They resented that, since they felt that he
was leaving them out of the picture and denying
them credit for their inmovations: In some sense he
was indeed doing this, but his motives were com-
pletely different from those attributed to him by
Eckert and Mauchly. He was not all averse 1o as-
signing credit to others—for example, o Turing—
when he thought he was himself being unduly
praised. .

From this distance in time we can see how
very important Eckert and Mauchly were, because
it was they who made it possible to build a real
machine that would go very fagt, and all rest of it .
In the lawsuvits which have subseguently taken
place concerning the contributions of Eckert,
Mauchly, Atanasoff, and von Neumann the ques-

- RISC computers

» simulation

| 15 INTERCHANGEABILITY OF HARDWARE AND SOFTWARE
« first demanstrated theoretically by Turing in his 1936 paper

« 1845 ACE was a ‘minimum hardware' maching

+ 1845 EDVAC minimized parailelism for hardware economy

+ this interchangeability concept is a commonplace today:

= interpreters instead of special architactures

» the basic question: what should b in hardware foarm, and what in software form?
« or; which ane of the many different kinds of universal machine should we usa?

34

MeCullogh-Pitts diagrams.
= This lad to friction and even to litigation:
+ Eckert & Mauchly vs von Neumann
* Eckert & Mauchly vs Atanasoff

essentially complate the design in one draft

16 FATENTABILITY OF REAL BUT NOT OF ABSTRACT MACHINES

+ A basic legal fact about patentability: one can patent only physmaf devices {hmdwara}—an
icfea or scientific principle cannot be patented

* Turing could not have patented his universal machine!

= von Neumann's technigue in the EDVAC Report was precisely to abstract from hardware
and engineering specifics and present only the essential idea in abstract form using

« abstraction of logic from engineering enabled von Neumann to do the logic of EDVAC
without simultaneously doing the engineering, and rhsreby made it pogsible for him to

Arthiur W, Eurl:s 1880

ton was who invented what, and when? There is
no doubt that it was hardware that was being ar-
fued about. Arthur Burks, one of the people who
worked directly with von Neumann, points out
that it was precisely the abstraction of the logic
from engineering which enabled von Neumann to
do the logic of EDVAC withowt simultaneously
doing the engineering, and therby made it possible
for him 10 complete the design in one draft, Soas
a part of computer design methodology the dis-

tinction between real and abstract computers is, 1o
put it mildly, a very important one.

In slide 17 Metropolis and Rota, two peaple
who knew von Neumann very well, tell us that
Turing and von Neumann were among the few
whorealized, in the 1930s, that mathematical logic
was the magic key to both programming languages
as well as computers. More recently, Dijkstra has
emphasized tirelessly that if you look properly at
programming and at computer science what vou

N.Metropelis and Gian-Carlo Rota, 1280

revolution
E.W.Dijkstra, 1981:

an engineer

to execute programs

17 ' LOGIC AND TECHNOLOGY

+ Few except Turing and von Neumann realized in the 19305 that mathematical fogic was the
magic key lo programming languages as well as to computer design

» The symbolism of Peano, Russell and Whitehead, the analysis of proofs by Gentzen, the
definition of computability by Church and Turing, mark the beginning of the computer

+ Logic has changed from a descriptive scignce into a prescriptive one: the new logician is

* It is no lenger the purpose of programs to instruct machines, it is the pummofmmmnas

-35-

see is, in effect, logic becoming a branch of engi-
neering. It is however the abstract engineering
that you do when vou program. In programming
you no longer wait for the engineers o come and
say here is a maching we have built, what can you
program it to do? As Dijkstra points out, it is now
the other way round. The programmer in effect
says: this is the kind of machine we would like;
please build it for us.

(Slide 18). Programmers have always learned
to program abstract versions of machines. The ac-
tual physical machines have never really been
*visible'.

A similar situation prevailed in the case of the
early ‘higher level’ programming languages such
as FORTRAN (slide 19) and LISP (slide 20). In
this case the illusion enjoyed by the user was that
there was ‘back in there somewhere’ a machine
which directly embodied the rules of the language
and which followed the steps of the evaluation al-
gorithm when given a program express 10 process.

The fact that this was an illusion was of course
known to us, but litidle or no use was made of this

knowledge except, perhaps, for the pragmatic but
(it now seems) disreputable practice of debugging
the compiled programs with the aid of large
memory domps,

One's programs were writlen according to the
rules of certain abstract formal systems, presented
in programming manuals, and it was a relatively
unimportant fact that these programs could then be
actually run, gt very high speeds, on real {or simu-
lated) hardware versions of these abstract formal
systems,

(Slide 21}, The same point of view can be
taken in the case of all flavors of logic program-
ming: underlying the practicalities of actual com-
putation is an abstract rewriting machine with
which one can pretend one is dealing directly and
which is essentially equivalent to a formal logical
system,

It is of course the same today, only more 50
(slide 22). Programmers really don’t care, and of-
ten don’t even know, what hardware their pro-
grams ara running on. They are dealing with ab-
stract machines, not real ones. '

18 AN ABSTRACT QR A REAL UNIVAC?

+ When | joined the du Pont |r:>v::|nm[:ra|rr1.nr in 1956 my first assignment was to learn how to
pragram the Eckert & Mauchly [Remington Rand] LINIVAC,

= All the relevant definitions and rules (thidy or so instructions, the logical structure of the
registers and memory, and so on) wera given in the UNIVAC PROGRAMMING MANUAL. |
studied this formal system and thus learmed to program the abstract UNIVAC.

+ The du Pont company's real UMIVAC was kept behind locked doors. To run UNIVAC
programs, we handed them to the receptionist.

« For all we knew, there mignt have been no real UNIWAC behind those locked doors. What it
the company had simply hired a team of very fast humans to simulate #? Except for the
running time, how could we have detected the difference?

19 THE ABSTRACT FORTRAN MACHINE

+ In 1859 FORTRAN was a wonderful libaration from machine-language programming. Mow
oné esuld program in & much higher-level and more natural language.

« To run FORTRAN programs, we again simply handed them to the rer::aplinnist:, but now we
knew for certain that there was no real FORTRAN machine behind those doors.

20 THE ABSTRACT LISP MACHINE

+ John McCarthy and his MIT team designed the LISP language and the abstract LISP
machine in drcder to ba abla to compute directly and naturally with recursive functions and
data structures. At that time, real LISP machines did not exist.

+ LISP was an even greater libsration than FORTRANM. It was at a much mnneptua.l higher-
level, directly baged on a powarful formal logic—the lambda-calculus of Alonzo Church—
and was an excellent approximation to a working version of this exceedingly abstract logical
calculus,

* Later, real hardware LISP machines were indeed actually built, but ironically they did not
survive compstition from the abstract LISP machines simulated efficiently on Sun work
stations and other general purpose computers.

21 IDEALIZED NORMAL FORM MACHINES

+ These are the absiract ‘reduction’ machines implicit in e.g. the lambda-calculus and other
rewriting systems such as Curry's combinatory logic

* The states of a normal form machine are exprassions of a formal languags
states = expressions
transitions = rewritings
terminal = unrewritable = in nermal form

* t0 use such a normal form machine, one types in an expression as input and receives as
output an eguivalemt expression in normal form :

= this is the paradigm of all descriptive or declarative computation

22 INTERPRETERS AND COMPILERS

* The softwara technigue of simulating one machine on another machine has made it
possibie 1o deal directly with abstract machines as though they are real

= this is a form of *virtual reality’

* Today's FORTRAN, LISP, PROLOG (eic.) users can expect to be able to run their programs
on almost any real machine. The user can simply ignare the question of what the actual
hardware is that supports the illusion that the abstract machine exists.

Landin long ago brilliantly made the case
(slide 23) that all modern programming languages
are essentially just the lambda calculus in one or
other shallow disguise, and that this will continue
to be so far into the foture. Perhaps we would to-
day want to generalize his thesis to say that pro-
gramming languages are and always will be really
systems of logic in disguise.

The consequences of distinguishing between
abstract and real machines extend even to the ad-
ministrative patterns in educational and research
organizations, It has become common to distin-
guish between computer science and computer en-
gineering (slide 24),

In Al itself, a similar distinction—between
real and abstract humans—sheds light on much
that goes on in the field. Slide 25 shows a couple
of quotations from the writings of Marvin Minsky,
who has stood all along for the relative
unimportance of logic for Al

Minsky's view is that logic is only one among
many principles and ideas which are important for
Al and one must surely agree with him. Ii seems
to me that if the mission of Al is to reproduce what

it is that we find in real humans that we call intelli-
gent thinking and behavior, then logic is indsed
only a small part of it. Logic is based on a kind of
retrospective reconstruction by logicians of what
minds can do. But the mind doesn’t seem actually
seem to do it that way, We really don't yet know
how it does it. Logic doesn’t explain, as Minsky
says, how we think. It's only a very artificial
model of thinking which does not fit the facts. As
you know, many people have argued passionately
for and against this idea. McCarthy still insists
that you could, even though nature does not saem
to have done it this way, you cowld have an intelli-
gent thinking agent which put logic much more in
the center of the picture. The beauty of this claim
is that it can be tested, and it will be tested. We
will eventually know whether MeCarthy is right
about this,. We just need a few more decades, [
think, of trying to make it happen.

Slide 26 suggests that the distinction between
real and abstract humans is in fact a very useful
methodological one which explains much of what
is done and written in artificial intelligence and
cognitive science research. As long as we keep

23

sion being reduced to normal form

PETER LANDIN'G, THESIS
THE NEXT 700 PROGRAMMING LANGUAGES, 1964

All programming languages are nothing but the lambda-calculus in disguise. They are simply
the lambda-calculus, sweelened with syntactic sugar

« Landin's own SECD machine is a sophisticated normal form machine for the lambds-
calculug which uses four stacks 10 decompose and reassemble the structure of the expres-

29

COMPUTER SCIENGE AND COMPUTER ENGINEERING

+ Computer science is a logical discipline whose subject matter is that of abstract comput-
ers and abstract computation. Since one can always simulate an abstract machine, there
is really no need to build a hardware version of it just to see how it behaves.

* On the other hand, computer engineering is all about building real machines and
improving the necessary hardware technology. '

* This discipline has produced miracles and shows every sign of continuing to do so

» Marvin Minsky, 1985:

together

famous Turing Test

25 LOGIC AND PSYCHOLOGY

« [do not mean to say that there is anything wrong with lagic; | only object to the assumption
that ordinary reasoning is largely based on it '

« Logic fs only a small part of owr great accumiiation of different, useful ways lo cha:n things

« Minsky would agree that our essential programming knowledge is abstract and logical

« Turing's fundamental axiom of artificial intelligence is that cur essential knuvﬂaﬂgs of
gther humans, and even of ourselves, is of this same character. This is the idea behind the

clear the difference between trving to understand
and explain how, on the one hand, nature has in
fact managed to create intelligent creatores and, on
the other hand, how we might artificially create
themn, using whatever ideas and technologies are
available and appropriate, there need be ne contro-
versy. Even so, 1 suppose there ave those who pre-
fer to believe that even in the attempt to make in-
telligence happen in artifacts, the best approach to
follow is to imitate nature as far as possible.

Slide 27 indeed suggests that in the case of so-
called expert systems it is probably the “artificial’
expert systems, using artificial techniques and un-
natural methods, which will continue 1o perform
better than those based on 2etual human expertise.

Finally, here are two quotations (slide 28)

which seem o me to characterize very well the fu-
ture relationship of logic to both to computing and
to artificial intelligence.

Martin Davis is a distinguished pionger of
computational legic whose own contributions,
starting in the early 1950, have continued 1o be
extremnely influential in the development of logic
programming and automated deduction.

Helmut Schnelle is a cognitive scientist who
has closely studied von Neumann's attempt (in his
theory of self-reproducing cellular automata) to
provide a formal but ‘natural’ logical reconstrac-
tion of living and intelligent organisms. He finds,
in the different approaches of Turing and von
MNeumann to this problem, essentially the same
distinction between abstract and real that we have

26 ABSTRACT AND REAL HUMANS

= McCullogh-Pitts notation is intended as an abstract moded of the biological neuran.and thus
there is an implicit claim that & complete brain and nervous system can be raprudur::ad
artificially as a suitable network of these elements

* The gap between human and artificial intefigence s still immense. Godel and Post believed
that a satisfactory theory of mathematical intefligence must take account of nonfinitary and
creative reasoning. Should we hope for another Turing to produce such a theory?

+ Turing's use of evident human limitations, the discovery by McCullogh and Pitts that neuro-
nai nets can act as finite aulomata, and the rapid increase In the power of computers, have
led 1o a widespread acceptance of computers as the model for the workings of a central
nervous system and for intelligent behavior.

Robin Gandy, 1988

~30-

late the intuitive metheds which they use

was once expectad

effective

27 LOGIC AND EXPERT SYSTEMS
+ expert systems are models of only very narrow and limited subsets of human knowledge

+ it is ironic that high-level expertise (such as that of an equation solver, or a medical
diagnostician or a mass spectroscopist) is easier to formalize as a collection of logical rules
and axioms than is a low-level skill (such as riding a bicycle or driving a taxi)

= most human cognitive skills are intuitive and subconscious
* interviews with experts will not uncover their expertise if the experts cannot explicitly articu-

« natural axpert systems will therefore probably not in future be as common or 28 effective as

+ artiticial expert systems need not be based on human originals—for example, Deep
Thought, or Stiller's completely inhuman chess endgame programs—in order to be

+ Martin Davis, 1984:

+ Helmut Schnelle, 1988;

28 LOGIC AND THE FUTURE

* the connection between logic and computing continues to be a vital one, and the lesson of
universality, of the possibifity of replacing the construction of diverse pleces of hardware by
the programiming of a single all-purpose device continues to be relevant.

* Turing's work provided an important starting point for von Neumann. Turing seemed to
believe that his modeis were sufficient for a logical and practical understanding of
human behavior. In contrast to this, von Neumnann thought that insight into architecture
and composition of organisms is essential, at least where proofs of feasibiiity in principle
are not suifficient but practical understanding is required

been concerned with throughout this lecture,

Let me then try to summarize the main points
of my lecture {slide 29).

L have given reasons why [believe that logicis
at the heart of computer science. I have also said
why, although it is an important par: of artificial
intelligence, I believe it is not the central one. As
time goes on, | am sure that we shall see logic be-
come even more dominant in computer science, In

artificial intefligence we will simply see it taking -

its place as one among many other relevant disci-
plines: psychology, neuroscience, linguistics, and
g0 forth. I have maintained that in computer sci-

ence and in the history of the computer, there have
been only two really outstanding figures, Turing
and von Neumann. They have both dominated the
scene from the beginning, but it is Turing who was
scientifically the more important of the two. His is
the one single name which epitomizes the whole
of computer science. As far as artificial intelli-
gence is concerned, there is no doubt that Turing
stands alone, far above the rest.

It is therefore fitting to remind ourselves that
June 23, 1992 is the 80th anniversary of Turing’s
birth, This splendid conference—the grand finale
of the great Fifth Generation Computer Systems

40-

intelligence

and technology have collaborated fruitfully

in the collzbaration

figures, with Turing as the primary figure.

* In artificial intelligence, Turing's role is unique.

29 CONCLUSIONS
* Legic is, and always has been, a major theme in both computer science and artificial

* In the historical development of the computer and of computer science, we find that logic
* contrary 1o popular beliefs, however, logic has always been very much the leading partner

» In the future of computer science, this parinership will continue and become even closer, but
logic will assume even greater importance than in the past

* On the other hand, in artificial intelligence, logic shares the field with many other disci-
plines: psychology, neuroscience, linguistics, robotics, cognitive science, 1o name anly
afew, and It is of only limited relative importance

* In computer science in general, Turing and von Neumann are the cutstanding historical

Preject—and what it represents for all of us, is not
only a most appropriate celebration of Turing's
birthday, bur also a direct commemoration of his
remarkable scientific contributions and the ideas
that he created and championed. He wounld surely
fuive warmly appreciated the occasion.

Thank vou.

Question: Iappreciate your talk very much. 1do
have one comment about understanding the role of
logic in computer science. It is that we may per-
haps compare it with the contrasting roles of ratio-
nalism and empiricism in philosophy. Logic is the
rationalism aspect of the discipline of compurer
science. Logic programming tries to express ev-
erything rationally, in terms of logical reasoning,
However, the real world is empirical, and in trying
1o understand how the real world is structured we
may have to use extra-logical, empirical tech-
niques. For example, in computer science, object-
oriented programming is an empirica! approach to
modeling the world, whereas logic programming
is a rationalist approach. So as we do applications
I think that we have 10 go beyond logic in com-

puter science as well as in artificial inelligence.

Answer: Yes. I agree with that. It's essentially
what [think Minsky is telling us in the particular
case ol understanding human behavior, bot it also
applies maore generally across the board te all natu-
ral phenomena and processes. What you find in
nature probably doesn't have much logic init. An
important thing te stress, however, and one which
doesn't come out in your analogy, is that logic
may well have a much more important part to play
in artifacts (which, by definition, don’t occur in
nature). We ourselves design and build artifacts,
and in doing so we are not necessarily limited to
the ideas and techniques which nature has evolved
for herself. In the sciences of the artificial, to use
Herb Simon’s phrase, logic can take a much more
central role, and it does, and it has, and it will,
That's the part of my thesis which [would like to
emphasize. Computers are not found in nature: we
build them. In doing so we can therefore use logic
as our major guiding idea, and make them, as you
say, rational.

-41-

