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Abstract

The distributed hash table is a parallelization of the hash
table obtained by dividing the table into subtables of
equal size and allocating them to the processors. It can
handle a number of search/insert operations simultane-
ously, increasing the throughput by up to p times that of
the sequential version, where p is the number of proces-
sore. However, in the average case, the peak throughput
is not attained due to load imbalance.

It is clear that the table size m must grow at least
linearly in p to balance the lead. In this paper, we
study the rate of growth of m relative to p necessary to
maintain the load balance on the average {or to make
it approach the perfect load balance). It furns out
that linear growth is not enough, bul that moderate
growth—namely w(plog® p)—is sufficient. The proba-
bilistic model we used is fairly general and can be applied
to other load balancing problems,

We also discuss communication overheads, and find
that, in the case of mesh multicomputers, unless the net-
work channel bandwidth grows sufficiently as p grows,
the network will eventually become a performance bot-
tleneck far distributed hash tables.

1 Introduction

Parallel computation achieves speedup over sequential
computation by sharing the computational load ameng
processors. The load balance between processors is cen-
tral in determining the parallel runtime (though other
factors also affect performance). Unlike uniform com-
putational tasks in which almost perfect load balance is
achieved by aliocating dala uniformly to the processors,
nen-uniform computational tasks such as search prob-
lems pose non-trivial load balancing problems.

In most non-uniformn tasks, worst-case compula-
tional complexity is far larger than average-case com-
plexity; and the worst case s usually a wvery rare
case. Thus, the study of aversge case performance
is important, and it has been conducted for sort-
ing and searching [Knuth 1973], optimization prob-
lems |Coffman and Lueker 1981), 2nd many others

[Vitter and Flajolet 1990]. However, there seems to
have been little work on average-case performance anal-
ysis in regard to parallel algerithms, especially on
highly-parallel computers, a notable exception bemng
[Kruskal and Weiss 1985).

In this paper, we study the average-case load balance
of distributed hash tables on highly parallel computers,
A distributed hash table is & parallelization of & hash ta-
ble, in which the table is divided into subtables of equal
size to be allocated to the processors. It can handle a
number of search/insect operations simmltaneously, in-
creasing the throughput up to p times that of the se-
quential version, where p is the number of processors,

However, in average cases, the peak throughput is not
attained due to load imbalance. Intuitively, the more
buckets allocated to each processor, the better the aver-
age load balance becomes. It is clear that under a con-
stant load factor & = n/m (n is the number of elements
in the table, m is the table size), m must grow al least
linearly in p Lo balance the load. We shall investigate the
necessary/sufficient rate of growth of m relative to p so
that the load balance factor—the average processor load
divided by the maximum processor load—approaches 1
as p— 0o, [t turns out that linear growth is not enough,
but that moderate growth—namely, w(plog® p)—is suf-
ficient. This means that the distributed hash table is
a data structure that cen exploit the massive computa-
tional power of highly parallel computers, with problems
of a reasonable size,

We alse briefly discuss communication overheads on
multicomputers, and find that, in the case of mesh multi-
compitters, unless the network channel bandwidth grows
sufficiently as p grows, the network will eventually be-
come a performance bottleneck for distributed hash ta-
bles.

The test of the paper is organized as follows. Sec-
tion 2 describes the distributed hash table and de-
fines the problem we shall analyze. The terminology
of average-case scalability analysis is introduced in Sec-
tion 3, The analysis of load balance is presented in Sec-
tion 4. The full proofs of the propesitions appear in
[Kimura and Ichiyoshi 1991]. The communication over-
heads are considerad in Section 5. The last section sum-
marizes the paper.
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2 Distributed Hash Tables

2.1 Distributed Hash Tables

The distributed hash table is a parallelization of the hash
table. A hash table of size m = py is divided into subta-
bles of equal size g and the subtables are allocated to p
processors, The two most simple bucket allocations are:

The block alloeation

The k-th bucket (k 2 1) belongs to the (|(k=1)/g]+
1)-th subtable,! and

The modular allocation

The k-th bucket (& = 1) belongs to the {({k—1) mod
7} 4+ 1)-th processor,

At the beginning of a hash operation (search or insert)
for an element x, the hash function is computed for x to
generate a number fi (1 < & < m), and the element (or
the key) is cispatched to the processor which contains
the fi-th bucket. The rest of the operation is processed
at the target processor,

For better pevformance, it is desivable to maximize the
locality. Thus, when the indivect chaining scheme is em-
ployed for hash collision, the entire hash chain for a given
bucket should be contained in the same processor which
contains the buckel. With epen addressing, linear prob-
ing has the best locality {under the allscation scheme
{1}) but its performance degrades quickly as the load fac-
tor increases. Other open addressing schemes have better
sequential performance characteristics [Knuth 1973], but
have less locality. For this reason and also for simplic-
ity of analysis, we choose the indirect chaining scheme.
The bucket allocation scheme does not influence the load
balance analysis in this case,

The absence of a single entry point that can hecome
a bottleneck makes the distributed hash table a suitable
data structure for highly parallel pracessing. The peak
threughput increases linearly with the number of proces-
sors. The problem is: When does the “real” performance
approach the “peak” performance? When elements are
evenly distributed over the processors, linear growth in
the number of data elements is sufficient for linear growth
in performance. On the other hand, in the worst case,
all elements in the hash table might belong to a single
subiable so that performance does not inecrease at all,
We are not interested in these two extremes, but in av-
erage performance, just as we are more interested in the
average complexity of hash operations in sequential hash
tables rather than worst-case complexity.

"When p does not divide m, taking g = [m/p] works but it
may lead to a sub-oplimal load balance (e, consider the case
m o= p+1). A better load belance can be reslized by & mapping
funetion which is a little more complicated than simple divisien,

2.2 Problem Definition

There can be a number of uses of hash tables depend-
ing on the application. Here we examine the following
particular use of the hash table.

Concurrent Data Generation, Search and Inser-
tion

Initially, there is an “old" distributed hash table con-
taining “old elements” and an empty “new” distributed
hash table. The old and new tables are of the same size
m = pq (p is the number of processors and g is the num-
ber of buckets assigned to each processor) and use the
sarne hash function. Also, some “seeds” of new elements
are distributed randomly across the processors.

(1) Coneurrent Data Generation

Fach processor penerates “new elements” from the
allocated seeds. It is assumed that the time it takes
cach processor to generate new elements is propor-
tional to the number of generated elements.

(2) Concurrent Data Dispatch

Each processor computes the hash values of the new
elements and dispatches the elements to the target
processors accordingly.

{2) Coneurrent Search

Each processor does a search in the old table for
each of the new elemnents it has received.

{4) Concurrent Insert

Each processor inserts those new elements that are
not found in the old table into the new table. No in-
terprocessor communication arises, because the old
and new hash tables use the same hash function.

The above usage may seem a little artificial, but the
probabilistic model and the analysis for it should be eas-
ily applicable to other usages. In the analysis of load
balance, the data dispatch step is ignored (equivalently,
instantaneous communication is assumed). This is dis-
cussed in Section 5,

3 Scalability Analysis

Average Speedup and Efficiency We denote the se-
quential runtime by T'(1) and the parallel runtime us-
ing p processors by T(p). The speedup is defined by
5(p) = T(1)/T(p), and the efficiency by E(p) = 5(p)/p.
Efficiency is the ratio between the “real” performance
{obtained for a particular problem instance) and the
“peak” performance of the paraliel computer. In the
absence of speculative computation, the efficiency is less
than or equal to 1.



Since we intend to engage ourselves in an average-case
analysis, we need to define the “average speedup” and
the “average efficiency”.

Definition 1 We define the average collective speedup
alp) by £{T(1}) /E(T{p)) {E(X) denctes the expecta-
tion of X) and the average collective efficiency n(p) by
z(p)/p.

The reason why we analyze the above defined aver-
age collective specdup, and not the expected speedup
in the literal sense—E(T(1)/T(p))—is that: (1) it is
much simpler to analyze E{T(1})/E{T(p}) than ana-
lyze E(T(1)/T(p)}, and (2) in cases where any average
speadup figure is meaningful our definition is a better
indicator of overall speedup. Suppose we run & num-
ber of instances [y, [s, ... from some problem class, then
the collective speedup defined by T (L, L)/ i Tip, I;)
(T(1, ;) and T(p,[;) are sequential and parallel run-
times for problem instance [;) and represent overall
apeedup.  This 15 more meaningful than any one of
arithmetical mean, geometric mean, or harmonic mean
that may be calculated from the individual speedups
T(1,T)/T(p, 7).

Scalability Analysis and Iscefficiency We would
like to study the behavior of 5(p) as p becomes very large.
In general, for a fixed amount of total compuiation W,
7(p) decreases as p increases, because there is only finite
parallelism in a fixed problem. On the other hand, in
many parallel programs, for a fixed p, n(p) increases as
W grows. Kumar and Rao [1987] intreduced the notion
of isegfficiency: if W needs to grow according to f{p) to
maintain an efficiency E, then fip) iz defined to be the
isocfficiency function for efficiency E. A rapid rate of
growth in the isoelficiency function indicates that near-
peak performance of 2 large-seale parallel computer can
be attained only when very—sometimes unrealistically—
large problems are run. Such a parallel algorithm andfor
data structure is not suitable for utilizing a large-scale
parallel computer. (We will refer to the iscefficiency by
this original definition by ezact isﬂcﬂicizncy,]

Since it is sometimes impossible to maintain an exact
£ becanse of the discrete nature of the problem, the
following weaker definitions of isoefficiency may be more
suitable or easier 1o handle,

Asymptotic Isoefficiency f is an asympiotic isoeffi-
ciency function for £ if

Jln;uq{p} = E under W = f{p).

Asymptotic Super-Isoefficiency f is an ssympiofic
super-isoefficiency function for B if

Iipl:r‘_.._il;lf'l']'[p} = E ander W= f{p).
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[ is an asymptotic super-isoefficiency function if it is
an asymptotic super-isoefficiency funstion for some
E =0, 1.e., the efficiency is bounded away from 0 as
P — ca.

An exact isoefficiency function for £ iz an asymptotic
isoefficiency function for F; and an asymptotic isoefhi-
clency function for E is an asymplotic super-iscefliciency
function for E.

In the analysis of load balance, we study the bal-
ance of essential computation. Essential computation is
the total computation performed by processors exclud-
ing the parallelization overheads. The amount of essen-
tial computation is equal to pT(p) minus the total over-
head time spent on things such as message handling and
idle time. In the absence of speculative computation, we
can identify the amount of essential computation with
the scquential runtime® The terminology for load bal-
ance analysis s defined like that for speedup/efficiency
analysis, except thal “essential computation” replaces
“runtime™: the fofal esseniial compufation corresponds
to sequential runlime; mazimum processor load corre
sponds to parallel runtime; and load belance factor®
corresponds to efficiency. We use the same terminol-
ogy for isoefficiency functions. In the following analysis,
we study asymptotic isoefficiency for | and asymptotic
super-isoeffciency. [Since we are not dealing with ex-
act isoefficiency, we drop the adjective “asymptotic” for
brevity.)

4 Analysis of Load Balance

4.1 Assumptions

For the sake of probabilistic analysis, we consider a maodal
in which the following values are treated as random vari-
ables (RVs): the number of cld and new elements belong-
ing to the j-th bucket on the é-th processor (1 < i < p,
1 £ 7 < q) denoted by Ay and B;; respectively, and the
number of new elements generated at the i-th processor
denoted by ;.

First, we make some assumptions on the distributions
of these random varizbles. The two alternative mod-
els of hash tables are the Bernoulli model in which the
number of elements n inserted in m buckets is fixed
(e = n/m) and the probability that an element has
a given hash wvaloe is unifermly 1/m, and the Pois-
son model in which the cccupancy of each bucket is
en independent Poissen random variable with parame.
ter o [Vitter and Flajolet 1990]. We choose the Pois-
son model, becanse it is simpler to analyze directly, and
because, with regard to the distributions of maximum

f we ignore various sequential overheads such as cache miss,
process switching, and paging,
*Not to be confused with the load factor of hash tables.
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bucket occupancy in which we are interested, those un-
der the Bernoulli model approach those under the Pois-
son model as m — oo [Kolchin «f al. 1978).

For a similar reason, we assume that @ (1 <4 < p) are
independent identically distributed {i.i.d.) random vari-
ables having a Poisson distribution with some parameter
7. It follows that the total number of new elements has
a Poisson distribution with parameter py, and by the as-
sumption on the hash functien, By's are 1.1.d. random
variables having & Poisson distribution with parameter
8 = py/m = y/q. We assume that load factors & and
A of the old and new hash tables are constant (do not
change with p, g). -

To summarize, A;; and By are i.i.d. random variables
having a Poisson distribution with parameters o and 3,
and G are L.i.d. random variables with a Poisson distri-
bution with parameter gf. Note that Gi's and By's are
not independent because T ) = Zij Bij.

4.2 Essential Computation and Load
Balance Factor

Since each data generation is assumed to take the same
time, the essential computation of the data generation

step et
W= % G,
1Sip
(ignoring the constant factor).

As for the search step, some searches are successful
{the new element. is found in the old table) and others
are unsuccessiul, For simplicity of analysis, we choose a
pessimistic estimate of the essential computation and as-
sume that all searches are unsuccessful, We also assume
that an unsuccessful search invelves comparison of the
new elements against all the old elements in the bucket.
Thus, the number of comparisons made by an unsuccess-
ful search in the bucket with A;; elements is A;; +1 (the
number of elements plus one for the hash table slot con-
taining the pointer to the collision chain). Therefore, the
essential compulation of the search step is:

H"I,En'r{ﬂ_ = Z z {Au + I}E.'j.

12i<n 1555y

(agnin ignoring the constant facter).

We make a similar assumption for the insert step: ev-
ery insert is done after an unsuccessful search in the new
table. Thus, the essential computation of the search step
for bucket ; on processor 1 is:

(1) =By(By +1)/2,

ael< 8;;—1

and the total essential computation for the search atep
is

Winsers = Z Z -E!'_I;EEI}' + 1];"2.

1Zigp 1Li5g

Thus, the total essential computation is:
W)= 3 (W] + W+ W"),
1<igp
where

Wi=G, W= Thzjel Ay + 1)B;, and
','-i-"."" = ElgquEﬁIBﬁ + I]f2.
The maximum processor load is
Wip) = max (W] + W' + W[")

The average load balance
factor n(p) is E{W(1))/pE (W(p)). We would like to
know what rate of growth of q is necessary/sufficient so
that 5(p) — | as p — oo,

Since
E ( 2 (Wie Wi+ H"ﬂ)
12i%s
{5 ) (5
1€i<p 1<igp l=igp
= p(E (Wi} + E(W)) -+ BE(W"),
and
E (e W0+ WE 4+ W)
' il
< (i) + 2 (g w7) + £ (g ).
we have
E{(Wi) + E(WY') + E (W)
'?[p] E ¥ i W :
# (e ) + & (g we) + 5 (g w7)
Thus, if

then n(p) — 1. The above are also necessary conditions,
because all three summands are significant as p — oco.

The random variable Gy, having a Poissen distribution
with parameter ¢ff, has the same distribution as the sum
of g i.i.d. random variables Hy; (1 < j < q) with a Pois-
son distribution with parameter 8, Thus, we are led to
the study of the average maximum of p sums of ¢ ii.d.
random variables Wy; (1 < i <p, 1 < < q) with a
distribution that does not change with p and ¢. In our
distributed hash table example, we are interssted in the
cases in which each W); is either a Poisson variable, the
product of two Poisson variables, or a polynomial of a
Poisson variable.



4.3 Average Maximum of Sum of i.i.d.
Random Variables

We give shetches of the proofs or cite the results. The
details are presented in [Kimura and Ichiyeshi 1991],

4.3.1 Poisson Variable

The asymptotic distribution of the mezimum bucket
eceupancy has been  analyzed by Kolchin el al
[1078].  The following is the result as cited in
[Vitter and Flajolet 1990].

Theorem 1 (Kolchin et al.) If X, (1 <1 < p) are

i.1.d, randem variables having a Poisson distribufion with
parameter u, the expected marimum bucket occupancy is

M. =8 (max Xij { ’ %"FF' = oflog p);
23ty g if p=wl(logp),
where b is an integer greater than p such that

e-uFEH - E . e'*"p.‘
(B 1)!

Tp B!
HWhen p= E{l:l, B |ogpf1ng1ngp.

The proof is based on the observation that, as p be-
cornes large, P {M, > b} as a function of b approaches
the step function having value 1 for b smaller than band
0 for b larger than b, and the expectation of M, is equal
to its summation from b= 0 to b = ca.

We extend Kaolchin's theorem to the product of Poisson
variables and polynomials of a Polsson variable,

1.3.2 Product of Two Poisson Variables

We introdoce a partial order on the class A4 of non-
negative random variables with a finite mean.

Definition 2 For X,Y € M, we define X < ¥ iff
E{max{X, c}) < E(max{¥,c}) for all ¢ = 0.

There are a number of natural properties concerning
thiz partial ceder. For example, if X < ¥V and Z is
independent of X, ¥ then X + 2 <Y 4+ 2, XZ <Y Z,
max{X, Z} < max{¥, Z}, etc. Note X < Fyand X = };
do not imply 2X < ¥ +¥;. The utility of = in analyzing
the expected maximum is illustrated by the following
lemma.,

Lemima 1 Let X; {1l < ¢ < p) and ¥; {1 = 4
be iid. random variables distributed az X and
X <Y, then

< pl
Yo f
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SKETCH OF PROOF:
max{ Xy, Xa, ..., X} < max{¥,Xz,...
~ - < max{}y,...,¥,} O

For the convex sum of ii.d. variables, we have the
following lemma.

Lemma 2 Let X; (1 i < p) be i.id. random variables
diglributed as X. For all o; 2 0 {1 < ¢ < p) sveh thai
g e tag=1, a4+ X, < X,

SKETCH ofF PROOF: Let ay,a; = 0 and a; + a; = 1.
For arbitrary ¢ = 0, max{apXy + ay X5, ¢} + max{a Az +
ap Xy, ¢} £ max{Xy, c}+max{X;, ¢} The expectation of
the left hand side is equal to 28 (max{a1X1 + aaXs, c}),
and that of the right hand side is

5 {max{X;, c} + max{Xs,c})

= E(max{Xi,c})+ E (max{Xs,e])

= 2E (max{X,e}).
Thus, a3 X + agAy < X. The case for p > 2 can be
reduced to p— 1 using the above. 0O

Finally, the following lemma gives an upper bound on
the sum of the product of two sets of 1.i.d. random vari-
ables.
Lemma § fet X; (1 =<7 <rg)and ¥; {1 <i<vs) be
v.i.d. random varizbles. We have
Xl“+--'+XTIKJ '{{Xl £ +Xr){1?. ++Ys}

SKETCH OF PROOF: We can prove X ¥+ - XY+ 2
XYy +---+¥)+ Z (Z independent of Xz, ¥js) by con-
ditioning & and vaing Lemma 2. By repeatedly “collect-
ing" the Xi;Yy;'s and replacing them with the bracketed
terms, we have the desired result. O
Theorem 2 Let X; (1 =i <gqg)and ¥; (1 <1< g} be
f.0.d. having e Poisson distribufion with paremefer o and

g Ife= w[logi r), then

E(mﬂ P Xij}'i,-) ~q&E=E( 2 XUYU]

1SS 1gi2 157%s

r-xr}

fas p—+ oo).
SKETCH OF PROOF: Let g =r?,
E ({gg[xum +- JL',-,Y,—.,})
E (m"‘{Xu +ot X )Y+ 4 Y.'r])

(Pgmgxu““L )E(H-:[Y"" ])

by the Lemnma 2 and 3. The sum of r ii.d. Poisson
variables with parameter o is distributed as a Poisson
variable with parameter ree. Thus, if r = w(log p), then

1A

1A

E(]]‘.E?I:Xn ok X)) ~ra= B (X o+ Xay)

by Kolchin's theorem. This is similar for the sum of ¥;,
This 15 what we needed. O
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4.3.3 Polynomial of Poizsson Variable

The treatment of upper bounds on the expected maxi-
mum of the sums of a polynomial of i.i.d. random vari-
ables is more involved. We only list the result.

Theorem 3 Let X; {1 <i < g} be i.i.d. having a Pois-
son distribution with porameter oo, and (X)) be & poly-
nominl n_i" degree d = 0 with non-negative coefficients. If
g = w(log® p}, then

E ({E?ﬁ C[Xij:') ~gc(a)=E ( E "3[}{5:«':‘)
SIEP cTeg 1555e

fas p — 00/, where ofX) = ai X + ... 4 a3 X1 | g2,
and c*(X) = a3X% + - + @} X' + a3 (X¥ = X(X -
L) (X — k 4+ 1) is the falling power of X ).

As for corresponding lower bounds on the necessary
growth raie of ¢, we only know ab present that if

¢ = o{(log p/ log log p)?), the ratio between the expected
maximum and the mean tends to oo as p — oo.

4.4 The Iscefficiency for Load Balance
Now, let us suppose ¢ = w(log® p). Then,

E ('-,Sx s.-) ~E(G) (p— o0)

is immediate from Kolchin's theorem. Alse,

E ({Ea.,:x 3 (A + 1}ﬁu)

1<igg
< E| max Ay By Imax
(sﬂ-,s%? 8 “) (55 ; )
E ( E .-"luﬂi,;) + K ( E 'Hli)
1555y 1552y

by Kolchin's theorem and the proposition for the product
of two Poisson variables. Finally, since X(X +1)/2is a
polynomial of degree 2,

P (mﬂx T B-'.-"IB;+1 ) ~E ( o5 31;'{3; +1])

1915P ) ci2q 2 15754

if 4 = w(log® p).

We have shown that if ¢ = w(log® p), the average col-
lective load balance factor n(p) — 1 as p — oo. There-
fore, W = O(pqg) = wiplog®p) is a sufficient condition
for isoefficiency for 1.

4.5 Simulation

A simple simulation program was run to test the applica-

bility of the asymptotic analysis for p up to 4096, Fig. 1
shows the results for & = # = 4, p = 4, 15, 64, 256,

1024, and 4096 and ¢ = 1, Igp, lg°p, and lg*p (Ig de-
notes the logarithm with base 2), The experimental load
balance factors (on the vertical axis) are plotted against
the number of processors (on the horizontal axis). The
experimental load balance factor 7, for p, g are caleu-
lated by

E (E:sjslr wl")
maXycizp E‘.ls.fSW W{,‘ ]

where Wy; is one of Xi, Xy¥; and X ((a), (b)
and (c), respectively in the figure), and the average
MaXy<icp lequ H"','J' is calenlated from the result of 50
sitnulation runs.

Xy and Y); are generated according to the Bernoulli
model {ie., a table X|1.pg] is prepared, and n = pga
random numbﬁm z's with = = 0 were generated, each =
going to the ({z mod p) + 1)-th table entry, etc.). The
coefficient of variation (the ratio of standard deviation
to average) of max: gicp Treje Wi is larger for X and
XY than for X, and it decreases as p becomes larger or g
becomes larger. Table 1 gives the coefficients of variation
for p = 64 and 4005,

By and large, the results seem to confirm the agymp-
totic analysis. For the product and the second falling
power, @(log® p) appears to be a sufficient rate of growth
of g for 7 to converge to 1. Even logarithmic growth
{4 = lgp) does not lead to very poor load balance fac-
tors at least up to p = 4096 (approx. 0.5 for XV and
approx. 0.4 for X1%).

1-1_'=

5 Communication Overheads

We briefly discuss the communication overheads when
distributed hesh tables are implemented on  multi-
compiters. A multicomputer {also referred to as a
distributed-memory computer and a messagepassing
parzllel computer) consists of p identical processors con-
nected by some interconnection network. On such com-
puters, the time it takes to transfer & message of length
L (in words) from a processor to another which is 1
hops away in the absence of network contention® is
t,+in D41y L, where i, is the constant start-up time, 2, is
the per-hop time, and ¢, i the per-word communication
time. We choose the mesh architecture for considera-
tion (two-dimensional square meshes in particular) since
many of the recent “second generation” multicomputers
have such topologies. Exanrples include J-Machine, Intel
Paragon, and parallel inference machines Multi-PSI and
PIM/m.

We note that the average traveling distance of a ran-
dom message (a message from a randomly chosen proces-
sor i to another :|:au:ui|::.m13i-r chosen processor ¢, allowing
i=i)is 3, /F~ -1-] ~ /5 on the meshes. Tt is roughly

*Communication lateney in the absence of netwark contention
i called zere-load lafency,
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Figure 1: Experimental Load Balance Factors (o= = 4)

Table 1: Coefficients of Variation of Maximum Load (o = § = 4)
p =04 p = 4096
g=1| g=6|g=36] g=1]g=12]g=144
X [11.0% | 63%| 26% [ 71% | 3.5 1.0%
XY [178% [ 122% | 5.0% | 12.3% | 5% | 2.1
XWT24.8% [ 131% 6.0% | 15.4% 6.8% 2.6%

1/3 of the diameter of the network, which is 2(,/F - 1).
We can ecasily see that W = 0(p®?) is a necessary and
sufficient eondition for super-isoefficiency due to zero-
load latency, which is a situation worse than that due to
load imbalance.

In real networks, the impact of message collisions must
be taken into account. Instead of estimating the time
required for data dispatch using a precise model of con-
tention, we compare the amount of traffic generated by
random communication and the capacity of the network.
The traffic of a message is defined by the product of its
traveling distance and its length. It indicates how much
network resource {measured by channe] x network cycle
time) the message consumes, The capecity of & networl
iz defined by the sum of the bandwidth of all network
channels (channels thet connect routers). It indicates
fhe pealk throughput of the network. The basic fact is
that the time required for completely delivering a set of
messages is at least M/C, where M is the total message
traffic and  is the capacily of the network.

The average traffic generated by Thigigp Gi random
messages is ~ Ip*gfL (L is the constant message
length). The network capacity is 2,/8(\/F = 1)}/te ~
2p/ty. Thus, the average data dispatch time is at least
~ 1 /FgBLt, = B(/Bq) = w(T(1)/p}. This means that
meshes with constant channel bandwidth cannot sustain
the traffic generated by random communication, forcing
the efficiency to approach zero 28 p — ee. The network
channel bandwidth must grow at least in proportion to

/B, to maintain the communication latency under heavy
random communicabion within & constant factor of the
zero-load latency.

A similar analysis for the hypercube architecture
shows that W = (l{plogp) is a necessary and sufficient
condition for super-isoefficiency due to zero-load latency,
and is less than that due to load imbalance, and that the
network capacity has the same growth rate as that of the
random traffic

The degradation of performance due to network con-
tention in the mesh architecture has besn pointed out
by several authors. Gupta and Kumar [1990] have done
scalability analysis for a parallel FFT algorithm, and
Singh et al.  [1990] for parallel quicksort algorithms.
In both of these types of algorithms, the communication
patterns are nonlocal as in our distributed hash table
example, and the growth in the problem size makes lo-
cal computation per message increase very slowly. This
means that isoefficiency funetion must grow very rapidly
(nearly exponential). In our case, since local computa-
tion per message does not increase with problem size, it
is impossible to maintain efficiency as p gets larger.

Chur analysis does not suggest that hypercubes are su-
perior to mesh nelworks for building very larpe-scale mul-
ticomputers. On the contrary, Dally [1990] showed that
if we fix the wire bisection of the network, low dimen-
sional cubes (k-ary n-cubes with » small) provide larger
throughput than high dimensional cubes (k-ary n-cubes
with n large). We believe that future very large-scale
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multicomputers should provide network bandwidths that
can meet the traffic generated by nonlocal communica-
tion, if they are to support a wide variety of parallel
algorithms, not restricted to ones with high communi-
cation locality. Dally [1991] proposes a design of sueh
network architectures,

6 Conclusions

An asymptotic analysis of the load balance of distributed
hash tables was conducted, and it was found that, with &
constant load factor, m = w(p log® p) is & sufficient rate of
growth of table size m to balance the load as the num-
ber of processors p grows. Communication overheads
on multicomputers was also briefly discussed. In the
case of mesh multicomputers, unless the network chan-
nel bandwidth grows sufficiently as p grows, the network
will eventually become a performance bottleneck,

Because of the rather high overhesds in encoding
and decoding message packetz on the part of the
processing node, small- to medium-scale multicom-
pulers may not generate enough message iraffic to
make contention—or, even communication latency—
a performance bottleneck [Nakajima and Ichiyoshi 1990,
Chittor and Enbody 10901, But, the bottleneck is bound
to show itself in very large-scale multicomputers.

The probabilistic analysis in this paper is fairly
general and can be applied to similar load balance
problems, such as parallel A” search with distributed
OPEN lists [Kumar ef of. 1988, Huarg and Davis 1988,
Manzini 1990]. Kruskal and Weiss {1985] studied par-
allel runtimes when independent subtasks are allocated
on processors, with an (rather resirictive) assumption
that the distribution of subtask running times is one
with increasing failure rate (IFR). Their analysiz was
also asymptotic as the number of sublasks and proces-
sors becomes large. This paper differs from their study
mainly in that (1) the IFR assumption does not hold for
the distribution of hash operation costs, and (2) asymp-
totic (super-)isoefficiency is investigated.
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