PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by WCOT. © I1COT, 1992

859

Self-organizing Task Scheduling
for Parallel Execution of Logic Programs

Zheng Lin®

Department of Computer Science
University of Maryland
College Park, Maryland 20742
glin@cs.umd.edu

Abstract

A new scheduling echeme is proposed which direcls pro-
cessors to share the search space according to universal
task distribution rules obeyed by all processors involved.
Load balancing is achieved by altering the shape of a
gearch tree Lo remove Lhe so-called structural imbalance,
and following a statistically ewven distribution rule. A
condition for task distribution is derived which minimizes
the average parallel runtime. We present dala showing
the effectiveness of the proposed scheme. Simulation re-
sults from benchmark programs that can be found in
literature demonstrate that the method is able to effi-
ciently treal programs that render mostly fine-grained
parallel tasks under a typical existing scheduler. The
peak speed-up factors with the proposed technique ex-
ceed by a substantial margin that achieved by Aurora
Parallel Prolog on the same sel of benchmarks. :
Key Words: Efficiency, Logic programming, Load bal-
ancing, Paralle] execution, Scheduling, Speed-up.

1 Introduction

Load balancing is the key to obtaining maximum uti-
lization of a multiprocessor system. Parallel execution
of a logic program creates many tasks that need to be
assigned to processors at run time. Detecting available
tasks al run time and migrating tasks among processors
is expensive. This is particularly acute for systems in
which eommunication overhead is high due either to ar-
chitectural reasons, or to a large number of processors
being used, because a traditional task scheduler relies
heavily on shared resources, shared memory or intercon-
nection network, to perform its functions. As the scale
of & multiprocessor system grows, and the speed of im-
plementing resolution in local processor improves!, task
scheduling becomes increasingly frequent. However, the
speed of the scheduler cannot be expected to increase
proportionally if the scheduler comtinues to operate on
resources shared by all processors. This motivates us fo

*This work is supported by AFOSR grant AFOSR-91-0350 and NSF grand
IRI-88-16059.

search for schemes that are less reliant on resources sub-
ject to competition by all processors in a multiprocessor
system.

In this paper we discuss a scheduling scheme called seif-
erganizing scheduling which directs processors to share
the search space, the search tree defined implicitly by a
program, according to task distribution rules followed by
all processors. We discuss methods, including program
restructuring and a new interpretation of so-called choice
predicates, that help to alter the shape of the search tree
so as to facilitate maintaining load balance with a prob-
abilistic task distribution rule. We derive a condition
for task distribution that minimizes the paralle]l runtime.
Experimental data are presented showing the effective-
ness of the methods. Empirically, many programs that
were frequently used as Or-parallelism benchmarks in the
literature can be restructured to effectively exploit the
advantage provided by the proposed scheduling method.
For problems with fine-grained parallelism (e.g. a tightly
written 8-queens, zebra, turtles programs, running on 30
or more processors) whose speed-up {actors reach peaks
at less than 30 processors on a typical Or-parallel Prolog
system, we found that the peak speed-up factors can be
doubled or fripled using the self-organizing scheduling
method even without resorting to communication.

The paper is organized as follows: section 2 provides
background on parallel execution of logic programs; sec-
tion 3 discusses the proposed methods; section 4 presents
the experimental results, and comparison with existing
systems; section 5 discusses advantage and limitation of
the proposed method, and possible solutions; section &
describes related work; section 7 concludes our work.

2 Background

We consider a logic program to be a set of Horn clauses
written as,

If H —Ej,,Bz-,"..,B"

18peed of aequentinl Prolog implementation bas bean improved drastically
over the past several years. New developments have been reported [VES0]
which could lead to improvement in speed in the arder of soveral Limes Lhat
of the current best Prolog implementations.

B0

where ff, the head of the clause, is a positive literal
and the Bs, the bedy of the clause, are conjunction of
either positive of negated literals (possibly empty). The
intuitive interpretation of the above rule is if all B;% are
solved then I is considered solved.

A query is written as : —Q, where (] is a conjunction of
literals. Evaluation of @ starts with clause : —(, using

resolution [LloydB4] to derive an empty clause should -

one exist. There may be multiple selection of rules at
each resolution step. All solutions can be found by ex-
hausting every possible alternative in the program. The
resolution process can be visualized as the construction
of a search tree (backtracking tree, proof tree) for the
given query. Given a program and a query, the tree is
implicitly defined.

We define a partilion of the tree as a part of the tree
that consists of a set of nodes reachable from the root of
the tree. Two partition are digjoint if there is no commen
leaf node in the partitions. We note that a partition
always contains a path from the root.

2.1 Or-Parallel Execution of a Logic Program

Or-parallel execution of a logic program can be viewed as
having multiple processors (resolution engine, workers)
simultancously exploring different parts of a search tree
defined implicitly by the program. Execution starts with
the original goal sent to one of the workers. The goal is
expanded by resolving one of its atoms (the leftmost one
in the case of Prolog) with clauses which have matching
heads. If more then one patential subgoal is generated,
and if there are idle workers, the extra subgoals are made
available to the idle workers. Any unsolved subgoal that
remains is solved upon backtracking, The procedure re-
peats until all workers finish their tasks. In this paper,
we ate concerned only with the situation in which the
tree is finite and all solutions need to be found. In other
words, the entire search tree is explored.

Task scheduling consists of searching for available tasks
{or processors) and transferring a task. Transferring a
task from one processof to another means migrating the
state (variable bindings, control information, etc.) of
one processor corresponding to the task Lo another pro-
cessor. Different execution models handle task migration
differently [Ali90, But88, Mud91, Kale85, Lusk, Clockss,
(Giul%0], with the objective of balancing load distribu-
tion with as little communication as possible. A com-
mon characteristic of existing methods is that processors
cope with the dynamically changing search space by in-
terchanging messages to detect where a task is available
and migrate to the task. While this approach has an ob-
vious advantage of antomatically adapting to the shape
of the search tree, the overhead of scheduling can be un-
necessarily high especially for fine-grained tasks. This
will become clear when performance data is presented
from & typical Or-parallel system later in this paper.

With increasingly fast implementation of sequential
resclution engines, and even larger scale multiprocessor
gystems available, the issue of scheduling has added a
new element of how to keep up with the speed of the
resolution engine which operates primarily on local and
private resources. The computing power of fast local
resolution engines can be utilized fully only when the
scheduler is able to allocate tasks for them efficiently.

We investigate a method that divides the search space
and coordinates the search by following universal rules
rather than via communication among processors, We
describe the method and present performance results in
following sections,

3 Self-organizing Scheduling

The idea of the method is to allow each processor to
decide, locally, a partition (defined in above section) in
the search tree to explore, aceording to universal rules
agreed on by the whole system. It works as follows: ev-
ery pracessor obtains a copy of the original goal (the root
of the search tree), and performs a depth-first search on
the tree. At each node, a processor expands all children
of the node and claims those belonging to it according
to rules agreed on by every other processor in the sys-
tem, then processes them independently. The decision of
which path(s) to pursue is made locally by each proces-
sor. No dialogue among processors is necessary until the
first processor completes the task it claims.

An ideal situation would be that each processor ob-
tains a parlition of equal size. However, this is unlikely
unless the granularity of a task is predictable. We pro-
pose a program restructuring method which alters the
shape of the search tree so as to facilitate a probabilist
task distribution rule, which will be discussed later.

Or-parallel branches in the search tree are created by
the selected literal (for expansion) unifying the heads of
multiple rules, Imbalances of the tree are results of either
1} terminated branches (cut-offs) or 2) syntactic charac-
teristic of the program which results in an imbalanced
search tree, as will be referred to as structural imbalance
in the rest of the paper.

An important class of programs written in a logic pro-
gramming language are the generate-and-test programs,
where the generating phrase produces candidates, stored
in a structure, and the testing phrase retrieves and tests
a candidate from the structuge. Generating and testing
can be interwaiving. While we do not know yet how to
speculate on cut-offs, structural imbalances can be cured
by changing the way the candidates are retrieved.

To illustrate the idea, we examine a Prolog predicate,
the member predicate. This predicate, and its variation,
can be found in many normal style generate-and-test pro-
grams as a mean to create alternative choices. The pred-
icate is usually defined as,

member| X, [X|Y]).
member{ X, [H|Y]) :- member{X, Y.

Given a list as the second argument, member returns
an element from the list in the firsl arpument of the
predicate. All element can be retrieved eventually by
exhausting, recursively, all alternatives.

Predicates which represent multiple choices in the res-
olution are refered to as choice predicates, as oppose to
determinate predicates which has only one valid choice.
The member predicate defined above is & choice predicate
when called with an instantiated second argument and
uninstantiated first argument. Notice that whether or
not a predicate is a choice predicate is contingent on not
only the way it is written but also the argument pattern
it iz called with. A recursive choice predicate and a re-
cursive determinate predicate is not distingnishable syn-
tactically in Prolog. We assume choice predicate are ex-
plicitly identified with annotation suplied by users. This
assumption is consistent with Pra.r.‘t.iu: in many Exiati:ng
parallel Prolog systems[But88, Ali%0], which require ex-
plicitly distinetion between predicates to be evaluated
sequentially or in parallel.

At run time the normal style member predicate defined
above produces a search tree “biased” to the right: the
left child of 2 node in the tree correspends to the first
rule and the right subtree of a node corresponds to the
second recursive Tule of the definition. When this pred:-
cate is embeded in a program, a left branch so generated
represents one clement of the given list to be processed,
and a right branch represents the rest elements to be
processed. The difference eennot be observed by the res-
olution engines being at the parent node of the branches.
Furthermore, the degree of bias is magnified if the pred-
icate is called from inside a loop. '

3.1 Flattening Choice Predicates

Program Restructuring: Rﬂtriﬁiug members of a
given structure can be written in a non-recursive form.
For instance, the member predicate can be defined as,

mermber(X,[X|Y]).
member(X, [LX|YT).
member(X,._X|Y)).
member(X,[,_,_X|Y]).
member{X, [__._...X|Y]).
member(X, [X]Y]).
member(X, [, ., ., X|Y]).

if the number of elements the predicate will be called
with is known at compile time. Otherwise a recursive
rule has to be added to ensure the correctoness of the
definition,

member{X,|,_ ... |Y]) :- member(X,Y).

861

We consider this approach a partial solution to the

problem because it is not sefficient for all programs in
general. [t is a useful program pre-processing technique
until a new interpreter is built that takes care of general
cases as suggested below.
Flattening Choice Predicates at Run Time: We
propose that the evaluation of & choice predicate be sep-
arated from normal resolution so that choices can be rep-
resented in the search tree in a flatten form regardless
how the choice predicate is written. A choice predicate
is compiled into a special structure distinguishable from
the rest of the code and is evaluated at run time sepa-
rately. We identify such a structure as a choice graph.
The choice graph is intended to help expand all possible
alternatives al run time. I[deally it should also provide
mechanism to recognize “bogus™ choices, i.e. choices that
quickly lead to failure. For this purpose a guard can be
incorporated to validate an alternative. A predicate will
then be defined as

Head : =Guard : Body

At run time, the Guard iz evaluated before a branch is
actually expanded in the search tree. A choice graph is
constructed at compile-time as follows:

the choice predicate forms a node called the root;

the right-hand-side of each alternative definition is a
child node of the root. There is a directed arc from
the root to every child. A child node has two part,
the guard and the body. The body can contain an arc,
in position of the recursive call to the choice predi-
cate, leading to the toot of the graph, representing
recursion. We limit our discussion to direct recursion
in this paper.

At run time, a choice predicate is evaluated according
to its choice graph. Choices generated by the evalua-
tion become immediate children to the node af which the
choice predicate 15 calleld The tree so generated will
be as if the cheice predicates in the program were fat-
tened syntactically, achieving the same effect of removing
structural imbalances in the search tree while keeping the
original program intact. We note that to create a choice
branch in the search tree, it is sufficient to evaluate only
the guard and predicates positioned to the left of the
recursive call {the recursive arc in the choice graph).

3.2 Task Distribution Rules .

Effectiveness of the sell-organizing scheduling approach
lieg in whether a balaneced load distribution can be ob-
tained. By removing structural imbalanes of a program,
cut-offs are the only factor that remains cavsing imbal-
anced load distribution, Cut-offs exhibit high degree of

862

— A

Figure 1: Sample Probability Density Functions

uncertainty, or randomness. Here we investigate task dis-
tribution rules that minimizes average parallel runtime
in theary. In the next section, we study the effectiveness
of these rules on benchmark programs.

Until now, we have been using the term task without
formally defining it. A task is 2 sequence of consecutive
resolution steps including backtracking performed by a
processor. A Lask is a basic unil of work to be askgned
to one or more processor(s). It can be represented by a
node or several nodes in the search tree. . Task is created
dynamically at run time.

We assume that runtime is proportional to the num-
ber of nodes traversed. Runtime of a parallel execution
is the longest runtime of all processors. In the follow-
ing discussion, runtime i5 measured by number of nodes
traversed, as to simplify the description.

We prove, in the Appendix, the following result:

Theorem: Let N be the number of processors, let m

£ js an integer) be the number of tasks whose sizes are

statistically identical and exhibits the following property:
1. the probability density function is non-increasing, or

2. the probability density function is aymmetric with
respect to a positive central point.

then the average parallel runtime is minimized iff iden-
tical number of processors are assigned fo each of the
tasks,

The conditions in the theorem are satisfied by distriboe-
tion of shapes illustrated in 1, including, but not limited
to, uniform, exponential, and normal distributions,

Statistical identicality of tasks ean be guarantesd by
enforcing fairness in creating & task, that is, a particular
node from a pool of available nodes has equal chance to
be included in any task.

Problem remains as to how many tasks are to be cre-
ated under any particular node. We could create as many
tasks as the number of processors being present the node,
evenly dividing them among processors, or create only
one task, assigning it to all processors. In the former
case the search space iz divided among processors in the
fast possible way. In the latter case the search space
is not divided at the current mode of the search tree.
Redundant computation is incurred, but the ability to
adapt to the shape of the search tres can be improved as
will be explained later,

Here, we focused on the following task distribution
rules, both satisfying the statistical identicality condi-
tion:

Strategy [Latioe | Natine Crd
Ceogec-wplitiing | legan [<9 10
lazy-apliiting logy m [*]Mﬁ- L P {!:hl} . (Ejhn W

Table 1: Comparison of the Two Splitting Strategies.
See Text for Further Explanation.

1. the eager-splitting strategy: at each choice point
where m processora are present, assume there is »
valid choices. m tasks are created and assigned
evenly to m processers. If n > m, each fask con-
tains X choices, the lefi-over choices are randomly
included in some of the tasks. If n < m. each choice
constitute 7 tasks, the rest tasks are formed by ran-
domly picking one choice for each.

2. the lazy-splitting strategy: at each choice point, two
tasks are created and assigned to each of the half of
the processors. In case of choices being not evenly
dividable, left-overs are treated in a way similar to
that in the eager-splitting rule.

With the eager-splitting strategy, the search tree is di-
vided among processors in the fastest possible way. The
lazy-splitting strategy is the opposite, trading computa-
tional overhead for better adaptability.

Assuming that there are n = 2* processors, and the
search tree is balanced and is of degree d (i.e. every node
has d branches). Under these conditions, the twe task
distribution rules are compared in terms of parameters
described below:

» allocation level, Lyy..: the depth {from the root, level
0) in the search tree where an individual processor
commits itself to one or more nodes exclusively.

e number of nodes allocated, Nype: the number of
nodes a processor commits to at the allocation level.

s redundant computation Cq: redundant node expan-
sion compared to the eager-splitting rule, which is
considered (0.

Table 1 summarizes results comparing the two split-
ting strategies. We expect that the eager-splitting strat-
egy minimizes redundant computation, but it is not very
adaptive to the shape of the search tree, in the sense
that some processors may quickly be out of work due
to encountering cut-offs in the tree. This sirategy is
suitable for a shallow search tree. On the ofiher hand,
the lazy-splitting strategy introduces redundant compu-
tation but it commmits a processor to much more nodes
in the search tree compared to the cager-splitfing strat-
egy. It is expected to be more adaptive because there are
more “glterngtive” tasks for a processor. For a desp (i.e
the height of the tree is much greater that leg n) and
bushy search tree, the lazy-splitting strategy is expected
to perform better since it is more adaptive to the shape
of the tree and the redundant computation is relative
insignificant in such a case.

Program Bize Descriplion
(res. steps)
II55T6

placing 9 quesns soch that
they canmof attack each other
teating if all but ane

of ithe elaments of 2 square
grid can be removed vsing
tic-tac-toe like jumps

testing if certaln pattern

of a list can be otained
placing & guesny such that
they cannot attack cach other
traversing a tree generated

by pruning branches in &
goad-tres randomly with
probability sct equal to 0.5
‘The beight of the tree iz 16
fitting 3 sqaure picces inko

a 3 by 3 board so that certain
consiralnts on matching edges
are satistied

solving the puzele of whe
owns the zebra

Seguesns

=S UATE

E-queens 4T48%

tyee TI6TE

turtles 156TH

zebra 17476

Table 2: Benchmark Programs

4 Performance Study

Performance of the sell-organize scheduling approach is
studied on a set of benchmark programs listed in Table 2.
The size of & program is the size of the search constructed
during execution of the program. It is the mumber of
resolution steps (logic inferences) during the execution,
excluding evaluating Prolog built-in predicates. These
programs are pre-processed with the program restructur-
ing method described in the previous section. We note
that there is no significant performance changes due to
the restructuring in any of the benchmarks running with
Siestus Proleg 0LG.

4.1 Load Distribution

First, we are interested in how effectively the task distzi-
bution mles can balance the load, with structural imbal-
ance in a program removed. We defined balance factor

as,
1yeT,

= Mea(T)
where T} is the total number of nodes in the search tree
allocated to processor ¢, n is the total pumber of proces-
sors. A better balanced load distribution will be reflected
in a larger B value. The load balance factor is similar to
the efficiency factor e used in other literature [Kumar87],
defined as

1 T
= 2 Maz(T)
where T is the total number of nodes in the tree. B =¢
if 27 Ti = T, which in many cases is untrue due to that
the load on each processor (measured by the number
of nodes it possesses) cannot always be E, because the
search tree may not have sufficiently many branches at

R63

| N I I [N N N N |

o 10 0 30 40 &b 60 TO

Zebra: flat

2000
B0
TO0
6000
000
A000
000
000
100g

LB 1 1 F 1 1

»

0 10 20 30 40 50 60 TFO

Figore 2: Load Distribution from Running the Zebra
Programs on 64 Processors

any particular moment to keep every processor busy. The
notien B tries to reflect a realistic load distribution that
iz possible under a particular load balancing strategy.

The first set of results shows how the balance factor
is improved by eliminating the structural imbalance in a
program. These results are obtained by extracting the
search tree of a program and then exploring the tree with
the self-organizing scheduling rule in a simulation with
a uniprocessor machine. The eager-splitting rule is used
unless specified otherwise.

Figure 2 shows the difference of load (in term of tres
nodes) distribution on 64 processors between two ver-
sions of & zebra program, one with a regular choice pred-
icate and the other with a flattened choice predicate.
Load balancing in vastly improved due to program re-
structuring. It is generally true that fattening the choice
predicate results in a better balanced load distribution,
though the improvement varies depending on different
PILOErAmS.

We summarize the result by presenting the curves of
balance factor for several other benchmarks, shown in
Figure 3. The eager-splitting rule is used in this experi-
ment. As can be seen, the balance factor is significantly
improved for all but the n-square and free programs,
which have a deep and bushy search tree that cannot
be sufficiently taken care of by the eager-splifting rule.
The n-square program, and the iree program were run

564

The 8-CQueans Programs

B
B
1 2 3 4 & 86 7T
log N
The Turtle Programs
I | | i 1
flat ©—
B biag ~=
0 1 2 3 4 5 68 7
g N
The n-Square Prograns
T T T T T T
flat <—
B

i 4 5 68 7
log N

no1 2

Figure 3: Comparison of Balance Factors {B) bebween

Programs with Flattened Choiee Predicates {labeled
‘flat’ in the figure) and with Normal Style Choice Pred-
icates (labeled *bias’ in the figure)

with the lazy-splitting rule. Results are given Fig. 4.
The balance factor is substantially improved (i.e > 100%
with 128 processors) since the lazy-splitting is better in
coping with irregular shaped tree. However, the over-
head of redendant computation makes the lazy-splitting
rule unsuitable for a shallow search tree such as that
of the §-gueens, the zebra, or the turtles program. The
height of the search trees for these programs is not suf-
ficiently larger than {og(128), the level at which each of

the 128 processors commits to its own tasks.

4.2 Speed-up Factors

Speed-up factor is defined as sequential runtime divided
by the parallel run time. It is a generally accepted indi-
cation of how well & parallel system iz able to improve
the runtime of & program. MNext, we present data show-
ing speed-up factors of the proposed approach on the
selected benchmark programs.

1 2 3 4
log N

5 & 7

Figure 4: Comparison of the Eager-splitting Rule (la-
beled *eager’ in the figure) and the Laszy-splitiing Rule
(labeled ‘lazy’ in the figure), With Flaitened Choice
Predicates in Both Programs

Table 3 lists speed-up factors from a simulation study
running en a uniprocessors. In this simulation, the run
time is measured by the number of resolutions performed
in the execution (number of nodes traversed in the proof

tree).

Proe. || 4 [] 16 | 32 [E] 128
Prag. aplitling
S-quecns 49 | 7.5 | 84 | IT.0 | 319 | 40.1
S-quesns § 29 | 4.5 | B6 | 167 | 22.7 | 42.2
zebita 3.2 [40 [83 | 91 15.3 | 20.6
turtles 4.0 | 5.3 | 66 | BE 15.3 | 27.8
paitzrn 28|55 |62]1a5 317 | 2T
n-sgquare 26 | 2.8 | 3.2 | A7 3.7 8.7

iree 24|24 |37 | 65 |68 | 68
Lagy-splitting

noaguaze || 2.2 [2.8 [43 7.2 [13.0 | 37.¥

Lres 16 | 23] 27] 4.9 9.0 14.2

Table 3: Speed-up from Simulation Study. Speed-up is
defined as seguential runtime divided by parallel run-
time.

Table 4 lists speed-up factors from a parallel emulation
study running on a BBN Butterfly TC2000 with 32 pro-
cessors. The run time is measured by the physical clock.
We assume that each resolution step takes constant time.
Cost of a real resolution step varies in general. However,
here we are merely interested in the total time of 2 task
which consists of a large number of resolution steps. The
total time (the sum of the time by all resclution steps)
can be considered as the average cost of cach resolution
step times the number of resolwtions. In other words,
the difference of time spent on each resclution step is
immaterial. For a given program, the constant can be
regarded as the average cost of each resolution step.

In order to observe the real overhead of task alloca-
tion, which is the time to compute the partition of tasks,
the resolution speed must be realistic. In the emulation,
resolution engine speed is set equal to that of Aurora
Parallel Prolog®, a well known parallel Prolog implemen-
tation, running on one Butterfly processor. Both the ea-
ger and the lazy scheduling strategies are implemented in
the emulator. The eager-splitting rule was used for the
programs n-gueens, zebra patten and furtles. The lazy-
splitting rule was used for the programs n-square and
tree. From the emulation study, we are able to verified
that the sequential simulation, which measures run time
by the number of resclution steps performed, accurately
reflects the speed-up result by the parallel emulation,
which measures run time by the real clock, for up to 32
processor. The overhead of calculating the task distribu-
tion, the only overhead not considered in the simulation,
is nearly invisible in the emulation, given that the speed-
up factors are almost identical to that from the sequen-
tial simulation. MNotice that there is no communication
involved here.

Program || 1 | 4 proc | 8 proc | 16 proc | 32 proc

Eager-splitting

S-queens || 1| 4.0 7.6 9.3 16.5

S-queens | 1 | 3.0 4.6 B4 16.4

zebra | 1] 3.2 4,0 8.0 §.9

turtles [1|31 | 5.2 |82 |82

patten | 1 | 28 | 5.5 6.1 121
Lagy-splitting

n-square || 1| 2.2 2.8 4.2 6.9

tree [1|16 |23 2.7 46

Table 4: Speed-up from Emulation Study.

4.3 Performance Comparison with Aurora Par-
allel Prolog

The same set of benchmarks were run with Aurora Paral-
le]l Prelog on the Butterfly machine. Runtime and speed-
up factors (the best out of 10 runs) are listed in table 5.
The Peak Speed-up Factors: The speed-up curves
for all benchmark programs either have reached the peak
{bold face numbers) or at least level off with Aurora Par-
allel Prolog on 32 processors, as shown in Table 5. Us-
ing the self-organizing scheduling appreach, simulation
results (Table 1) on up te 128 processors showed that:

® the peak speed-up factors for the S-queens, zebre and
turtles programs (with fine grain parallelism) exceed,
by a margin of at least 200%, experimental results
on Aurora;

the peak speed-up factors for the $-queens program
ig twice ags that on Aurora;
T Aurara l'.'l.&melnmt.. poich #8, with the Mandhester Scheduler.

865

the peak speed-up factors for the n-square program
(with & very bushy search tree} is about 30% faster
that that on Aurora.

FProgram § 1 proe | 16 proc | 24 prec 32 proc
Bqueens || 1,620 | 1417115 | 122/13.3 | 123133
Sgueens || 7,500 | 533/14.1 | 367/20.4 | 360/21.4
xebra 7,600 | 490,53 | GO0/5.2 | SZof4.0
turtles 4,900 | B50/7.8 | 580/7.4 568/7.5
patters || L0841 | 180/83 | 16068 | 240/4.5
nsquare || 2,230 | 180,117 | 170/13.1 | 17E/12.6

Table 5: Runtime (ms.) [Speed-up factors with Aurora
Parallel Prolog

Speed-up Comparison: Given the number of proces-
sors, the speed-ups achieved by self-organizing schedul-
ing appears to be comparable to that of Aurora, but
somewhat lower when the number of processors is small
(e.g < 16). Note that these results are obtained without
communication. The same speed-up resull is expected
to hold regardless of the speed at which resolution en-
gine is running. Therefore, absolute speed comparison
will favor the self-organizing scheduling scheme.

5 Discussion

In the above experiment we studied the behavior of
the proposed technique without communication among
processors. We demonstrated that the scheme iz able
to effectively deal with problems which render mostly
fine-grained parallel tasks under a traditional scheduler.
The loss of processor utilization due to the unevenness in
load distribution can be more than covered by the bene-
fit of reduced scheduling overhead. The advantage of the
proposed technique is its non-communicating nature, as
frees it from possible constraints such as communication
bandwidth among processors that could otherwise limit
the ability of a scheduler to function effectively. The lim-
itation, however, iz its unable to re-use processors that
complete tasks they allocated before the termination of
the (parallel) execution. We have shown, in the above
gimulation study, that this would not necessarily com-
promise performance of programs specially those that
generate mostly fine-grained tasks at run time under a
traditional scheduler. But the worse case scenario could
happen despite the effort to obtain a better balanced
load distribution by removing structural imbalance of
the search tree and using a statistically even distribu-
tion rule. Below, we discuss options fo deal with the
problem.

One possible solution to the problem is to resort to dy-
namic task redistribution as existing schedulers do. As
we know, the overhead of dynamic task redistribution is
relatively small for medium to large-grained tasks, and
it provides us with the adaptiveness necessary Lo deal

860

with some extraordinary shape search space. On the
other hand, the self-organizing scheduling approach in-
troditces low overhead and thus ensures that when it does
nol help improve performance it is nol expect degrade
it either. When the two methods are careful integrated,
it can be a combination that takes advantage of what
the two methods are best al. The issue is when and
how dynamie task redistribution should be invoked to
achieve the best result. Preliminary research has been
conducted in this direction and we will present results
in a separale paper. Anolher oplion that alleviates the
problem is to have idle processors collected by a higher
level scheduler (e.g. the operating system) and assigned
to other queries. The idea is to use dynamic scheduling
only at the level of user queries which vsually offer larger
granule. In a multi-user environment, this approach can
¥ield a high system throughput given sufficient queries.
Global load balancing is involved here. It appears an
interesting subject for future investigation.

Static program analysis that provides prebability of
cut-offs according to given query patterns will be very
helpful to guide task distribution. More research is yet
to be done before this becomes a feasible alternative to
the currently used statistical distribution rule,

Finally, we note that an interesting feature of the self-
organizing scheduling approach is that it establishes link-
age hetween processor mapping and the syntax of a pro-
gram. This feature provides user a mean to influence
the mapping of processors Lo lasks, as would be partic-
ularly helpful for applications in which tasks are clearly
defined and dynamic task redistribution is known to be
nol beneficial I:t]lt:r: Aare many such a.pp]i-:al"lnna:l. ﬂgau'n,
dynamie task redistribution can be used to guard against
abuse of this feature.

6 Conclusion and Future Work

A task scheduling technique, self-organizing scheduling,
iz proposed in this paper. The methed directs processors
to share the search space, a search tree defined implicitly
by the program, aceording to universal rules followed by
every processor in the system. Load balance is achieved
by altering the shape of the search tree to remove the
so-called structural imbalance (see section 3), and im-
posing a statistically even task distribution rule fo deal
with the randomness in cul-offs in the tree. Resolution
engines only share the program and the original query. A
condition for task distribution that minimizes the aver-
age parallel runtime is given and proved. An advantage
of the method is that it allows all processors to oper
ate independently on private resources both for resclu-
tion and task allocation, while being able to maintain a
fairly balanced load distribution among processors. The
effectiveness of the self-organizing scheduling scheme is
independent of the speed of the resolution engine, and
archilectural characteristics of the multiprocessor.

We presented data showing the effectiveness of the pro-
posed methods on programs that belong to the generate-
and-test category. By removing structural imbalances
in a program, ib was found thal a reasonably balanced
load distribution can be obtained by following a statis-
tically even distribution rule. We discussed two dis-
tinct task distribution rules, the eager-splitting rule
and lazy-splitting rule and examed their effectiveness,
We showed that the peak speed-up factors with self-
organizing scheduling for a set of benchmark programs
exceeds, by a substantial margin, results achieved on the
same programs by Aurora Parallel Prolog, a well-known
parallel Prolog implementation. Given a fived number
of processors, the speed-up factors by the self-organizing
scheduling scheme are competitive. By experimenting
with the two near-extreme case task distribution rules
we also demonstrated that adaptability can be gained
on the cost of redundent computation within this frame-
work.

We believe that the condition for task distribution de-
rived in the paper can be useful for other scheduling
schemes. Also, the idea of removing structural imbal-
ances in a program will help with a tree-based sched-
uler that employs the top-most dispatching strategy
[ButBg, CaldBs).

We are currenlly investigating incorporating tradi-
tional task redistribution techniques in order to handle
large but highly uneven shaped search trees. Prelim-
inary results indieate that allowing limited commumni-
cation among processors oie can substantially improve
the efficiency of the execution. Global load balancing,
aimed at maximizing throughput of a system that sup-
ports multiple user and multiple queries, is an interesting
topic for future research.

References

[Ali90] Ali, K. and Karlsson, R., “The Muse Oc-Parallel
Prolog Model and its Performance”, Proceeding of
the North American Conference of Logic Program-
ming, 1990, MIT press, 1990.

[AliB1] Ali, K. and Karlsson, R., “Scheduling Or-
Parallelism in Muse", Proceeding of the 8th Infer-
national Conference on Logic Programming, MIT
Press, 1991.

[Butf8] Butler, R., Diss, T., Lusk, E., Overbeck, R.,
and Stevens, H., “Scheduling OH-Parallelism: an
Argonne perspective”, Logic Programming, Proceed-
ings of the Fifth International Conference and Sym-
posium on Logic Programming, MIT press, 1938,

[CaldBB] Calderwood, A., Szeredi P., “Scheduling Or-
parallelism in Aurora - the Manchester Scheduler®,
Proceedings of the Sizth International Conference on

Logic Programming, pages 419-435, MIT Press, Jun.
1989,

[Clock&8] Clocksin, W. F. and Alshawi, H., “A Method
for Efficiently Executing Hown Clanse Programs Us-
ing Multiple Processors”, New Generation Comput-
ing, §, 1988 p 361-376 OHMSHA, Ltd. and Springer
Veriag.

[Giul90] Giuliano, M., Kohli, M., Mioker, J., Durand,
L., “Prism: A Testbed for Parallel Control”, Par-
allel Alyorithms for Machine Intelligence, edited by
Hanal, L., and Kumar, V., to appear.

[KaleB5] Kale, L. V., “Parallel Architectures for Prob-
lem Solving”, Technical report Mo, UTUCDICS-R-85-
1237, Department of Computer Science, University
of Mlineis at Urbana-Champaign.

[Kumar87] Kumar V. and Nageshwara Rac V. “Paral-
lel Depth First Search. Part Il Analysis" fnier-
national Journal of Parallel Progromming, Val. 16,
Meo.G, 1987.

[Lloyd84] Lloyd, J. W. *Foundations of Logic Program-
ming", Springer-Verlag, 1984.

[Lusk] Lusk, E., Warren H. D., Haridi, 5., e al. “The
Aurora Or-Parallel Prolog System”™, Argonne inter-
nal technical report.

[Mud91] Mudambi, 5., “Performance of Aurora on
NUMA Machines", Proceeding of the Sth Inter-
nelional Conference on Logie Programming, MIT
Press, 1991,

[VR90] Van Roy, P. L., “Can Logic Programming Ex-
ecute as Fast as Imperative Programming”, Univ.
of California, Berkeley Technical Report UCB/CSD
90,600, Dec., 1990.

Appendix

We prove the following theorem:

Thecrem: Let IV be the number of processors, let m
(X is an integer) be the number of tasks whose sizes are
statistically identical and exhibits the following property:

1. the probability density function is non-increasing, or

2. the probability density funclion is symmelric with
respect to a positive central point.

then the average parallel runtime iz minimized iff iden-
tical number of processors are assigned to each of the
tasks.

Before the proof, we describe some basic terminology
and notations to be used.

Capital letters XY, Z are used for random variables,
The probability density function for X is fx(x), the

867

curmulative probability distribution funetion for X is
Fx(z), we have Fx(z) = [%,, fx(t)dt by definition. Or
in other words, fx(z)} = Fi(z). In addition, fx{z) = 0
and 0 < Fy(z) < 1. Fx(z) is non-decreasing since
fx(z) 2 0.

Runtime of 2 parallel execution is the longest runtime
of all processors. Huntime is measured by the size of a
task, in our case, the number of nodes to be traversed in
a search tree.

N iz the number of processor available. T3, T3, ..., Ty
are random variables denoting the size of m tasks which
are statistically identical, that is, with an idemtical
probability distribution function fiz) and Fiz). Let
ky, ks, ..., b be the number of processors assigned to
Ty eeey T, Tespectively. & + ka2 + ... + ke = M.

We illustrate the proof with a special case whenm = 2.
Proof:

Let Z be a random variable denoting the runtime by
assigning ky to task 1) and ks to task k. We assume
that T is processed in time E‘ and T3 is processed in

fime E

The cumulative distribution function for Z is Fi(x],
F.z) = probability that Z <z
= probability that [f—: <z) AND {% <z)
= probability that (T, < kyz) AND (T; < kuz)
F(kyz) I (ky)

Average runtime is the mean of Z,
Z= fm (1 - Fu(2))dz

We need to show that Z is minimized when ky = ka,
given that &y 4+ ks = IV, 2 constant.

For fixed &y, ks, define function G(z) = ﬂhﬁ@h&‘l
We have

f:fl - Fiz))ldr = E;{I*Gq[z}jdz

gince Fikyz)F{k.z) < G*(z), given that F{z) is non-
negative, Equality holds when &y = k.

Case I the probability density function f{x) is non-
increasing.

It can be shown that the curve of F(z) is either of an
arch shape, or a straight line, as illustrated in figure 5.
The curve of Gz lies below (or on) that of F(z) because
the curve of Gz) is composed from center points in lines
whose two ends are on curve F(z). Giz) - Fiz) = 0,
heace G(z) - F2(x) = (G(z) — F(x))(G(x) + F(z)) < 0
Therefore,

[:[1 — GY(x))dz > f_:{l — F(z))dz

868

LY Flx}
.‘.-_._"’F_
e
{F{kbE)LF(E 2 'F[":'*PT :
s i
Fikiep y :
4 i
r'} ,J"f |
i + i
r i
A - '
/:] :
>
Blx (RE4RT)/2 kix X

Figure 5: An Arch Shape Distribution

E%uat.icru holds when & = kg,
hus, we have

ﬂil—ﬂ(sl}drgfmu-é(:m::_vf"{:-ﬂmm

and equality halds when &y = k;. Thus the mean of £
is mimirmized when & = ka.

Case IL: the probability density function f(x) is sym-
mebric with respect to a positive center point, denoted
by .

The curve of F{z) 35 of the shape an & tilted to the
right, as illustrated in figure 6. The curve of (F{z) is
another 5 shape curve “contained” in that of F(z). We
want to show that

f (1 - G¥(z))dz > f F:’{:

[(F¥2) - G*e)ds 2 0

This is equivalent to showing
f (F(z) — G(z))dz > 0

sinoe

f; (F(z) + G(z))d= > 0

Notice that we can no longer have (F(z) — G{z)) = 0
for all x. However, the integral of (F{x) - G(x)) can
still be non-negative if we can proof the shaded areas
Az is larger or equal to Ay in figure 6. It suffices to
show that for any (€ — z) and (' + z) on the X axe,
FlC42)~G(C+z) 2 GC—=z)-— F(C - z), and
equality holds when k1 = k2.

Observe that {C-¢,G{C-x)) 15 the center point of a
line, ;, whose end points are on the curve of F{z).
[C4x,G{C4x)) is the center point of another line, [,
whose end points are on the curve of F(z). Now, rotate
the lower part of the § shaped curve of F(z) 180*. The
two part of the § matches each other and it can be shown

w

Figure 6: An § Shape Distribution

that {3, after the rotation, completely lies above or on I
T‘h“ﬂ,

F(C +2) - G(C +12) 2 6(C —z) - F(C ~z2)

Equality holds when k1 = k2. Proof done form=2. 0O

The same idea can be used to prove Lthe general case.
A formal proof of the general caze will not be presented
here, but we note that a property of polygon that is
crucial to the proof is that the center of & convex polygon
resides inside the polygon.

Acknowledgement: | wish to thank Professor Jack
Minker for his guidance on this work. Thanks to Dt
Mark Guiliane for his comments on an early draft of this
paper. Also, 1 would like to express my appreciation
to Argonne National Laboratory for providing parallel
computing facilities,

