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Abstract

We present a duality relationship between abduction for
definite abductive programs and model generation on
the only-if part of these programs. As was pointed out
by Console et all, abductive solutions for an abductive
progeam correspond to models of the only-if part. We
extend this observation by showing that the procedu-
ral semantics of abduction itself can be interpreted du-
ally as a [orm of model generation on the only-if part.
This model generation extends Satchme with an efficient
treatment of equality. It is illustrated how this duality
allows to improve current procedures for both abduction
and model generation by transferring technical results
known for oue of these computational paradigms to the
other,

1 Introduction

The work we report on this paper was motivated by
some recent progress made in the field of Logic Pro-
gramming to formalize abductive reasoning as logic de-
duction (see [Conscle ¢l al, 1991] and [Bry, 1980]). In
[Kowalski, 1991}, R. Kowalslki presents the intuition be-
hing this approach. He considers the following simple
definite abductive logic program:

F = { wobbly-wheel «— flat-tyre.
wobbly-wheel «— broken-spokes.
ﬂntatyrr. e R‘u.nc!.u.:eﬂ-tube.
f[at—tyr: — ltaky-vulvt. }

where the predicates broken-spokes, punctured-tube and
leaky-valve are the abducibles. Given a query ) = —
wobbly-wheel, abductive reasoning allows to infer the as-
sumptions:

8 = { punctured-tube },
Sy = { leaky-valve }, and
Sy = { broken-spokes } .
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These sets of assumptions are abductive solations o the
given query «—Q in the sense that for each 5;, we have
that PUS; = Q.

Kowalski points out that we can equally well abiain
these solutions by deduction, if we first transform the
abductive program P U {Q} into a new logic theory T.
The transformation consists of taking the only-if part
of every definition of a non-abducible predicate in the
Clark-completion of P and by adding the negation of Q).
In the example, we obtain the (non-Horn) theory T:

T = { wobbly-wheel — Hat-tyre, broken-spokes,
flat-tyre — punctured-tube, leaky-valve,

Minimal models for this new theory T are:

My = { wobbly-wheel, flat-tyre, punctured-
tube },

M; = { waobbly-wheel, flai-tyre, leaky-valve },
and

M; = { wobbly-wheel, broken-spokes }.

Restricting these models to Lhe aloms of the abducible
predicates only, we precisely obtain the three abductive
salutions 5y, 53 and 5; of the original problem.

The abeve observation points fo an interesting is-
sue; namely the possibility of linking these dual declara-
tive semantics by completely equivalent dual procedures.
Figure 1 shows this duality between an SLD+ Abduction
tree (see [Cox and Pietrsykowski, 1986]) and the exectu-
tion tree of Salchmo, a theorem prover based on model
generation ([Manthey and Bry, 1957]).

=@
i~wobbly-wheel 51 = 80w [wobibly-ndeel |
+hroken-spokes 51=5 | broken-spokes
t=Hal-tyre S5 Mlar-tyre]
- ! h:m £1as2u[ leaky-valve
§3=520] punctored-tube |

Figure 1: Procedural Duality of Abduction and Satchme



Although this example illusteates the potential of us-
ing deduction or more precisely, model generation, as a
formalisation of abductive reasoning, an obvious restric-
tion of the example is that it is only propositional, Would
this approach also hold for the general case of definite
abductive programs? An example of a non-propositional
program and its only-if pact is given in figure 2.

Abd= [q2}; P= only-if(P) = FEQuU
[ plab)+ [ Y. Z) =
plaX) +— gV | (Y=2&Z=h),
@V: Yea & g(Z, V1))
Q= p(X3). not{ Q= 3 X: p{X.X).

Figure 2: A predicate example

The theory only-if{ P} consists not only of the only-if
part of the definitions of the predicates but comprises
also the axioms of Free Equality (FEQ), also known as
Clark Equality ([Clark, 1878]). The abductive sclutions
and models of only-if{ P') are displayed in figure 3.

M= {p{az), gj-a,a[}
M= {p(a,a), gla.b}}
M= {p(a,a), gla.sk)}

A= {q(aa)}, 6 = {X/a}
A= {q(ab)}, 0= {X/z}
A= {q(ask)}, 8= {X/a}

Pigure 3: Abductive solutions and models

The duals of the abductive solutions are again identi-
cal to models of only-if{P). This example suggests that
at least the duality on the level of declarative seman-
tics is maintained. However, on the level of procedural
semantics, some difficulties arise. The SLD+Abduction
derivation tree is given in figure 4.

= p(X.X)
_ 8 = {X/a}
umt‘_ication
fEl.'.l$ — q{a'v}

Figure 4: Abductive derivation tree

Afier skolemisation of the residue +—q{a, V), we obtain
the third abductive solution. With respect to the model
generation, the theory only-if{ P) is not clausal, however
the extension of Satchmo, Satchmo 1 ([Bry, 1930]), can
deal with such formulas directly (without normalisation
to clausal form). Without dealing with the technical
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details of the computation, figure 5 presents the compu-
tation tree.
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Figure 5: Execution tree of Satchmo 1

Globally, the structure of the SLD +abduction tree of
figure 4 can atill be seen in the Salchmo d-tree. Strik-
ing is the duality of variables in the abductive derivation
and skolemn constants in the model generation. However,
one difference is that the Satchrao 1 tree comprises many
additional inference steps due to the application of the
axioms of FEQ'. In the abductive derivation these addi-
tional steps correspond to the unification operation (e.g.
on both left-most branches, the failure of the unification
of {X=a, X=b} corresponds to the derivation of the in-
consistency of the facts {sk; =a, sk, =b}).

Another difference is that the generated model

{P{MGL 'ﬂ'[ﬂp ‘ak:}l P{ﬂku d’}: ﬁul ’kl l'rp(" kl-:l ’,*I }:I
glaky, aks), aky =a,a=ak;  a=g, 2k = sk, 2k =3k }

is much larger than the model which is dual to the abue-
tive solution. Satchmo 1 generates besides the atoms of
this model also all logical implications of FEQ, compris-
ing all substitutions of a by sk;. It is clear that in general
this will lead to an exponential explosion.

However, observe that we obtain the desired model by
conéracling sk; and & in the generated model, Therefore,
extending Satchmo 1 with methods for dynamic contrac-
tion of equal elements would solve the efficiency problem
and would restore the duality on the level of declarative
semantics.

Contraction of a model is done by taking one unique
witness out of every equivalence class of equal terms and

Wmproper nse of Setchmo 1: Equality in head of rule.
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teplacing all terms in the facts of the model by their
witnesses. Techniques from Term Rewriting can be used
to implement this, The procedural solution is te con-
sider ke sel of inferred equality facts as a Term Rewrit-
ing System (TRS), to transform the set to an equivalent
complete TRS, and to normalise all facts in the model
using this complete TRS, and this after each forward
derivation step in Satchmo 1,

This procedure may seem alien to Logic programuming,
but the contrary is true. As a mather of fact, the pro-
posed procedure appears to be exactly the dual of teel-
niques used in SLD+Abduction:

* the completion procedure corresponds dually to uni-
fication.
The dual of the mgu (by replacing variables by
skolemn constants) is the completion of the set of
equality atoms.

# the normalisation corresponds dually to applying
the mgu.

Therefore, incorporating these techniques in Satchmo.1
would also restore the duality on the level of procedural
semantics.

The research reported in this paper started as a
mathematical exercise in duality. However, there are
clearly spincffs, One application is the exiension of
Satchmo.l with efficient treatment of equality. We pro-
pose & framework for model generation under an arbi-
trary equality theory and we formally proof the dual-
ity of SLD+abduction in the instance of the frameworl,
obiained by teking FEQ as the equality theory. Also
for abduction there are spinoffs. An illustration of this
is found in the context of planning as abduction in the
event caleulus. The event calculus contains a clause, say-
ing that & property holds at a cerfain moment if there
is an earlier event which initiates this property, and the
property is ot terminated {clipped) in between:

holds_at( P, T')ehappens( E), initiates( E, P),
E < T, ~clipped(E, P, T).

A planner uses this clause to introduce new events which
initialise some desired property. Technically this is done
by first skolemising and then abducing the happens goal.
However, skolemisation requires explicit treatment of
the equality predicate as an abducible satisfying FEQ
([Eshghi, 1988]). The techniques proposed in this paper
allow efficient treatment of the abduced equality atoms,
and provide a declarative semantics for it.

The paper is structured as follows. In section 2, we
present the class of theories for which the model gen-
eration is designed. Section 3 recalls basic concepts of
Term HRewriling., In section 4, the framework for model
generation is presented and important semantic results
are formulated. In section 5, the duality with abductive
reasoning is formalised. Section 6 discusses future and

related work, Due o space restrictions, all proofs are
omitted. We refer to [Denecker and De Schreye, 1991]
for the explicit proofs.

2 Extended programs.

In this section we introduce the formalism for which
the model generation will be designed. This formal-
ism should at least contain any theory that can be ob-
tained as the enly-if part of the definition in the Clark-
completion of definite logic programs, The extended
clause formalism introduced below, generalises both this
kind of formulas and the clausal form.

Definition 2.1 Zet [ be o first order language.

An extended clause or rule i1 o closed formula of the
type: WG Ga— By, B
where E; has the general form:

WyYmia=tk.. &, =t,EF&...&F,

such that all G are aloms based on L, all F; are non-
equalify afoms based on [

Definition 2.2 An estended program is a set of er-
tended clauses.

Interestingly, the extended clause formalism can be
proven to provide the full expressivity of first order logic.
Any first order logic theory can be translated Lo a logi-
cally equivalent extended program, in the sense that they
share exactly the same models. (Recall that the equiv-
alence between a theory and ifs clavsal form is much
weaker: the theory is consistent iff its clausal form is
consistent.)

In the sequel, the theory of general equality (resp. the
theary of Free Equality), for a first order language L will
be denoted EQ(L) (resp. FEQ(L)). A theory T, based on
L, is called a theory with equalify if it comprises EQ(L).
A theory T, based on L s called an equality theory if it is
a theory with equality in which "=" is the only predicate
symbol in all formulas except for the substitution axioms

of EQ(L).

3 Concepts of Term Rewriting.

The techniques we intend to develop for dealing with
equality, are inspired by Term Rewriting. However, work
in this area is too restricted for our purposes, because the
concepts and techniques assume the general equality the-
ory EQ) underlying the term rewriting. To be able Lo deal
with FEQ, we extend the basic concepts for the case of
an arbitrary underlying equality theery E. In the sequel,
equality and identity will be denoted distinetly when am-
biguity may oceur, resp. by "=" and "=". We assume
the reader to be familiar with basic notions of TRS's (see



e.g. [Dershowile and Jouannaud, 1989]). We just recall
some general ideas, A TRS v associabes to each term s
a reduction tree in which each branch consists of succes-
sive applications of rewrite rules of . If v is neetherian,
these trees are all finite. If moreover ~ is Church- Rosser
or confluent, all leaves of the reduction tree of any term ¢
contain the same term, called the normalisation of £ and
denoted t.y. In Term Rewriting, such a TRS is called
complefe. Below we extend this concept.

Definition 3.1 Let F be an eguality theory based on a
language L, v o Term Rewriting System based on L.

« 18 complete wrt to <L, E> {ff & {4 noetherion and
Church-Rosser and, moreover, <L, E+vy> has a Least
Herbrand Model, which consists of all ground atoms s =1
conatructed from terma in UL} such that s.y=t.~.

This definition extends the normal definition in Term
Rewriting by the third condition. However, for E = EQ,
it has been proved that this property is implied by the
noetherian and Church-Rosser properties {for a proof see
[Huei, 1980]). Of course this is not the case for an arbi-
trary equality theory (as FEQ).

Definition 3.2 4 completion of ¢ TRS & wrt <L, B>
TE

o {O} if <L,E+v> is inconsistent

* a complete TRS v, such that <L.E> |= v & 7,

Our framework for model generation is developed for
logical theories consisting of two components, an ex-
tended program P and an underlying equality theory E.
This distinction reflects the fact that the model genera-
tion mechanism applies only to the extended clauses of
F, while E is dealt with in a procedural way, using com-
pletion and normalisation. However, in order to make
this possible, E should satisfy severe conditions, which
are formulated in the following definition.

Definition 3.3 An equality theory with completion,
E, based on a language L, it o clousal equality theory
equipped with a language independent completion proce-
d‘l.l!"!-

The latter condition means that if « is 8 ground Term
Rewriting System based on an extension L' of L by
skolem constents, and . is the completion of v wrt
to <L'E>, then for any further extension L" of L’ by
skolem comstants, =, is still the completion of v wrt
<" E>.

We denote 7, as TRS-comp(y).
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4 A framework for Model Gen-
eration

Informelly a model generalor constructs a sequence!
(Cl4, 72)7, where Cly is the ground instance of a rule
applied after d steps, and j; the index indicating the con-
clusion of Oy that was selected, an increasing sequence
of sets of asserted ground facts (My)f of non-equality
predicates, a sequence of complete Term Rewriting Sys-
tems (v,)5, each of which is equivalent with the set of
asserfed equality facts, and an increasing sequence of sets
of skolem constants (Ska)7, obtained by skolemizing the

existentially quantified variables. Formally:

Definition 4.1 Let LI be a language, L,, an infinite
countable alphabel of skolem constants, T an eztended
program based on L consiating of an equality theory with
completion F with completion function TRS-comp and F
an extended program.

An Nondeterministic Model Generator with Equality
(NMGE) K is a tuple of four sequences (Sky)F, (MJ2)3,
(valy and (Cly, ja)7 where n € WU {co}. The sequences
sabisfy the following conditiona:

L My = Sky = {};v, = TRS-comp({})

2. for cach d such that 0 < d < n, Cly, jg, Ska, My
and 1, are oblained from Shaoy, My, and v, by
applying the following ateps:

fa} Selection of rule and conclusion
Define LHEM 3 ; as:
LHM{<L+8ksmy, EQ(L)+ Macy+ 14_,>)
Select nondeterministically a ground normal
instance of a rule of P

ﬂig = “GI,...,GkHEh,..,Ern

such that Gy, ..., Gy hold in LHMy 4. Ifl =
0, define Sky = {}, Ma=~, = {0} and n =
d.

Ctherwize, select nondeterministicaily a con-
clusion E; from the head By,..., E.. Define
ja = j. We say that the rule Cly applies [with
its Ja'th conclusion/.

{b) Skolemisation
Let E;, be of the form: 3Y,,..., ¥
4 = tl'& s ..&3' = ig&Fl&- o .&Fﬁ
Replace ¥, ..., Y, by unique skolem conastants
gy .oy sk from L[u\Sky_y. Define Sky =
-5-!{,‘,.._1 U{SL‘],. Py ﬂ’dh}

e} Completion
Define v, = TRS-comp(vyy_y + {8, =4,...,
8y = t,}). If 44 is {O} then define My = {O}
end n = d,

YAa)r denotes s sequence (diyan., dn)
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{d} Normalisation+Assertion
Define My = My_yovy + {F1y ..o Faboyg ob-
tained by computing the normal form of all
facts in these sefs,

K is failed if n is finite and v, = M, = {U}. This
situation oceurs when Cl, i2 a negative clouse, or when
By, {8y =1y,..., 8, = £} is inconsistent,

If K is not foiled then K 12 called successful.

Not all NMGE's are interesting. For example, the
empty NMGE (({}), ({}), (TRS-comp({})), () trivially
satisfies the definition of an NMGE, but will not gener-
ate a model if P containg one positive extended clavse,
i.e. an extended clawse with empty body. In that case
the empty NMGE is sn example of an unfair NMGE:
there exists a rule with a true body, but which is never
applied.

Definition 4.2 4 NMGE K is foir iff K i1 failed or if
the following condifions are satisfied:

o K i5 successful.

» [fCOl=0Gy,..., Gy=Ey,..., B is a ground instance
of a rule of P based on L+L,, and there exists o d
such that Cl s based on L + Sky and the body of
Cl holds in LHM ; then there ezisls a d’ such that
Eyv.. . v B helds in LHHd:.

Property 4.1 (Sky)f is o monotonically increasing se-
quence. (LHM)N iy a monolonically increasing se-
quence.

An NMGE performs & fixpoint computation, the result
of which can be seen as an interpretation of the language
L and, as we later show, a model of <L, P+E>.

Definition 4.3 The fizpoint of an NMGE K is [ LEM ;
and is denoted by K1, The skolem set used by K is UDS )y
and s denoted by Sk{K). K1 defines an interpretation of
L in the following way:

s doemain: HUYL+Sk(K))
s for each constant ¢ of L: KT{c)=c

v for each functor f/n of L: K1(f/n) is the function
which maps terma &y, ... ¢, of HU(L + Sk(K)) fo
f[‘li“wtv-]-

s for each predicate of L: KT(p/n) is the set of
pliiy ...y ts) fucts in KT,

Corollary 4.1 If K i1 a finite successful NMGE K of
length n, then K1 = LEMy

Theorem 4.1 (Soundness) If K is a fair NMGE, then
KT is a model for <L, P+E> and P+E is consistent a
fortiori). :

We say that KT is the model generated by K.

To state the completeness result, we require an ad-
ditional concept: the NMGE-Tree. Analogously with
the concept of SLD-Tree, an NMGE-Tree is a tree of
NMGE's obtained by applying all different conclusions
of one rule in the descendents of a node.

Deflnition 4.4 Let L be o language, £ en equality the-
ory with completion, P an extended program based on L,
and L,, an alphabel of skolem constants,

An NMGE-Tree (NMGET) T for <L,P+E> is a tree
such that;

¢ Each node is labeled with a fuple (S.EJM,’T‘] where Sk
2 a skolem set, M a set of non-equality facts based
on L+3k and 7 i1 a ground TES based on L+5k.

» To each non-leaf N, a ground instance Ol of a rule
of P is aasociated, For each conclusion with indes
J in the head of Cl, there i3 an are leaving from N
which is labeled by [Cl3).

¢ The sequence of labels on the nodes and arcs on each
branch of T constitule an NMGE.

Definition 4.5 An NMGET is feir if each branch s
fatr.

Definition 4.6 An NMGET is feiled if each branch is
failed,

Observe that a failed NMGET contains only a finite
number of nodes. Also if T is inconsistent then because of
the soundness Theorem 4.1, each fair NMGET is faijled.

As & completeness result, we want to state that for any
model of P+E, the NMGE contains a branch generating
a smaller model, In a context of Herbrand models, the
smaller-than relation can be expressed by set inclusion,
However, because of the existeniial quantifers and the re-
sulting skolem constants, we cannot restrict bo Herbrand
medels only, In order to define a smaller-than relation
for general models, we must have a mechanism to com-
pare models with a different domain. A sclution to this
problem is provided by the concept of homomerphism.

Definition 4.7 Let L, I be interpretations of a lan-
guage L with demains Dy, D,.

A homomorphism from Iy te I3 i a mapping R
Dy —Dy which satisfies the following conditions:

s For each functor f/n(n =2 0) of L and 2, 2y, ..
Dy a=Li(f/mi(ze, ... 20} =
h(z)=h(f/n)(h(z1), ..., h{za))

¢ For cach predicate symbol p/n (n > 0) of [ and
By ey By & Dy2

Lip/n)(z ey 2n) = B(p/n)(h{z1), - ., h(za))

B e



Intuitively & homomoerphism is a mapping from one
domain to another, such that all positive information in
the first model is maintained under the mapping, There-
fore the homomorphsims in the class of models of a the-
ory can be used to represent a "...contains less positive
information than..." relation. We denote the fact that
there exists a homomorphism from interpretation 1) te
Iy by I); = Iy. This notation captures the intuition that
Iy contains less positive inlormation than ;.

For NMGET’s we can proof the following powerful
compleleness result.,

Theorem 4.2 (Completeness) et E be an squality
theory with completion, P an extended program, both
based on L. Let L,y be an alphabet of skolem conatants,

1. There exists a fair NMGET for <L, P+E>,

2. For each model M of <L,P+E> and cach fair
NMGET T, there exists o succesful branch K of T
auch that KT < M.

We refer to [Denecker and De Schreye, 1991] for a con-
structive proof of this strong result. As a corollary we
obtein the following reformulation of & traditional com-
pleteness result,

Corollary 4.2 If <L, P+E> {5 consistent then in each
fair NMGET there exisls o succesful branch.

If there erists o failed NMGET for <I,P+E>, then
<L, F+E> i3 inconsistent, and all foir NMGET"s are
failed,

The completeness result does not imply that all models
are generated. For example for P = {p—g}, ilie model
{pa} is not generated by an NMGE, The following ex-
ample shows that different NMGET"s for the same the-
ory might generate different models.

Example P={ pg— p~—}

Depending on which of these clauses is applied first,
we geb two different nenredundant NMGET'. If
p+ is applied firal, then p, g+~ holds already and is
not applied anymore, So we get an NMGET with
one branch of length 1. On the other hand if p, g+—
was selected first, then two branches exist and we
gel the solutions {p} and {p,q}.

Therefore it would be interesting if we could charac-
terize a class of models which are generated by each
NMGET, The second item of the completeness Theo-
rem 4.2 gives some Indication: for any given model M,
some succesful branch of the NMGET generates a model
with less positive information than M. For the clausal
case, models with no redundant positive information
are minimal Herbrand Models. From this ebservation
one would expect that for a clausal programn, each fair

NMGET generates all ininimal models, Indeed, the [ol-

lowing completeness theorem holds:
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Theorem 4.3 {Minimal Herbrand models) [f P is
clausal, then for each fair NMGET T, each minimal Her-
brand model is gemerated by a branch in T

We have extended the concept of minimal model
for general logic thecties and proved the complete-
ness of NMGE in the sense that each fair ¥MGET
T generates all minimal mmodels, We refer to
[Denecker and De Schreye, 1991].

5 Duality of SLD+4 Abduction
and Model Generation.

The NMGE framework allows to formalise the abserva-
tions thal were made in the intzeduction. We first intro-
duce ihe notion of a dualisation more formally.

Definition 5.1 Let L be o first order language, L, an
alphabet of skolem constants, Vi, a dusl alphabet of var:i-
ables such that a bijection D 1 L, —V,, enists.

The dualisation mapping D can be extended fo a map-
ping from HU(L+L,;) U HB(L+L,,) to the set of terma
bused on L+Vie by induction on the depth of terma:

* for each constant ¢ of [ : Dfe) = ¢

* for each ferm L = f(i,,...,1

n) I
D(f{tss . 8))=F( D8 ), - - -, Dita))

O can be further extended to any formula or set of
formulas, Under dualisation, o ground TRS + based on
L+L, corresponds fo an equation set Dy} with derms
based on L+Vie. # i1 said to be in solved form iff D)
is an equation sef i solved form,

An equation set is in selved form iff it consists of equa-
tions 2; = 4;, such that the =% are distinct variables and
do not eccur in the right side of any equation. S0 a TRS
is in solved form if the left terins are distinct skolem con-
stants of L,; which do nol occur at the right. A TRS
in solved form can alse be seen as the dual of a variable
substitution.

Property 5.1 Let v be a TRS in solved form. Then «
ir complete wrt fo <L, FEQ>.

Theorem 5.1 (Duality completion - unification)
FEQ(L) is an equality theory with completion. The com-
pletion procedure is dual to unification. The dual of the
eompletion of a ground TRS 4 based on L+5k, is the mgu
of D). Or D(TRS-comp{y}} = mgu(D()).

As was observed in the introduction, this dualily
can be extended further to the complete process of
SLD+abduction. On a procedural level, each resolution
step corresponds dually to a model generation step. The
selection of a goal for resolution corresponds dually to
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the selection of the extended rule with ils condition in-
stantisted with the dual of the goal. The selection of
the clause in the resolution corresponds dually to Lhe se-
lection of the corresponding conclusion in the extended
rule, The unification of goal with the head of the clause
and the subsequent application of the mgu, corresponds
to the completion of the dual equations in the conclusion
and the subsequent normalisation.

Now we can formmlate the duality theorem for
SLD+Abduction ([Cox and Pietrsykowski, 1986]) and
Model Generation.

Theorem 5.2 Let L be a first order language, with an
alphabet of variables L., L,, an alphabet of skolem con-
stants, and D; L,— L, o duality bijection between sholem
consbants and variables. Let P be a definite abduciive
program based on L.

For any definite query «—@Q, an abductive derivation
for —0Q and P can be dually inferpreted as a fair NMGE
for only-if(P)}+3(Q). The set of aloma of the generated
model, restricted to the abducible predicates is the dual of
the abductive solution. The dual of the answer substitu-
tion s the restriction of 7, to the skolem conalants duel
fo the variables in the query.

The following corollary was proved first by Clark
([Clark, 1878]) for normal programs. For the definite
case it follows immediately from thé theorem sbove,

Corollary 5.1 An SLD-refufation for o query —Q, and
a definite program P without abducibles is o consistency
proof of 3(Q)+only-if(P). A failed SLD-trec for ¢ ground
query +—@ and P is an inconsistency proef of 3(Q) +only-
if(P), and therefore of 3(Q)+comp(F).

6 Discussion

A curreni limitation of the dualily framework is its re-
striction to definite abductive programs. In the future
we will extend it to the case of normal abductive pro-
Icedurua. The extended framework will then describe a
duality between an SLDNF+Abduction procedure and a
form of model generation.

The SLDNF-+Abduction procedure can be found by
proceeding as for the definite case. There we started
from pure SLD and definite programs without abduction,
we dualised it and obtained the NMGE method, which
under dualisation yields an SLD+Abduction procedure.
At present we have performed (en an informal basis)
the dualisation of SLDNF for nermal programs without
abduction. Under dualisation, the resulting model gen-
eration procedure gives a natural extension of SLDNF
for abductive programs. The abductive procedurs ineor-
porates sholemisation for non-ground abducibles goals
and efficient treatment of abduced equality atoms by the
methods presented earlier. Integrity constraints can be
represented by adding for any integrity constraint IC,

the rule: " false—nof(TC)." transforming these rules to
a normal program using the transformation of Lloyd-
Topor ([Lloyd and Topor, 1984]), and adding the teral
nol false to the query.

A protetype of this method has been implemented. An
interesting experiment was its extension to an abductive
planner based on the event calculus, Our prototype plan-
ner was able to solve some hard problems with context
dependent events, problems that are not properly solved
by existing systems ([Shanahan, 1989], [Missiaen, 1991]).

In [Denecker and De Schreye, 1992], we proved the
soundness of the procedure with respeel lo Comiplelion
semantics, in the sense that for any query +—Q and gen-
erated solution &

Pihl=@Q

This implies the soundness of the procedure with re-
speck to the Generalised Stable Model semantics of
[Kakas and Mancarella, 1980b]: a generated selution can
be extended in a natural way to a generalised stable
maodel of the abductive program. As a completeness re-
sult we proved that the procedure generates all minimal
solutions when the computation tree is finite,

Related to our work, [Bry, 1990] also indicates & rela-
tionship between abduction and model generation. How-
ever, while we propose a relationship on the object level,
there it is argued that abductive selutions can be gen-
erated by model generation on the abductive program
augmented with a fixed metatheory.

In [Conscle et al., 1091], anotler approach is taken for
abduction through deduction. An abductive procedure is
presented which for & given normal abductive program P
and query +—Q, derives an explanation formula E equiv-
alent with Q under the completion of P:

compl P) | (Q & E)

The explanation formula is built of abducibles predicates
and equality cnly. It cherackerises all abductive solutions
in the sense that for any set A of abducible atoms, A is
an abductive solution iff it satisfies E.

Although this approach departs also from the concept
of completion, it iz of & totally different nature. In the
first place, our approach aims at contributing to the pro-
cedural semantics of abduction, This is not the case with
the work in [Console ef al., 1981]. Another difference is
that this approach is restricted to queries with a finite
computation tree. If the compulation tree contains an
infinite branch, then the explanation formula cannot be
computed.

In [Kakas and Mancarella, 1990a}, an abductive pro-
cedure for normal abductive programs has been defined.
A restriction of this method is that abducible goals can
only be selected when they are ground, As argued in sec-
tion 1, this poses a serious problem for applications such



as planming. The methods presented here allow to over-
come the problem by sholemisation of nonground goals
and efficient treatment of abduced equality facts.

Recently, an planning system based on abduction in
the event calculus has been proposed in [Missiaen, 1991,
The underlying abductive system incorporates negation
as failure, skolemisation for non-ground abducible goals
and efficient ireatment of abduced equality facts. How-
ever, the system shows some problems with respect to
soundness and completeness. Experimenis indicated
that these problems are solved by our prototype plan-
ne,

Finally, we want to draw aitention to an unexpected
application of the duslity framework. In current worlk
on abduction, the theory of Free Equality is implicitly
or expliciily present. What happens if FEQ is replaced
by general equality EQ and the equelity predicate iz ab-
ducible? The result is an uncommon form of abduction
illustrated below. Take the program P = {r(a)—}. Fu
this program, the query —r{b) has a successful abductive
derivation.

() A={}

o A ={b=a}

+r(b) succeeds under the abductive hypothesis {b=
a}. The duslity framework provides the teclmical sup-
port for efficiently implementing this form of abduction.
The only difference with normal abduction is that the
completion procedure for FEQ -the dual of unification-
must be replaced by a completion procedure for EQ, for
example Knuth-Bendix completion.

To conclude, we have presented a duality batween two
computation paradigms. This duality allows to {ransfer
technical results from one paradigm to the other and vice
versa. One application that was obtained was an efficient
extension of model generation with equality, Transler-
ring these methods back to abduction, we obtained tech-
niques for dealing with non-ground abducible goals and
efficient treatment of abduced equality atoms. We dis-
cussed experiments indicating that the extension of the
duality framework for the case of normal programs is ex-
tremely uselul for obtaining an sbductive procedure for
normal abductive programs.
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