PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © 1COT, 1992

643

A New Algorithm for Subsumption Test

Byeong Man Kim*, Sang Ho Lee*, Seung Ryoul Maeng®, and Jung Wan Cho

* Department of Computer Science & Center for Artificial Tntelligence Research
Korea Advanced Institute of Science and Technology, Dae-Jeon, Korea

** Database Section
Electronics and Telecommunications Research Institute, Dae-Jeon, Korea

Abstract

To reduce the number of generated clauses in resolution-
based deduction systems, subsumption has been around
quite for a long time in the automated reasoning com-
munity, Tt is well-known that use of the subsumption
sharply improves the effectiveness of theorem proving.
However, subsumption tests can be very expensive be-
cause they should be applied repeatedly and are rela-
tively slow, There have been several researches to over-
come Lhe expensiveness of subsumption. One of them is
the s-link test based on the connection graph procedure.
I the s-link test, it is essential to find & set of pairwise
strongly compatible matching substitutions between lit-
erals in two clauses. This paper presents an improved
algorithm of the s-link test with a new object, called
sirongly mn-ajmﬁb!e list. By use of the strongly compat-
ible lists and appropriate bit operations on them, the
proposed a.lp;arif.ﬁm reduces the possible combinations
of matching substitutions between literals as well as im-
proves the pairwise strongly compatible test itself. Two
other subsumption algorithms and our algorithm are an-
alyzed in terms of the estimated maximal number of
string comparisons. Our analysis shows that the worst-
case time complexity of our algorithm is much lower
than the other algorithms.

1 Introduction

Logical Reasoning (or theorem prmrin%) is the key to
solving many puzzies, to solving problems in mathe-
matics, to designing electronic circuits, to verifying pro-
grams, and to answering queries in deduction systems.
logical reasoning is a process of drawing conclusions
that follows logically from the supplied facts. Since the
first-order predicate logic is generally sufficient for lgﬁi-
cal reasoning and offers the advantage of being partially
decidable, it is widely used in antomated ressoning.

There have been a number of approaches to show
that a formula is a logical consequence of a sef of
formulas. Notable among them is Robinson's reso-
lution principle [Robinson 1965] which is very power-
ful and uses only one inference rule, Many refine-
ments of the resolution principle based on graph have
been proposed to increase the efficiency [Kowalski 1975,
Sickel 1976, Andrew 1981, Bibel 1981, Kowalski 1979].
One of them is Kowalski's connection graph proof pro-
cedure [Kowalski 1975, Kowalski 1979] which has some
distinet advantages over previeus approaches based
upon resclution.

1. Once an initial connection graph is constructed
all information 15 present as to which literals are
potentially resolvable so that no further search for
unifiable complementary literals is needed.

2. Application of a deletion operation can result in
further deletion operations, thus potentially lead-
ing to a snowball effect which reduces the graph
rapidly. The probability of this effect rises with

the number of deletion rules available,

3. The presence of the complete search space during
connection graph proof procedure suggests the op-
portunify to use parallel evaluation strategies Eé -
ganantharaj 1986, Loganantharaj 1987, Juang 1988]
to improve the efficiency.

Warious deletion strategies [Munch 1988, Gottlob and
Leitsch IQEETGha.nO% and Lee 1973 are suggested to re-
duce the number of clauses generated in theorem prowv-
ing (automated reasoning). A very powerful deletion
rule in resolution-based deduction systems is the sub-
sumption [Eisinger 1981, Wos 1986]. The subsumption
is used not only to discard a newly deduced clause when
a copy already has been relained, bul also Lo discard
other types of unneeded information. The use of sub-
sumption sharply im'jnw&i the effectiveness of theorem
proving, as illustrated by the benchmark problem, Sam’s
Lemma [Wos 1986).

However, the wse of subsumption can be quite ex-
pensive becanse it must be repeated very often and s
relatively slow [Wos 1986]). There have been two ap-
proaches for overcoming the expensiveness of subsump-
tion. Omne is to reduce the number of necessary subsump-
tion tests [Eisinger 1981), and the other is to improve
the subsumption test itsell [Gottlob and Leitsch 1983,
Stillman 1973). Eisinger [Eismnger 1981] proposes the s-
link test which iz based on the principal ideas of the con-
nection graph proof procedure. His method provides an
efficient preselection which singles out clauses D that do
not possess the appropriate links to the clause C. Having
preselected the candidates, we need to compose match-
ing substitutions from literals in clause C to literals in
clause [to find a matcher § from C to [). In some cases
many compositions are possible and hence the search
for l‘.’ybecomes quite expensive, Socher [Socher 1988] im-
proves the search procedure by imposing restrictions on
the possible matching substitutions.

In this paper we propose an improved s-link test with
a new object, called strongly compatible list. By use of
the strongly compatible lists and appropriate bit opera-
tions 1::-u”tsl'|u=m1 the proposed algorithm reduces the

644

possible combinations of matching substitutions be-
tween literals as well as improves the pairwise strongly
compatible test itself, Two subsumption algorithms
(Eismger, Socher) and our algorithm are analyzed in
terms of the estimated maximal number of string com-
patisons. Our analysis shows that the worst-case time
complexity of our algorithm is much lower than the other
algorithms.

In the next chapter, prelimi definitions and the
&-link test are presented. A new subsumption ithm
based on sirongly compatible lists and its related works
and analysis are given in Chapter 3 and Chapter 4, re-
spectively. In Chapter 5, our works are summarized.

2 Preliminaries

We assume that the readers are familiar with materals
in [Chang and Lee 1973). A variable starts with an up-
Fcr case letter and a constant starts with a lower case
etter.

Definition 2.1 A substitution o iz a mapping from
variables to terms.

We represent a substitution o with s;0 = {; for each
t {1 =i = n) by the set of pairs {{,/51,---,#s/5.}, and
represent the composition of substitution of o and = by
o w7, For convenience, we denote o9 -+ - o 7, by ol 0.

Definition 2.2 Two substitutions o and T are strongly
compatible, if oo =r e,

Definition 2.8 Substitutions oq,---, 5, are pairwises-
trongly compatible, if any two substitulions o, 0; €
{71, -+ o} are strongly compatible,

Diefinition 2.4 A matching substifution from a term
(or a literal) s to a term (or a literal, respectively) ¢
is & substitution g such that sg =1,

Definition 2.5 uni(C,};, D) is a set of all matching
substitutions ping a literal §; in clause © onto some
literal in clause ﬁ

For example, given C' = {p(X,¥), }"’12’] and D =
p(mb],&p{ﬁ,u g u,c]l}, we have uni(C, p(,Y},D} =
juﬁ}};r},{b X,a/¥}} and uni(C, q(Y,c), D) =

o .

Definition 2.6 If there is a ¢ with # = o e 7 for any
other unifier 8 for & and ¢, o is a most general unifier
[mgu) for 5 and ¢,

Te reduce the search space in theorem proving, re-
dundant clauses must be removed, The redundant clause
means a clause whose removal does not affect the unsat-
isfiability. The redundant clause includes a tautology or
a subsumed clause. “The subsumption can be defined in
two ways.

Definition 2.7 A clause) subsumes another clause
Cq if Oy logically implies Cy.

Definition 2.8 A clause Cy #-subsumes another clause
gg if || £ |3 and there is & substitution & such that

1 {; €

It has been shown [Gettlob and Leitsch 1985,Love-
land 1978] that these two definitions are not equiva-
lent. If we use the first definition, then most of the
resclution-based proof procedures are not complete be-
cause a clause always subsume its factors. In this paper
we are concerned only with the #-subsumption.

In order to perform a subsumﬁtion test on given
iwo clauses, we must find a matcher # such that 8
C . It is well known that finding such 8 is NP-
complete [Gottlob and Leitsch 1985] and the search for
#f may become expensive. There have been some efforts
to reduce the cost of ﬁnding a matcher # [Gotilob and
Leitsch 1985,Socher 1988,Chang and Lee 1973, Eisinger
1981, Stillman 1973]. One of them is the s-link test bazed
on the connection graph procedure. The subsumption
test based on the s-link is provided by the following the-
orem [Eisinger 1981]:

Theorem 2.1 Let O = {h,...,l.} and D be clauses,
Then C §-subsumes D if and only of |C| < | D and there
is an n-tuple (@1,...,00) € xL uni(C, {;, D) such that
all &; {1 = ¢ < n} are pairwise strongly compatible.

Example 2.1 {of Theorem 2.1 [Socher 1988]) Given a
set {C, Dy, Do, Da} of clanses with € = {p(X, }’J],
‘][Kc”:ﬂl o {FS‘]':C ribe }:-DB = {P{U:VLQ V;W:]

and D = {p{a,b), p(b,), gla,c)} one want to find out,
which clanses are subsumed by 7. I can be excluded
because the literal ¢(¥, ¢) in C is not unifiable with any
literal in [, that is, there is no s-link from ¢(¥,¢) to a
literal in D). Dy cannot be a candidate because uni(C,
q(Y,e), D) = {}. For D3 we obtain the two pairs (o,
v} and (aq, 7), where oy = {afX, §¥], o3 = [B/ X,
a{}’} and T = {u,n"}"]-. From these two pairs only (o,
7) is strongly compatible and thus ' subsumes Dy, O

As shown in Example 2.1, in order to find clauses
that are subsumed by a clause C = {I, ..., In}, first
we have to preselect clauses that are connected to every
literals in & by s-links of a connection graph. Tf D is
such clause then each literal in ' is unifiable with some
literals in D. For such candidate I, we need to perform
a pairwize strongly eompatible test on all elements of
wimund(O I, D).

3 A New Subsumption Algo-
rithm Based on Strongly Com-
patible Lists

The s-link test LEisil:ggm‘ 19$1J for long clauses with more
than one matching substitution for each literal may re-
quire an expensive search of all elements of the Cartesian
preduct.

We define the strongly compatible list of matchin
substitutions in order to improve the s-link test. Wit
the strongly compatible lists, we can single out use-
less malcﬁing substitutions and improve the pairwise
stmnﬁly compatible test itself.

The following three bil operations are used in this
paper.
wy g bitwise disjunction of w; and wy
Uy * oy bitwize conjunction of w, and wq
W : hitwise complementation

where w; is a bit sequence. For convenience, we denocte
w1+ <y, by iy Similarly, we denote wy & - #uy,
by 7

o ltes!. whether the given two matching substitutions
are strongly compatible, we need the following defini-
tion.

Definition 3.1 Let {v),---,v,} be an ordered set of
variables in clause (7, and a matching substitution & be-
tween literals in clavses © and 2 be {#/51, -, tn/3n].
&(er) s an n-length list such that the it element is 1; if
vi = &;, ¢ otherwise. &(7) = (11,--,1,) indicates thal
substitution & does not substitute [ur m:ablc wif 8 is
&, otherwise it substitutes & for v

Example 3.1 Let & = {ly, Ig}c and D = {ky, ks, k)
with) = f{-x Y? e = Péy J 1 = pla, b)), ke = p(ﬂ!clr
icu, = p{d, b) be an ordered set of variables
in &. We want to ﬁ_nd a.lt the matching substitutions
hetween literals in ' and literals in 0. Then, we can
obtain that oy = {a {X b,.l’Y% oy = {a,.I'X cf ;
{fi_lle bf}r}-, Ty = { , O =
cr,u.-{d.' T4 for each (I }whm-cl{t{ﬂam
1<j<3 E}r Definition 3.1 we obtain that 68&1} = (e,
b q‘-'g 8(ea) = (a, €, #), &{os) = (d, b, sﬁ} 5{64 (, a,
= (&, a, ¢}, and &{cs) = (q'.t, . B, o

If two matching substitution oy and oy are strongly
compatible, they should not substitute for same wvari-
ables differently. That is, if o substitutes a term ¢ for
a variable v then e has to substitute the term § for the
variable v or does not have to substitute for the variable
w. This can be formally described in Lemma 3.1.

Lemma 3.1 Let {vy,---, v,]| be an ordered sef of vari-
ables in clanse C, and &y and o3 be matching substitu-
tions from literals in clanse O to literals in clauiu: ﬂ 7
and oy are strongly compatible if and only if m(8(e))
=¢V 1.(5{-3;]1 Y m{aﬁ{cr:]} = w.{é& aa)) for m.l': i
(1 <1 = n), where m;{X) is a selection function which
returns the sth element of list X

(Proof) {+«) Each case is considered separately.

(i) in the case #;(6(m)) =
Since vy = w; and cla.uses- & and I are variable-
disjoint, vi(eea:) = (vim)os = oy = (wem)er =
I.','{ﬂ'zi{?ll.

(ii) in the case mi{f(m2)) = ¢
Since woy = wv; and clauses € and [variable-

disjoint, vi{geeen) = (vimz)oy = vy = (e)os
= v 80z).

(#ii) in the case w{8{oy)) = w{f{ea))
Since wey = t::a; and (laum C and D are

variable-digjoint, v;{oyees) =
= vy = vidy ™ Wl}ﬁ = (weg)o =

‘# . {Bﬁ{{"}_} - m%mg if :n{ﬁ r}:} -{iﬁgrtw. -ga‘gt

7y and o3 are stro c.nm a.hble

{—) Assume that :lr,l:ﬁ{sri # ¢, ml{f{o2)) # ¢, and
wi(6{a1)) # mi(6(e2)). By Definition 3.1, ry and o2 con-
tain & /v and 52 v, raapaactwsly, where s, # ;. Hence,
vilayeay) # vilgaeay) (e, o1 # o3 # o3 # &), This is
contradictory to that &, and @5 are strongly compatible.
The proof is completed. o

(v e = {:‘uﬂﬁ
79

G645

Lemma 3.1 suggests a new method for testing whether
the given two matching substitutions oy and o are
strongly compatible. That is, without caleulating o oo,
and oyecy, we can determine whether ¢y and o; are
strongly compatible by only comparing (¢,) with -E[d’,?
For example, we can know that oy and a4 in Example
3.1 are not st.n:rn.gly mmpmb]e because wa(d{oy)} # ¢
A 72(8(04)) # & A ma(8(01)) # 7a(6(04)).

Definition 3.2 Let {v;, ---, tim} be an ordered set of
variahles in clause O, and '|£-l 1, "+, Tn} be an ordered
sel_of matching substitutions fmm literals in clause C
to literals in clause 2. P{X), 1 =i < m, is an n-bit
sequence such that its j'th bit is 1 if the i'th element
of §(a;) is X or ¢, otherwise 0 for each j-(1 = j < n).
Especially, when X is ¢ all bits of F;(X) are 1.

Example 2.2 From Examp 1': 3.1, we have Fila
110111, B dj = 001111, Eiﬁ? = 111111, Fla

000110, Pylb) = IUIUUU Fyle] = 010000, Fyld
000001, Fa(g) = 111111, P:l[&} = 111101, and Filc) =
111010, In this case, P.[a} = 110111 indicates that vari-
able vy having value a is compatible with substitutions
1,2.4,5,6 but not with the substitution 3. [m]

Let {o1, ---, 0} be an ordered set of matching sub-
stitutions from literals in elause C to literals in clause
D and m be the number of variables in ¢, Match-
ing substitutions which are strongly compatible with &,
1 <1 < n, can be represented by an n-bit sequence
which i i8 ra]culatm:l]:r:,r the rullmlzlg function ﬁ{l‘.‘r‘:l

Blay) = *5, Fy(mi(8(a))).
We call 3{ey) the strongly compatible lst for ;.

Lemma 3.2 Let {wy, ---, v, } be an ordered set of vari-
ables in clause ¢, and {1, -+, 7a} be an ordered set of
matching substitutions between literals in clauses C and
literals in clawse 0. o € {oy, -+, op} and oy, 1 £ k < n,
are strongly compatible if and onlv if the k'th bit of ,E{nr:i
is 1.
p‘rnﬂ? We must show that if the &'th bit of I
_F‘E (mi{é(e))) is 1 then & and oy, are strongly cumpat.-
ible, and also show that if o is stmgly mmpa.hb]e with
oy, then the B'th bit of T, Fi(mi{8(e))) is 1.
{+) From the fact that the k'th bit ol'm e Fﬁ éé' 2 }is
1, the k'th bltufP{'rg-E{ Jsl[ureacht <
Ey Definition 3.2, m;(= ¢ or w Sf.r}} = m;(&{os]
or wilélow)) = ¢ for each i {1 =i= Therefore, by
emma.ﬂ 1, & and o are strongl compatible.
3 From L&mma 3.1, mdle]{ é or m(8(e)) =
(ow)) or m:{6('J) - ¢ for each i (1 -i:*f.m] By

Deﬁﬂ:tmn 3.2, the E'th element of F(= [‘é{ag is 1 for
each i (1 = ¢ < m). Therefore, i.h:: &k it of 1%
Bi(=:(8(e))) is 1. B

Example 3.3 From Example 3.2, we can obtain #{z)
for each i (1 < i < 6) as follows:

B(er) = Pi{a) + Pa(b) + Pa(d) = 110111 # 101000
= 111111 = 100000

flaa) = PIEIG} * Pafc) # Pa(d) = 110111 =+ 010000
« 111111 = 010000

Blm) = le{d] FPafb) » Fy(d) = 001111 » 101000
+= 111111 = 0010

Blos) = Pl(.,r.] s Paa) # Pofb) = 111111 # 000110

+ 111101 = 0001

Alos) = Plr:.;ﬁ} * Pyla) * Pa(e) = 111111 » 000110

baG

* 111%1{0 = mﬂ?’f{.

= * P B) = 111111 =* 000001
*]]'llﬂfni l}‘.]ﬂlaél.:l {6+ Al ’
From this, we know thal each {1 < i < 6) is strongly
compatible with only itself. o

Some matching substitutions do not contribute to
construct a matcher # such that 08 C D). I such match-
ing substitutions can be identified and removed before
the actual pairwise strongly compatible tests, we can re-
duce the effort to find a matcher #. One class of such
matching substitutions can be defined as follows:

Definition 3.3 Let O = {, --+, ln} and I be clauses
and & a matching substitution mapping a literal in
onto a literal in D, If there is an I, & ﬁ, v+, Im} such
that any matching substitution in uni(C', Iy, [) is not
strongly compatible with ¢ then o is useless.

Intuitively we know that a matching substitution o
is useless if the number of 1z in Hs) is less than m,
the number of literals of C. Bul the number of 15 in
#e) is not always less than m though o is nseless. Let
C o= {h, -+, ln} and D be clauses and {7, -+, 7}
be a set of matching substitutions from literals in & to
literals in [). We can represent uni(C, i,) by an n-bit
sequence Ay, such that its £'th bit s 1 if oy € wni(C, 1,
DY, otherwise 0 foreach kand i (1 <k <m,]1 <1 < n).
Given these n-bit sequences, we can easily test whether
a matching substitution ¢ is useless, that is, if there is
an Iy such that M), + #(s) = 0 then 7 is useless.

Example 3.4 From Example 3.1, we have uni(C, I,
"D:I = 151, 91, 5‘3]' and 'HR!-[' 11’: D} = ‘{F‘I! 5, 'U'B} and
thus M), = 111000 and M), = 000111. We have 3(zy)
for each k& (1 < & < 6) as shown in Example 3.3. Since
Blai) » My, = 0 for each i (1 <1 < 3) and F{o;) * M,
E 0 for each j (4 < 7 < 6), all oy (1=k<8) are useless,

Theorem 3.1 Let C = {l, -+, I} and D be clauses.
Il o € uni(C, I, D) (1 <k < m) is a useless matching
substitution then there 1= no @ such that 8 C D and §
=y Ty ® T @ Gy 00 8 O, Where o; € uni(C,
L, D) for each i (1 S i < mm, i k).

{Proof) Let o be 8 member of uni(C, I, D) and a useless
matching substitulion. Suppose that there is a # such
that C8# € Doand 8 = oy -« w oy » o ® opyy -
® o, where oy € uni(C, &, D). By Theorem 2.1, &y,
ety Ogoty O Thgy o **y Tm must be pairwise strongly
compatible and thus o is strongly compatible with o; €
umﬁz}', Iy, D) for each i (1 <4< m, zJ! I’fll o € uni((C,
Iy, I7) is strongly compatible with itself. Therefore each
uni(C, I;, D) for each i (1 < < m) has at least one
matchins substitution which is nf.rung]y mﬂlpﬂlihlu with
o. This is contradictory to that & is a useless matching
substitution. Henee, there ig no such 4. O

By Theorem 3.1, it is not necessary to perform pair-
wise strongly compatible test on useless matehing substi-
tutions. If & € uni(, {, [} is a useless matching substi-
tution then we can remove o from uni({C, Iy, V) without
changing the result of subsumption tests. In Example
3.4, we know that clause O does not subsume clause D
without patrwise strongly compatible tests, since all &;
ars “ﬂ{:]rﬂi.

Given two clauses C and [, there may be more than
one matcher § sueh that CF © D. To test that C sub-
sumes [, we only find a matcher, thai is, we have no
need to find all matchers. By this property we can re-
maove more matching substitulions.

Definition 3.4 Let © = {4, «+-, .} and [be clayses
and {ey, ---, oy} be an ordered set of matching substi-
tutions from literals in O fo literals in D. If oy, 0; €
uni(, I, [for some r (1 < r < m) and o; is strongly
compatible with each oy which is strongly compatible
with o; then o; includes oy, denoted by o <, oy, where
k+#iandk#j.

Let {@1, -+ -, 7u} be an ordered sel of malching sub-
stitutions and v(o;) be B{z:} * uF, where g;™ is the n-bit
sequence such that the value of its i'th Ifit. is 1 and all
remaining bits are (. Then, we can easily fest the <.-
relation by bit operations, i.e. if v(g;) * 7(o;) = 0 then
o= L

Example 3.5 Let & = {p(X),q(¥)}, D = {p(a), p(b),
gla), g(d)} and {X, ¥} bep{a.n?}r) set of ;[aéa)blei i:::l
have 7y = {a/X}, 02 = {4/ X}, o = {a/ Y},
and g4 = {4/ ¥}. By Definition 3.1, we have Eé:rl = [a,
), 8) = (6 8), 8oo) = (8, @) 8(o0) = (6, b). We
can calculate the following strongfy compati

matching substitutions:

. S0 W

e lists of

fler) = Fila) # Pe(g) = 1011 = 1111 = 1011
Blaa) = Alb) = Pa(g) = 0111 = 1111 = 0111
Blos) = B

}* Fila) = 1111 + 1110 = 1110
,H!:Tq = P; lﬁl * .Fg b) = 1111 = 1101 = 1101.
From this strongly compatible lists, we can obtain y{oy)
and y(oq) as follows:

y(en) = Bley) * pf = 1011 » 0111 = 0011

vlo2) = Bloa) * uf = 0111 * 1011 = 0011.
Since -';r({:l:] * () = 0, we obtain the relation oy =,
3. Similarly, we obtain the relation o3 <, o a

Theorem 3.2 Let & = {’h, woy Iy} and D be clauses,
e & uni(C, I, I.IQ and o' € wni((, I, D) for some &
l=k<m) o=, a"a.m:lnr.-Eum'[d, f;, D) for each
(1< <m, iz k). If there is 2 # such that O C D
and @ = oye - eop_ye geTyyy - e, then there is a
& such that 9" C D and & = oy -+ wopy e o'eayy,

et B,
g‘rﬂof} Let us suppose that there is a # such that &8 C
and & = aym -« wop_y@ gy <o eo,, Then, oy, - -
The1y Ty Tyl *°° T aTe pairwise strongly compatible
by Theorem 2.1. Since o’ includes &, & is strongly com-
patible with o), -+, #iog, Frgr, -y Fme Thus oy, -,
Tpoq, O, Tppq, o+, O are pairwise strongly compatible.
Therefore, there is a # such that G C D and & = oy
ERL -y ﬂ'*'ﬂ'g.n ERE - 'J’}'T].'IEJUI’EII: 2.1, 0o

By Theorem 3.2, we do not need perform a strongly
compatible test on the combinations of matching substi-
tutions which contain a matching substitution oy such
that oy € um'EG'., li,), o2 € wni(C, §;, D), and 7y <,
#3. In Example 3.5, we can remove oy and o5 because
oy and ey include &) and oy, respectively,

As Theorem 3.1 (useless theorem) and Theorem 3.2
(included theorem) suggest, we can remove the useless
or included matching substitution belore we take a pair-
wise strongly compatible test. We call a matching sub-
stitution which is either useless or included unnecessary.

One phenomenon we want to point out is that a match-
ing substitution becomes unnecesstiagly due to the propa-
gation of deletion, so needs to be deleted. Therefore we
should keep deleting unnecsssary matching substitutions
until there is no more such matching substitution. For
examples, let 71, o3 and o3 be matching substitutions
from literals in € to literals in 7, and Jel the number of
literals in ' be 3. Suppose that ey is strongly compat-
ible with oy and o3, and oy is not strongly compatible
with 5. Then &y is not a useless matching substitution.
However, the removal of useless matching substitutions,
ey and oy, causes oy to be a useless matching substitu-
tion and thus it can be removed.

Let C = {h, -+, I}, and D clause. Then, in
the worst case ((n?) strongly compatible tests will be
needed for each combination (ay, - -+, o) € ®E, uni(C,
I;,)} in order to check C subsumes 0. However, given
fle;) we can enhance the performance of a subsumption
test by the following theorem.

Theorem 3.3 Let O = {1,
o1, -+, o} be & set of matching substitutions from

literals in €' to literals in D, and {os,, ---, 0z, } bea
subset of {oy, v+, oa}. Thereis a § = a0 - #g,
such that OF € D and o, € uni(C, Ig, D) for each ®
(1 <k < m)if only if #7,; B(on,) * +iey Bo" = +Hhe
[

Proof) (=) Since #§L, flow,) * +1u 82" = e B
{:qr I.:erjniua.}ﬂ.l d'n': 1,{ ;:l arahsjl'.r;;n*g]y' onmp:;itle
with each of {oy,, -+, o5, }. Therefore oz,, - -, Oz, ar¢
pairwise strongly compatible. Thus, bj.rnT eorern 2.1,
there isa § = o & -+ o, such that 8 € D and oy,
€ uni(C, ly, D) foreach k(1 <k < m)

(=) By Theorem 2.1, &, - -+, 0, are pairwise strongly
compatible. Therefore, by Lemma 3.2, the z; it af
Blog,) for each i, k (1 < 4,k < m)is 1. Thus #,
ﬁ("’ﬂ} L R +0 B (m]

Now we can formulate a new algorithm that returns
a pairwise strongly compatible set {o7, -+, om} such
that {ey, --- amlfe winy und(C, &, Alif exists, other-
wise return {}. The detail algorithm, Pairwise Sirongly

Compatible Test (PSCT), is deseribed in Figure 1 and it
can be summarized as follows:

1. Calculate the strongly compatible list for each
matching substitution.

<o4, I} and O be clauses,

2. Remove unnecessary matching substitutions until
there is no such matching substitution.

3. Find out an m-tuple (o, -- -, o) such that «[L,;
Blow) = +1y ™ = +im B"
Example 3.6 Given C = {p[X,Y),r(¥Y, Z],S(X,ZH
and I = {p(b,a), p(a,b), r(a,d), rsib,r:], s(a, d), s(e,c
we want to find out a substitution & such that O8 € D,
Let {X,¥, Z) be an ordered set of variables in C. Then,

we can obtain that

Mz = 110000, M,y z = 001100, M,yx z = 000011,
B{ay) = 101000, B(as) = 010111, P(gs) = 101010,
flaa) = 010101, fB(os) = 011010, f(ee) = 010101
Since foy) * Myxzy =0, 71 is removed and thus the
strongly corhpatible lisis are adjusted as follows:

Bloz) = 010111, Bls) = 001010, Blas) = 010101,
(as) = 011010, B(as) = 010101

647

Since ﬁ[:rﬂlt Myxyy = 0, o3 is useless. By further
removipg the useless matching substitution &y, we can
obtain that
Blos) = 010111,
Flog) = 010101,
Since f{os) #+ M.v,z = 0, 75 is useless and thus re-
moved. Congsequently we can obtain following strongly
compatible hsts:

Blez) = 010101, Fo) = 010101, Fleos) = 010101,

Since S{wa) » Hog) * Flog) * 010101 = 010101, ag, o4
and oq are pairwise strongly compatible. Thus, there is
a substitution § = gaeggemg = {af/ X, Y] cli'Ei, O

Bloa) = 010101, Blos) = 010010,

Our Algorithm PSCT

Input: eclauses C = {l,+++ ,lg} and I

Output: a pairwise strongly compatible set {o1,---,0m}
such that {my,--,00) € xh, wni(C, i, D)

1. Calculate §{¢) for all ¢ € U2, wni(C, L, D).

2. Let I be an n-bit sequence such that all its bits are
0.

{a) for each o € U, uni(C, &, D), if oy is use-
less then
i, remove @,
i I=1+4 m™
(b) for each op € UL, uni(C, L, D), il there is a
ay such that o <, o then
1. TEMOVE Tk,
o I=14 o
(¢} for each oy € UR, uwni(C, I, D), Gloy) =
Blog) = 1.
3. If uni(C, &, 1) = {} for some i, then return {}.

4. Repeat step 2~3 until there is no unnecessary
matching substitution.

5. For each m-tuple {&,, -
I, D),
if *?:1 IH['IH-} * +*m.-[."!'l-j-ﬂ = +?=1 |u;'_|.-n| t-hETl refurn
{1 Fim)

-r, O) Where oy, € uni(C,

6. return {}.

Figure 1: Algorithm PSCT

648

4 Related Works and Analysis

This section compares our n.linrithm with the two ex-

isting slink tests, namely Eisinger’s algorithm and

Socher's algorithm. The analysis is based on the number

of string comparisons to determine whether a clause ' =

{ly," -+, Im} subsumes a clause D). To measure the com-
1:1:i1.;|.r of three algorithms, we use the following sym-
ols;

r: the maximal arity of predicate symbals occurring in
literals in clauses é:a.ud D.

Ne: the number of distinel variables in & literal in
clauses C and D.

Np: the number of distinct terma which are substituted
for a variable in clanse C.

Ns: the number of strongly compatible tests needed to
see whether m matching substifutions between lit-
erals are pairwise strongly compatible.

Np: the number of pairwise strongly compatible tests
needed to find a matcher § such that C6 C D,

To simplify the analysis, we assume that the number of
matching substitutions in each wni(C, i, P) (1 €4 <
m) is equal and let it be k.

In Eisinger’s algorithm, subsumption tests for long
clauses with more than one matching substitution for
each literal may require an expensive search of all ele-
ments of the Cartesian product. Since compaositions of
substitutions are needed to see whether Lwo given substi-
tutions are strongly compatible and O(N2) string com-
parisons are needed for each strongly compatible test,
O(NsN2) string comparisons are needed for each pair-
wise steongly compatible test, Thus Of NpNg N2) string
comparisons are needed for the subsumption test. Since
B <Nep<k™ 1< Ns<=et) andl < Ne <,
in the worst case Np = r, N3 = m{m — 1)/2 and Np
= k™, 5o the worst-case time complexity of Eisinger's is
Oikmmﬂrﬂll

Socher proposes an improvement of the slink test
for subsumption of two clauses [Socher 1988). He im-
proves the search for & such that Cf € D by imposing a
restriction on the possible matching substitutions. It is
based on the idea of giving the variables and literals of
a clause a characteristic property, which in fact denotes
information about the occurrences of variables in vari-
ous argument positions of a literal. An order for these
characteristic is defined and it is shown that the order
is compatible with the matching substitution ¢ from
to [3. Thus all matching substitutions that do not re-
spect the order can be singled out. However, he does not

improve the pairwise strongly compatible test itself and
thus does not reduce the worsi-case time complexity of
the s-link test. ’

In some cases Socher's algorithm can not single out a
matching substitution which is either useless or included
malching substitution. For example, let C = JP{X,Y:IF
g(Y,X)} and D = {p(a,c), p(b,d), g(c,b), p(d,a)} be
given. No matching substitution is singled out becanse
the characteristic matrices of literals p and g in O are
equal to those ones in [}, However, all matching sub-
stitutions are useless in our approach, 50 no pairwise
strongly compatible test is perfermed.

By using strongly compatible lists and bit opera-
tions, we improve the pairwise strongly compatible test
and thus reduce the worst-case time complexity of the s-
link test. O(km?NgNp) string comparisons are needed
to calculate all strongly compatible lists. O{m) bit-
comjunctions are needed for a pairwise sirongly compat-
ible test when m strongly compatible lists are given.
Thus, O{km®NeNg) string comparisons and O(mNg)
bit-conjunctions are needed for a subsumption test.
Since* < Np< k™, 1< Ne<r,and 1 < Np < km,
in the worst case Np = k™, Np = r and Np = km, so0
the worst-case time complexity is O{k*rm® string com-
parisons + mk™ bit-conjunctions).

Let n be the ratio of the time complexity of & string
comparison to the time complexity of & bit-conjunction,
Then, in the case that k*rm? is greater than 252 the

worst-case time complexity of our algorithm is G[r}c”rm"‘]
and we can reduce the worst-case time complexity of
Eisinger’s algorithm by O(¥2%). In the oiher case,

the worst-time complexity of our algorithm is O 2£%)
and we can reduce Lhe worst-case time complexity of
Eisinger's algorithm by O{mrn).

5 Conclusions

Subsumption tests for long clauses with more than one
matching substitution for each literal may require an
excessive search for all elements in the Cartesian prod-
uck, We have presented a new subsumption algorithm,
called PSGT a.lgarilhm, which has a T.nwet worst-case
time complexity than the existing methods. The effi-
ciency of our algorithm is based on the following facts.

1. Comstruction of strongly compatible lists allows
us to identify unnecessary matching substitutions
at the early stage of the subsumption test. Such
matching substitutions are removed and are not
involved at the actual pairwise strongly compat-
ible test to come. This filtering process reduces
the number of possible combinations of matching
substitutions CIE!&I"}I'.

2. As for the pairwise strongly compatible test itself,

the test is carried out efficiently due to the appro-

riate bil. operations on the strongly compatible
ists which are already constructed.

The approaches [Socher 1988, Eisinger 1981] that ac-
tuelly compose the matching substitutions to check pair-
wise compatibility are considered to be slow and expen-
zive. In most cases our approach outperforms others
[Socher 1988, Eisinger IQSIIIDEWH though it may invelve
the cost overhead for computation of the strongly com-
patible lists of matching substitutions. Furthermore, it
should be noted that our subsumption algorithm can be
used in general theorem proving approach even though
it is described in the context of the connection graph
proof procedure in this paper.

References

[Andrew 1981] P. B. Andrews, Theorem Proving via
Gﬂe;;ral atings, Journal of ACM 28 (2) (1881)
153-214.

|Bibel 1981] W. Bibel, On Matrices with Connections,
Jowrnal of ACM 28 (4) (1981) 633-645.

[Chang and Lee 1973] C. L. Chang and R. C. T. Les,
Symbolic Logie and Mechanical Theorem Proving
(Academic Press, New Yorl, 1973).

[Bisinger 1981] N. Eisinger, Subsumption and Connec-
tiom Graph, in: Proceedings of the LTCAL81 (1981)
4R0-486.

[Gottlob and Leitsch 1985] G. Gottlob and A. Leitsch,
On the Efficiency of Subsumption Algorithms,
Journal of ACM 32 (2) (1985) 280-295.

[Ju et al. 1988] J. Y. Juang, T. L. Huang, and E.
aﬁ'amnan, Parallelism in Connection Graph-based
Logic Inference, in: Proceedings of the 1988 Inter-
f%ﬁanaf Canference on Parallel Processing 2 (1988)

[Kowalski 1975] R. Kowalski, A Proof Procedure usin
Connection Graphs, Journal of ACM 22 (4) [].9?5?
572-595.

[Kowalski 19?9{ R. Kowalski, Logic for Problem Solving
{Nerth Holland, Oxford, 1979).

|[Loganantharaj 1986] R. Loganantharaj, Parallel Theo-
rem Proving with Connection Graphs, in:
ings of Sth International Conference on Autamutﬂi
Deduetion (1986) 337-352.

[Loganeantharaj 1987] R. Loganantharaj, Parallel Link
Resclution of Connection Graph Refutation and its
Implementation, m: Proceedings of fmiernotional
Conference on Parallel Processing (1987) 154-157.

|[Loveland 1978] D. Loveland, Auwlomaled Theorem
Proving: A Legical Basis ‘[Nu-rth-Ho].Ia.ni Amster-
dam, 1978).

[Munch 1988] K. H. Munch, A New Reduction Rule for
the Connection Graph Proof Procedure, Journel of
Automated Heasoning 4 (1983} 425-444.

[Robinson 1965] J. A. Robinson, A Machine-Oriented
Logic Based on the Resolution Principle, Jouwrnal
of ACM 12 (1) (1965) 23-41.

[Sickel 1976] 5. Sickel, A Search Technique for Clause
Interconnectivity Graphs, [EEE Transaction on
Computers 25 (y} (1976) 823-835.

[Socher 1988] R. Socher, A Subsumption Algorithm
Based on Characteristic Matrices, in: Proceedings
Jf!?fh International Conference on Automated De-

uction (1988) 573-581.

[Stillman 1973] R. B. Stillman, The Concept of Weak
Substitution in Theorem-Proving, Journal of ACM
20 (4) (1973) 648-667.

[Weos 1986] L. Wos, Automated Ressoning: Basic Re-
search Problems, Argonne National Laboralory,
Technical Memorandum No.67, March 1986.

649

