FROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1992,
edited by 1COT. @ 1COT, 1992

634

Theorem Proving Engine and Strategy Description Language

Massimo Bruschi

State University of Milan - Computer Science Department
Via Comelico 39, 20135 Milan, Italy

e~mail:

Abstract

The coneepts of strategy description language {SDL) and
theorem proving engine { TPE) are introduced as archi-
tectiral and applicative tools in the design and use of
an automated thecrem proving system. Particular em-
phasis is given to the use of an SDL as a research tool
as well as a way to use a prover both as a batch or as
an interactive program. In fact, the availability of an
interpreter for such a language offers the possibility of
having a system able to cover both of these usages, giv-
ing to the user some way of choosing the granularity of
the steps the prover must take. Thres examples are given
to show possible applications. Their purpose is to show
its usefulness for expressing and testing new ideas. Some
interesting capabilities of an SDL are applied to highlight
how it allows the treatment of seli-analysis on the state
of the search space. Examples of these are the definition
of a sell-adaptive search and a tree proning strategy. All
the definitions we give reflect a running Prolog protofype
and inherit much from the Prolog style and structure,

1 Introduction

The uses of and the interest in automated theorem prov-
ing have grown markedly in the preceding decade. The
cause rests in part with faster computers, easy access to
workstations, portable and powerful automated theorem-
proving programs, and successes with answering open
questions. Various researchers in the field conjecture
that far more power is needed to attack the deep prob-
lems of mathematies and logic that are currently out of
reach.

Although some of the needed increase in effectiveness
will result from even faster computers, many state that
the real advances will result from the formulation of new
and diverse strategies. Because we feel that the ease of
comparing, analyzing, and formulaling such strategies
would be enhanced il an appropriate abstract language
and theory were available, we undertake here the devel-
opment of such a language. Perhaps the abstraction and
language will lead to needed insights into the nature of

mbruschi®imincca.csi.unimi.it

strategy of diverse types. In addition, because of jls re-
lation to this language, here we also provide an abstract
treatment of thearem-proving programs as engines. This
abstraction may enable researchers to analyze the difl-
ferences, similarities, and sources of power among the
radically diverse program designs.

The idea for developing a strategy description lan-
guage (SDL) usable to define search strategies for a the-
orem prover was born when we began to study the ap-
plication of parallelism to ATP. One proposal was to run
many theorem provers on the same problem but with
different search strategies. Having different sirategics
expressed as programs would mean having, as input of
each prover process, the couple < theorem,search —
algorithm >,

The development of a language requires the definition
of an abstract machine to execute its programs, requiring
an interpreter for the language. Our experiences and
previous work with Prolog has suggested its use for the
realization of a prototype.

One simple way to build an interpreter is to define a
kernel module offering the basic services. This led us to
the definition of a theorem-proving engine (TPE). Next,
we developed a theorem prover having an SDL inter-
preter and a TPE as basic modules. =508 is the name
of our 5DL.

Generally, we conjecture that an SDL might benefit by
having one (or more)} of the basic attitudes and of being
procedural, functional, and logical. 1t should also be able
to focus on the operations with different granularity as
well as directing the prover process, controlling details of
different level of complexity. As & sample model we can
think at production systems in Al, and say that an 3DL
could be vsed to describe the control side of such a sys-
tern. There can be as many SDL languages as different
praduction systems.

The language we defined did not result from a deep
analysis of the cited aspects; instead, it has been driven
by the underlying structure of the TPE we developed,
by the fact that is realized in Prolog, and by the wish
to define the language on the field so that it could be
runi. One of the nice things about Prolog is that you can
develop executable meta-languages.

2 A theorem proving engine

A TPE iz a program module devoted to maintain and
operate a knowledge base (K 8} of logical formulas and a
set of indexes on them. We think of these indexes as sets
af references {or ids) to the formulas. The sets are dis-
tinguished by name. Each formula is retained together
with various information ahout it.

A TPE can perform two basic activities: inference and
reduciion. The object of the first activity is to deduce
new knowledge, gathering it by considering various sub-
sets of the formulas in the KB. The object of the second
activity is to keep the size {or the weighi) of the KB as
small as possible, by disearding redundant information.
We require that every successful call to the inference pro-
cess (IF) also calls the reduction process {£F).

To better define the activities of a TPE, we focus on
a possible minimal interface to such a module. We as-
sume that the TPE finds the KB initialized with a given
input set of formulas and that each operation maintaing
appropriately the indexes. We shall extend this interface
gradually in the paper.

The kernel functions of 2 TPE can be:

¢ (TPE.1)« enable{+Rule)
« ([TPE.2) - disable {4+ Rule) :

A TPE is thought to offer a set of inference and
reduction rules, each referred with a name. An IP
will then apply the set of all the active inference
rules, and the RP will only use the active reduction
rules. These two functions are used to control the
aelivity sets. For simplicity we assume the calls can
also accept a list of rule names.

s (TPE.3) - superpose(+/d;, +1d;)

Its purpose is to activate the [P. It will superpose
the formula referred to by fdy on the one referred
to by Id, using all the active inference rules. We
use Lhe conceptl of superposition because it implies
the ordering of the arguments, which is sometimes
required. In this respect the general form of a single
inference {as well as reduction) rule is thought of as

Id’,fdz
{Ni Ney.. Na

meaning that this rule takes as premises two formula
references and produces a set of new references as-
sociated to the formulas resulting from the actual
application. Consider for example the binary reso-
lution inference rule. Tt takes two clauses and gener-
ates a set of resolvents. So, if we consider the clausal
formulas referred to by I'd, and by Id;, the reference

635

set {N|, Na, ..., Nu]} will refer to their resclvents
(if any). Rules with single premises are called with
superpose(fd, Id).

o (TPE.J) - delete(+/d) :

It is used to delete the formula referred to by Jd from
the KB and [rom the indexes. This operation, com-
bined with a superposition call, ean be used to re-
alize transformation processes on the KB. Consider
for example the standard CNTF transformation. It
replaces a formula with a (satisfiability) equivalent
set of clauses. We can model this by calling an infer-
ence rule with only one premise to generate Lhe set
ol clauses and then delete the premise. As a malter
of fact we think of this operation as reversible. See
the nexl operation.

o (TPE.5) - undelete{+/d) :

It is called to recover an earlier deletion of & for-
mula. We can think of it as a special inference
rule that wncovers a formula. Tt can be uselul in
adaptive searches. Suppose for example we are us-
ing a weighting strategy to discard newly generated
formulas if they exceed a fixed weight. Using the
delete/1 call we can simply hide the formula from
the KB and the indexes and later recover it if, for
example, the search ends with a consistency status,

As a matter of fact the indexes on the formula K1
have a dominant role for understanding the entire idea,
In the next section we will make clearer this role.

3 zSDL: a strategy description
language

Indexes, as sets of references to KI's formulas, are the
basic objects of the language 25SDL, which uses id-sets as
the basic elements to refer to nodes and to describe the
visit of the search tree.

The underlying idea is that an SDL requires some
mechanism to represent a proof tree, for the ideal search
strategy for proving a given theorem is the deseription
of the precise steps the reasoning module must follow
to reach the prool nodes in the search tree. With an
SDL we must be able to speak about the nodes of the
tree {the formulas) and the relations between them (how
to reach the parents of each node, following the ances-
tor relation, as well as how to reach the children of a
node, following the descendants relation). Another use-
ful property might be the ability to know the level of
a tree node, in order to define a (partial) ordering be-
tween the steps made to reach the proofl (a sequence of
parallelizable steps).

636

From these observations we chose to use sets of nodes
ag the basic description objects. And z5DL turned out
to be, in some sense, a sets-operations oriented language.
We will refer to a generic 25D, set of references to formu-
las to mean either an id-set or an index. A set is referred
by a [unique) name. It is something like a variable of
Lype iel-sel.

In 25DL we can apply to the id-sets all of the com-
mon operations and relations on sets, plus some special
(procedural) ones like assignments, evaluation, etc. The
following is a list of these functions, giving in addition
some of the syntax of z5DL {recall that it is & Prolog by-
product). In z5DL an id-set is represented as & Prolog
list.

The Prolog variable names implicitly define the types
of the operators in the following way:

FetName: the name of the variable that refers to the set.

SeiFrpr: an expression on sets, which can be an explicit
set (list), a SetName or an expression built up using
the defined operations.

Var: a Prolog non-instantiated variable.

Elem (rVar: a Prolog variable {Var) eventually instan-
Liated rEfcm}.

Notice that the SetErpr are evaluated.

o (5001} - sel operaltons :

+SelExpry # +5etErprg F union
+SetEzpr, .+ +SetExprg % weak union
+5etExpr, .+ +SelExprg ¥ inlersection
+8etFxpr, .- +8etEzprg % difference

The weak union makes no checks on repetitions.

o (280L.2) - sel relations ;

TElemOrVar .7 +SetErpr % membership
+SetExpry =< +SetEzprg % contginment
+8etEzpry < +5etBrprg & strict coniainment
+5etExpry = +SetBrpry K equality

Motice that, using the Prolog negalion, we also have
the negations of these relations
o (:50L.3) - sel procedures :
+SetName = +SetEzpr ¥ assignment
-Var .¥5etName 5§ extract It element

-Var .. +SetExpr % evaluate
+Set Name % destroy the set

The pop operation treats the set as a stack.

Az an example, in a 2SDL-Prolog session we could
have:

| 7- a := [1,2,3],
b = a .- [3,4,5].

jreﬂ

| 7= A .. a,
E .. b,
¥ .. b .# [6].

A= [1,2,3),

B = [1,2],

1= [1,2,86]

in which you see how 25DL sets are permanent objects,
contrary Lo the classical Prolog variables,

This level of basic operations on (id-)sets must be en-
riched by statements to permit intecaction with the TPE.
We will show Lhe basic calls 2501 defines to run an IP
by developing the Prolog code that can realize it.

We are looking for a statement responsible for execut-
ing the actusal inference steps applicable on some given
id-sets. Consider the zSDL syntax

o (z80L.4) - direcled superposition :
+5etExzpr, ++> +SetEzprg

After the evaluation of the id-set expressions the gen-
eral form of a call can be thought of as

[Ah A:,. . r"""ﬂ] 42> [HL|H2|1I11 Em]-

Obviously we expect this search to consider all the
pairs, i.e. the TPE must be directed to tey all the fal-
lowing superpositions:

< A|.B| > o= A'[,Bg =y
<A By >, <Ay By >,

n e {Al.Bm}
ceny % A, By =

<oy = Aru Bm >
This can be realized by the following straightforward
Prolog code:

< A, By =, < A, B >,

SetExprA ++» SetExprB :-
ALl .7 SetExpri,
Bj .7 SetExprB,
superpose(Ai,Bi),
gtop_search.

SetExprA ++> SetExprB.

The only new predicate we used is stop_search/0. In
fact, one omitted item in the TPE interface we have ab-
served is a test to control Lhe status of the KB. Therelore,
we extend the TPE interface with

e (TPEE) - proof found{~-Int) :

Used to ask the status of the KB. The number of
found proofis) is given.

You can think of stop.search/0 as built from a
proof _found/1 call followed by an appropriate compar-
ison and by any other (eventually) necessary operations.

In addition to the ++>/2 operator, 25DL alzo defines
the syntax

e (:SDL.5} - superposition :
#SeiBxpry <+» +SelEzprg

With the <#>/2 operator each couple is also reversed
{except for the <X, X> ones),

As we commented, the general [orm of an inference
mule in 250L is thought to be

_Jdy, Id
[Nllﬁ'i|l" 1Hﬂti.

The actual application of such a rule is called bjl'
[Id]] T [fd-;].-

The first missing item is & way to get, in a 2SDL pro-
gram, the id-setl of the generated formulas. With a typ-
ical Prolog attitude, we can generalize this problem.

A superposition goal on id-sets is like evaluating a
high-level function on a set. The relation that links the
input and the output sets is different from the classical
ones, for it is related to some properties of the objects
in the sets and not o the sets Lthemselves. This si:nlp[:,f
implies that the actual module tesponsible of the eval-
vation of these relations is not the classical one. And
we know that that module must be the TPE. S0 we are
looking for a syntax like

o (z5DL.6) :

*index = +TPE (Goal,

where a T PE _Goal can be, as an example, a superpozi-
tion call. Notice that we defined the new operator @ :=/2
in order to switch the evaluation to the right module.
The call also suggests a possible model for the computa-
tion of the goal. In fact a goal of the TPE is generally
requested to produce a new index (say a dynamic index)
that is updated during the actual evaluation of the goal.
Consider the following code.

Given ::= TPE_Goal :-
nev_dynamic_index(NewSet),
call{TFE_Goal),

{(war(Given),

Given .. NewSet
i Given := NewSetr),
del_dynamic_index(NeuSet).

637

It asks the TPE to release a new dynamic index
that will be updated during the execution of the given
TPE_Goal 1o hold the result of the evaluation. This
result is then properly assigned to the input Given ar-
gument and finally the dynamic index is cleared. This
asks for the extension of the TPE interface with the two
following ealls

o (TPE.7) - new_dynamicindex(-SetName) :

Ask the TPE to extend the sets of active indexes.
SeiName will be used to refer to this new dynamic
id-set. The complementary call is

e (TPE.8) - del_ dynamic_index(+5etName) :

It is used to remove the index referred by SeilName
from the set of the dynamic indexes known by Lhe

TPE.

With the new =SDL operator we can now use the fol-
lowing statement to sketch the application of an inference
rule:

Newlds ::= [Id)] ++> [Idy].

where Newlds will be instantiated to the right in-
stance of [V, My,..., Ny, even possibly the empty id-
set, Motice that the ::=/2 operator works for each TPE
goal.

The last extension we will give before going through
soime examples of an application of 25DL focus on & way
to have a local specification of the inference rules we wish

to apply in a TPE goal. The z5DL syntax is:

o (:$DL.7) :
+TPE Goal ./ +Inferences,

defines a TPE evaluation medule a given set of in-
ference rules.

Suppose for example we wish Lo superpose clanses 3
and 15 only by binary resolution (binary.res). Consider
the following code

TPE_Goal ./ Inferences :-
Active .. enabled_inferences,
disable(Active),
enablef{Inferences),
call{TPE_Goal),
disable({Inferences),
enable(Active).

With this new operalor we can express the preceding
problem as

Resolvents t:= [3] ++> [158] ./ binary_res.

638

The code we have given assumes that the enable/f1
and disable/1 calls in the TPE interface maintain one
set, called enabled_inferences, collecting the names of
Lhe active inference rules.

S in 25DL the more general [P activation call to the
TPE is

Newlds ::= Expry <+ Ezpray ./ Infas

which will give in Newlds the id-set of all the for-
mulas derivable by applying the chosen inferences to all
the pairs of formulas implicitly referred to by the id-set
EeXPressions,

4 A simple zSDL program: the
breadth-first strategy

Time has come to give the first example of the use of
z5DL to describe a classical strategy: the breadth-first
search. We suppose that the TPE is already active and
some input formulas are present in the KB. An index
called input collects the relerences to those statements.

In the breadth-first search the next level of the tree is
filled with all the conelusions given by superposing the
last level with all the existing levels. The search stops
with complete search or, for example, with a proof. The
z5DL program is

breadth_first :-
levels := jimput,
last 1= input,
while([‘+ stop_search,
Y+ last .= []),
{ Next ::= laat <+> levels,
last := Next,
levels #= last)}).

The two indexes, levels and last, refer to the entire
tree and toits last level, respectively, The while/2 is the
classical cyclic structure you found in each procedural
language. Its syntax is

o (:5DL.8} - while{+Condition, +Goal) .

After the initialization of the values to the input ref-
erences, the program repeatedly fills the Next level of
the search tree, superposing the last level with all the
nodes. Then the Next level becomes the last and is also
added o the references of the entire tree. The #= nota-
tion resemble the C language style assignments. Simi-
larly 25DL accepts the operators 4=, -= and #=, Notice
also that the instances of the Prolog variable(s) in the
while/2 statement are released between the cycles.

The preceding algorithm ean be improved by thinking
of the cases it generates, When we superpose the last
level with the entire tree, we must note that all of the

nodes in last are already in levels. Furlhermore, if we
apply the <+> operator to superpose an id-set on itself,
we try all of the pairs twice. So, a better program is

breadth._first :-
last = imput,
others := [],
while({ \+ stop.search,
\+ last .= [] 3,
{ LL ::= last ++>» last,
LO ::= last <+> others,
othera := last .+ others,
last := LL .+ LO) }.

In this definition the last index refers again to the
last level of the tree while others refers to the rest of the
tree, At each step last is superposed on itsell {with the
oriented operation ++>) and then with the upper levels
of the tree. You might also note that in this way we
can substitute the use of the standard union with the
weak one (append) as no repetitions are possible in the
references in the indexes,

In addition to the while statement, s5DL defines some
other basic control structure:

¢ (280L.9) - foreach(+Generalor, +Goal) :

{roal 35 executed for all the solutions of the given
GFeneralor.

o (50L.10) - repeat(+Goal, + Condition) :

Goal is executed at least once and re-executed while
Conditton fails.

o (z5DL.11} - iF (+Condilion, +Goal) :

Goal is executed only if the Condition holds. It al-
ways succeeds.

This list is given only for completeness: the reader
might note that z5DL programs are basically extended
Prolog programs and that all the structures definable
on the underlying Prolog machine can be used by 28DL
Programs.

However, we think that one real important aspect of
the < TPE,:5DL > Prolog-based architecture comes
frum its direct executabilty on a Prolog machine. The
global proving system loses the property to be batch or
interactive: a proof search is directed by the execution
of goals, and the granularity of these steps can vary from
the single superposition to the entire search.

5 More complex applications

The availability of a language like 25DL adds to the ease
of implementing and experimenting with new ideas, for
example, non-standard search strategies. To illustrate
the value of using of 25DL, and to intraduce some addi-
tional features of this language, we pow focus on three
somewhat complex programs. The first defines an adap-
tive, weighting-based, search strategy. The second in-
troduces some atypical delelion strategy into the search.
The last one shows how to define a strategy (oriented)
{atlored Lo a given inference rule.

5.1 A weight-based adaptive strategy

By weighting () strategies we refer to those algorithms
structured to consider the length, or weight, of the for-
mulas. Examples of w-funclions are: the number of sym-
bols in a formula, the number of {positive, negative, to-
tal) literals in a clause, as well as linear functions built
on these or other values. The general behavior of a w-
strategy is to filter the retention in the KB of a newly
generated formula, according to the given w-function.
Formulas that are too heavy are discarded. The under-
lying -intuitive idea is that il a-proofl can be obtained
without the use of heavy formulas, then such formulas
can be discarded,

We shall not consider the well-known subproblems
that the subsumption eperation can lead to, which vary
with the w-funetion adopted. Instead, we consider one
of Lhe practical difficulties in the application of these
strategies, namely, choosing the appropriate threshaold
(upper hound on weights) to use for deciding which for-
mulas o discard. The solution we propose follows this
simple idea: the threshold can be increased, when the
search stops generating formulas, and set to the lightest
welght template in the set of the w-deleted formulas. In
this sense the search is adaptive: it adapts to the perfor-
manece of the program,

Let us first show the mechanisms provided by the
TPE to support w-strategies. Each formula is stored
with & weight template. An internal function, namely,
weight (+Formula ,-W Template), 1s used by the TPE
to calculate it. Such a template consisis of a 4-integers
tuple (N — P—T-25) that counts Negative Literals, Posi-
tive_Literals, Total Literals and Symbols, where the first
three values are "0 if the formula is not a clause. The
TPE offers some calls in order to define weighting-based
strategies:

o (TPE.8) - max_weights(TW _Template) :

The call can be used both to access the current ref-
erence w-template (if W_Template is an uninstanti-
aled variable at the call) or to set a new value for
it. The new given W.Template will be used by the

639

w-filter operation to decide which new formulas lo
accept or diseard. All the values for the new formu-
las must be less or egual to the threshold ones fixed
by the given W_Template, The value of a variable
will be considered greater than each integer.

o (TPE.10) - formula.weight {+/d, =W Template) :

Accesses the given formula(s) to get their weight
template(s).

The basic behavior of the strategy we are going to
write is straightforward. At each time we choose the
lightest not yet used formula in the KB to be superposed
with all the already used ones. Than we move the given
formula to the set of the used ones (say "done”) while
the new generated formulas are added to the first set (say
"to.do")., We can express this with the following z5DL

program:

to.do = [,
done := [],
Input .. input,
add_ordered{Input,to_de),
while{ { “+ stop_search,
\+ to_do .= [] J,
{ Lightest .” to_do,
add_ordered([Lightest] ,done),
New ::= [Lightest] <+> done,
add_ordered(New,to_do)) J.

As one sees, we solved the problem of getting the
lightest formula in a set by extracting the first element
from an ordered set. The expected side effect of an
add_ordered{Sel, SetName) call is to build an ordered
union of Sef and SetNeme (into SeiName) according to
the weight of the corresponding formulas. We can obtain
this with:

add_srderad([],_SetName) .
add_ordered(Set,SetName) :-
¥et .. SetName,

4% gets a list of Count-Id pairs
get_counts{Set,SetCe),
get_counts(Xet,XetCs),
append(SetCe , XetCa,YetCs) ,

%4 serts by counts
keysort(YetCs,Zetls),

%% removes the counts
pop_counts{ZetCe,Zot),
SetName := Fet.

where the get_counts/2 call accesses the weights-
template of the formulas to get the symbal counts (ob-
viously, one can choose different approaches).

To extend our strategy to be self-adaptive we have to
solve certain problems:

644

* how Lo get information on the deleted formulas;

+ how to choose some initial value for the reference
w-lemplata.

The first problem rests entirely on the TPE behav-
ior, as the "over-weight” deletions are embedded into its

operations. Qur system maintains a set of structures,
indexed by weights-template, to have the references to
ithe deleted formulas. The call

» (TPE. 11} - queue{wdel (W Template) ,?Queue} :

Queue holds the ids of all the deleted formulas shar-
ing the same it W_Template.

We first give the extended program that realizes the
self-adaplive search, and then we discuss its main steps.

self_adaptive :-

input_welighting,

to_de := [1,

done = [],

Inpat .. input,

add_ordered(Input,to_do),

while{ { \+ stop_search,
(A+ to_de .= []
; goeriste(wdel(_}) 3}),
to_do .= [],
lightest_deleted{Count),
closest_vwtemplate(Count,NewWT),
max_weighta(NewWT),
deleted := [],
add_deleted(Count ,deleted),
Unhide .. deleted,
Restored ::= undelete(Unhide),
add_crdered(Restored,to_do)
Lightest .~ to_do,
add_ordered([Lightest] ,done),
Mew ::= [Lightest] <+> done,
add_ordered(New,to_do))).

once (

The first difference concerns the while conditicn; it
now considers the possible presence of formulas deleted
by weight, so the seareh is complete only if no deleted
formulas remain. The lightest_deleted/1 call accesses
the deletion queue, searching for the lightest-weight for-
mula. Its definition can be:

lightest_deleted{Count} :-
getef(SymCount,
queue (wdel (N-P-L-SyaCount) ,Q),
Deleted),
sort(Deleted, {Count | _Others]).

The clesest_wtemplate/2 call is responsible for de-
ciding the value for the new reference weights-template,

or, in other words, for the "size of the adaptation-step”.
The following definition builds the new template in order
to accept all the formulas with the given deleted smallest
symbol count.

closest_wtemplate(Count ,Template) :=
getof{ N=F=L=Count,
quene(wdel(N-P-L-Count) ,Q),
Deleted),
nax_weighte({Current®T),
maxd{ [CurrentWT |Deleted] ,Template) .

where the call to maxd/2 builds the Template given by
the maximal values for each count.

The add_deleted/2 call is conceptually similar to the
add.ordered/2 call, bul works with the deletion queue.
Its definition can be:

add_deleted(Count ,SetName) :-
(queue(wdel (N-P-L-Count),Queue),
SetWame += Queune,
q.del (wdal (H-P-L-Count)},
fail
;o true).

It collects into SetName all Lthe references to the deleted
formulas with the given symbol Count and deletes the
corresponding queue (g del/1).

So, in the while loop of cur program, the to_de id-
get ig extended either by newly inferred formulas or by
reactivating the lightest deleted ones (if any).

A last point addresses the choice of the initial values
for the reference w-template, A strategy that has given
us interesting results fixes the values by looking at the
counts of the input formulas and choosing the lowest
values among them. [ts definition is:

input_weighting :-
Inmput .. input,
formula_weight (Input,WTs),
max4 (WTs,Template},
max_weights{Template).

5.2 A pruning strategy

This second example of the applications of the z5DL lan-
guage is given to show how it can be used to define some
self-analytical activity for the proving process. In other
words we can use it to reason about the current state of
the search during the execution,

A well-known problem each ATP program must face
is the possible explosion of the search space, which can
occur for various reasons. Here we do not study this
topic, nor do we suggest that our program has a deep
impact on the solution of the general problem. Our goal
is only to show how an SDL language can be useful in
different research areas of ATP.

We ohserve that our pruning strategy is based on the
addresses of the wndelerminism in the erder of applica-
fion of the inference sleps. On the other hand, the use of
reduction rules comes from the wish to have a KB cap-
ture the same logical consequences with a smaller possi-
ble representation "size”. Consider new a generie search
process and suppose a reduction step occurs. With "re-
duction™ we will refer to the results of an operation able
to change the structure of a formula, maintaining its logi-
cal value. Generally speaking a reduction step will refor-
mulate a formula by "reducing” its complexity andfor
size. This transformation will in general involve other
formulas used as a base for the logical reformulation. As
an example, consider the following steps on two generic
clauses

[1]-4] B,[2}-A[-B]|C
Bl-A|C
delete 2

We can view this step as the application of a reduc-
tion rule that uses [1] to transform [2] into [3]. We note
that the satisfiability of the overall KB is preserved, i.e.
the operation maintaing the logical troth of the set of
formulas.

Suppose next that such a reduction has occurred dur-
ing a search, say a formula F has been reduced to .
There now exists a potential set of formulas whose gen-
eration depends on the order in which the search process
has been executed: this set consists of all of the descen-
dants of F that have not contributed to the generation
of F', or, more precisely, the set

binary re solulion
5ubsump.! 1607

by_inference{descendanis(F]} - anceslors{F').

{We note that we must leave all the descendants of F
given by reduction as those are formulas originally not
in the set generated by F).

Pruning this set (if not empty) could perhaps make
the proof longer, as the proof could be reachable rapidly
by using one of the formulas we deleted, but it will not
preclude the possibility of finding the proof il there is
one, :

The effectiveneas of this pruning strategy depends
mainly on the effectiveness and the applicability of re-
duction steps in a proof, and so it relies directly on the
structure of the search space (given by the formulas as-
serling the theoremy),

Let us now see how we can implement this operation
by using z5DL and the mechanisms of the TPE. First
of all we formalize the calls the TPE defines (and zSDL
inherits) to access various relations on the content of the
KB. We already announced some of them in section 2.

o (TPE.12) - parents(+/d, — Parents)
e (TPE.13) - ancestors(+/d, — Ancestors)
o (TPE.1{) - children{+[d, —Children)

6541

s {TPE.15) - descendants{+fd, — [escendants)

Being fd the reference to a formula, thess calls
will respectively return the id-sel of its parents,
ancestors, children, and descendants, with respect
to the current KB. We note that the given id-set
may contain references to currently inactive formu-
las {deleted for some reason). All these relations will
consider both inference as well as reduction steps.

e ([TPE.16) - by reduction{+fdSet, — ByHed) :

Given an fdSet this call selects which referred for-
mulas have been produced by application of a re-
duction rule, building the id-set ByHed with their
ids.

s (TPE.17) - replace(?Newld, 1/d) :

The call succeeds if Newld refers to a formula that
replaces an old one (referred by [d} lollowing & re-
duction step. Otherwise the call fajls.

The proposed pruning strategy acts like a filter on the
result of a superposition call: al each step it checks if
the new formulas are given by reduction, in which case
it tries to apply the deletion. So, we are going Lo extend
the superposition contrel level of 25D with a meta-call
realizing the pruning.

pruning_derive(SetA Mode,SetB) :-
YA .7 Seth,
XB .7 SetB,
once
Given ::= derive([XA],Mede,[XB]),
by_reduction{Given,ByRed),
foreach{ NId .? ByRed, {
replace(NId, Id),
ancestors(NId,NIdAnc),
descendants(Id, IdDes),
by_reduction(IdDes, IdDesByRed),

IdDesByInf .. IdDes .- IdDesByHed,

DelSet .. IdDesByInf .- NIdine,

delete(DelSet)) }),
stop_search.

pruning_derive(SetA Node,SetB).

derive(Seth, {<+>) ,SetBE) :- SetA <+> SetB,
derive(Seth,{++>},52tB) :- Sath ++> Seth,

The schema is quite simple. Each by-reduction child
(N1d) of a superpesition call is related to the formula it
replaces (Id). Then the set of the by-inference descen-
dant of Id is reduced by the set of the NId ancestors. No-
tice how the by_in ference(descendant{F)) set is evalu-
able as descendanis{F) - by_reductions{descendants(F)).

642

5.3 A hyperresolution-oriented search
strategy

Our last example uses z5DL to define a strategy specifi-
cally oriented to work with a given inference rule, namely,
the inference rule hyperresclution.

The efficiency of an ATP system comes from the effi-
ciency of all of the different components of the program,
from the basic unification and match algorithms to the
KB management, and so on. With some "tough” infer.
ence rule, it also heavily relies on the ability of the search
strategy to control its application ensuring a complete
search without repeating steps. Hyperresolution is one
guch inference rule. '

Hyperresolution considers a basic clause [called nu-
cleus) that has one or more negative literals. An in-
ference step occurs when a sel of positive unit clauses
(called satellites) is found that simultanecusly unify with
all of the negative literals of the nucleus, It is simple
to see how hyperresolution will not generate new nuclei
(for the rule cannot produce a clanse containing nega-
Live literals) while it can generate new satellites. So,
the set of potential satellites change dynamically during
the search, and a good strategy must ensure a complete
covering partition (with multiple cccurrences) of this set
without repeating trials.

We first explain how we implemented the hyperres-
olution inference rule in our system {we call it hy_p).
As usual the rule has two arguments: the first musi be
a satellite and the second & nuclens. If a wnification is
found between the given satellite and one of the negative
literals in the nucleus, then the set of the current active
salellites is partitioned and superposed on the remaining
negalive literals,

This behavior suggests the development of a search
strategy driven by the generation of new satellites, In
fact, we can visit the scarch space by levels, generate all
the possible hyperresolvents, choose from them the new
satellites, and use those to drive the search in the next
level, As those satellites are new, the partitions we will
Lry are new too, and no repetition in the trials occur,
The basic shape of the sirategy can be:

hyper_strategy :-

Input .. imput,

get_satellites{Input,Sats),

get_nuclei(Input,Nucs),

last_sats := Sats,

nucs := Nucs,

vhile{ (\# stop_search,

\+ last_sats .= [1), (

New ::= lagt_gats ++> mucs ./ hy_p,
get_satellites(New, NewSata),
last_sats := NewSats)).

The get_satellites/2 and get_nuclei/2 calls are
used to choose from an id-set the subset of formula-

references corresponding, respectively, to valid satellites
and nuclei. Notice how these calls can be defined by us-
ing the formula wveight/2 call and testing the negative
and positive literal counts accordingly.

Ag a matter of fact, the algorithm we have given fal-
lows closely the general schema of a breadth-first search.
So, it can be simply extended to consider the application
of more inference rules, intermixing the searches with the
control, the enable/1, and the disable/1 operations
permitted.

6 Conclusions

This work introduces the concepts of Theorem Proving
Engine and Strategy Description Language as architec-
tural and applicative tools in the design and use of an
automated theorem-proving program.

The definitions we give reflect a running Prolog sys-
tem, named zEN2, and,, because of this [act, they inherit
a Prolog style structure.

Particular emphasis is given to the use of an SDL as a
research tool as well as a way to reinlerpret the use of a
theorem prover as a batch or as an interactive program.
In fact, the availability of an interpreter for such a lan-
guage offers the possibility of having a system able to
cover both of these usages, giving to the user some way
of choosing the granularity of the steps the prover must
take.

Three examples are given to show the possible appli-
cation of an SDL. Their purpose is to show its uselulness
for expressing and testing new ideas. Some interesting
capabilities of z5DL are applied to highlight how it al-
lows the treatment of sell-analysis an the state of the
search space, Examples of these are the definition of the
self-adaptive search and the pruning strategy.

Acknowledgments

The author is very grateful to Larry Wos, Bill McCune
and Gianni Degli Antoni for their comments. Tlis work
was partially supported by the CEE ESPRIT2 KWICK
Project and partially by a grant of the Italian Research
Council. Most part of the work was done while the au-
thor was visiting the Mathematics and Computer Science
Division of the Argonne National Laboratory.

References

[Henschen ef al. 1974 | L.Henschen, R.Overbeek and
L.Wos. A Theorem Proving Language for Experi-
mentation. Communicalions of the ACM, Vol. 17
No. 6 (1974)

