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Abstract

The paper considers open logic programs ariginally
introduced in [Bossi and Menegus 1991] as a tonl
to build an OR-compesitional semantics of logic
programs. We extend the oviginal semantic defi-
nitions in the framework of the general approach
to the semantics of logic programs described in
[Gabbrielli and Levi 1991b). We first define an OR-
compositionel opevationel semantics Op{FP) mod-
eling computed answer substitutions. We con-
sider next the semantic domain of -interpretations,
which are sets of clauses with a suitable equiva-
lence relation. The fixpoint semantics Fo(P) given
in [Bossi and Menegus 1991] is proved equivalent to
the operational semantics, by using an intermedi-
ate unfolding semantics. From the model-theeretic
viewpoint, an {-interpretation is mapped onto a set
of Herbrand interpretation, thus leading to a defi-
nition of {-model based on the classical notion of
truth. We show that under a suitable partial order,
the glb of a set of {l-models of a program P is an
ft-model of P. Moreover, the glb of all the (-models
of P is equal to the usual Herbrand model of P while
Fo(F) is a {non-minimal ) fI-model.

1 Introduction

An {l-apen program [Bossi and Menegus 1991) P is
program in which the predicate symbols belonging to
the set {2 are considered partially defined in P. P can
be composed with other programs which may further
specify the predicates in £1. Such a composition is
denoted by Up. Formally, if Pred{P) N Pred(Q) C
{1 then PlUg @ = P U Q, otherwise P Up &} is
not defined (Pred(P) denotes the predicate sym-
bals in P). A typical partially defined program is a
program where the intensional definitions are com-
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pletely known while extensional definitions are only
partially known and can be further specified.

Example 1.1 Lef ws consider the following program

@i={ anc(X,Y): —parent(X,T).
ane( X, Z) : —parent{ X, Y}, ane(¥, Z).
parent(isaae, facok).
parent(jacob, berigamin ). 1

New eztensional information defining new pavent #u-
ples com be added to Q) as follows

G2 =1{ parent{anna, elizabeth),
parent(elizabeth, john). ]

The semantics of open programs must be §I-
compositional w.r.t. program union, i.e. the seman-
tics of Py Un Py must be derivable from the semantics
of £y and Fa. If {1 contains all the predicates in P,
{l-compositionality is the same as compositionality.

The least Herbrand model semantics, as erigi-
nally proposed [van Emden and Kowalski 1976) and
the computed answer substitution semantics in
iFalaschi et al. 1988 Falaschi et al. 1989a], are not
compaositional w.r.t. program union, For example,
in example 1.1, the atom anc{anna, elizabeth) which
belongs to the least Herbrand model semantics of
£ UGy cannot be obtained from the least Herbrand
model semantics of @; and Q; (see also example 2.1).

In this paper we will introduce a semantics for
{l-open programs following the general approach
in [Gabbrielli and Levi 1991b] which leads to se-
mantics definitions which characterize the program
operational behavier. This approach leads to
the introduction of extended interpretations (w-
inderpretations) which are more expressive than Her-
brand interpretations. The improved expressive
power is obtained by accommodating mere syntac-
tic objects in m-interpretations, which are (possibly



infinite) programs. The semantics in terms of =
interpretations can be computed both operationally
and as the least fixpoint of suitable continuous im-
mediate consequence operators on T-interpretations.
It can alse be characterized from the model-theoretic
viewpoint, by defining a set of extended models (-
models) which encompass standard Herbrand mod-
els. In the specific case of Q-open programs, ex-
tended interpretations are called {}-interpretations
and are sets of condilional etems (le. clavses such
that all the atoms in the body are open). Each
Q-interpretation represents a set of Herbrand inter-
pretations that could be obtained by composing the
open program with a definition for the open predi-
cates, [-interpretations of open programs are intre-
duced to obtain a unique representative model, com-
putable as the least fixpoint of a suitable continuous
eperator, in cases where no such a representative ex-
ists in the set of Herbrand models.

The main contribution of this paper is the defi-
nition of an OR-compositional (i.e. compositional
w.r.t. program union) semantics of logic programs
in the style of [Falaschi et al. 1988, Falaschi et al.
1989b]. Other approachs to OR-compositionality
can be found in [Lassez and Maher 1834, Mancar-
ella and Pedreschi 1988, Gaifman and Shapive 1989,
Gaifman and Shapire 19895, An OR-compositional
semantics corresponds to an mportant program
equivalence notion, according to which two programs
By and Py are equivalent iff for any program @ a
generic goal & compules the same answers in B UQ
and P U Q. An OR-compositional semantics has
also some interesting applications. Namely it can be
nead

¢ to model logic languages provided with a
module-like structure,

» to model incomplete knowledge bases, where
new chunks of knowledge can inerementally be
assimilated,

e for program transformation
{the transformed programs must have the same
OR-compositional semantics of the original pro-

gram |,

¢ for semantics-based “modular™ program analy-
sis.

The paper is otganized as follows. Subsection 1.1
containg notation and useful definitions on the se-
mantics of logic programs. In section 2 we define
an operational semantica Onl P) modeling computed
answer substitutions which 15 OR-compostlional
Section 3 introduces a suitahle semantic domain for
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the Og(P) semanties and defines Q-inderpreiations
which are sets of clauses modilo a suitable equiv-
alenee relation. In section 4 the fizpoint semantics
FolP), is proved equivalent to the operational se-
mantics by using an intermediate unfolding seman-
tics, Section 3 is concerned with medel theory. From
the model-theoretic viewpoint, an D-interpretation
is mapped onto a set of Herbrand interpretations,
thus leading to a definition of {-model based on the
classical notion of truth, We show that under a suit-
able partial order, the glb of a set of Q-models of 2
program P is an {-model of P. Moreover, the glb of
all the -models of P is equal to the usual Herbrand
model of P. Moreover, Fo{P) is a {non-minimal} (-
model, equivalent Lo the model-theoretic semantics
defined in [Bossi and Menegus 1891] in terms of Sp-
medels. A esmparison between (3-models and the
Sp-maodels is made in section 6. Section 7 is devated
to some conclusive remarks. All the proofs of the re.
sults given here can be found in [Bossi et al. 1991].

1.1 Preliminaries

The reader iz assumed to be familiar with the ter-
minology of and the basic results i the seman-
tics of logic programs [Lloyd 1987 Apt 1938]. Let
the signature 5 consist of 2 set F of funclion sym-
bols, a finite set P of predicate symbols, a denu-
merable set V' of verteble symbols. All the defini-
tions in the following will assume a given signature
5. Let T be the set of terms built on F and V.
Variable-free terms are called ground. A substitu-
ticn is a mapping 4 : ¥V — T such that the set
D) = X | 4(X) # X} (domain of ¥) is finite.
If W CV, we denote by Jjw the restriction of 4 to
the variables in W, ie (¥ ) = ¥ for ¥ & W,
£ denotes the empty substitution. The compesition
P of the substitutions @ and ¢ is defined as the
functional composition. A remaming is a substitu-
tion p for which there exists the inverse p~! such
that pp~! = p~'p = . The pre-ordering < (more
peneral than) on substitutions is such that # < o iff
there exists ¥ such that 9 = o. The result of the
application of the substitution 4 to a term ¢ is an in-
stanece of ¢ denoted by #0. We define £ < #' {4 is more
general than 17) iff there exists  such that 0 =4, 4
substitution & is grounding for ¢ if 0 is ground. The
relation < is a preorder. = denotes the associated
equivalence relation {varitence). A substitution disa
uniffer of terms t and ¢' if td = #'0. The most general
unifier of 1 and {3 is denoted by mgu(ty, t3). All the
above definitions can be extended to other syntactic
expressions in the obvious way, An atom is an object
of the form p{t;,.. . t.)wherepe P fy,... 1, € T.
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A elause 15 a formula of the form B @ —L;... . L,
with n = (), where /T (the head) and L,,..., L, (the
body) are atoms. *: <" and *" denote logic implica-
tion and conjunction respectively, and all variables
are universally quantified. If the body is empty the
clause 15 a wnil clense. A program is a finite set of
clavges, A goal is a formula Ly, ..., Ly, where cach
L is an atom. By Var{E) and Pred{ F') we denote
respectively the sets of variables and predicates oc-
curring in the expression £, A Herbrand interpre-
tation I for a program P is a set of ground atoms.
The intersection M(P) of 2]l the Herbrand models
of a program P iz & model (least Herbrand model),
M{ ) is also the least fixpoint of a continuous trans-
formaiion Tp (fmmediate consequences operator) on
the complete lattice of Herbrand interpretations. If
& is a goal, che B,.. ., By denotes an SLD deriva-
tion with fair selection rule of By,. ... B, in the pro-
gram P where  is the composition of the mgu's used
in the derivation. G —~p O denotes the refutation
of & in the program P with computed answer substi-
tution &. A computed answer substitution is always
resiricted to the variables eecurring in . The nota-
tions £, X will be used to denote tuples of terms and
variables respectively, while B denotes a {possibly
empty) conjunction of atoms.

2 Computed answer substitu-
tion semantics for (l-open
programs

The operational semantics is nsually given by means
of a set of inference rules which specify how deriva-
tions are made, From a purely logical point of
view the operational semantics is simply defined in
terms of suceessful derivations. However, from a
programming language viewpoint, the operational
semantics must be concerned with additional infor-
mation, namely observable properties. A given pro-
gram in fact may have different semantics depend-
ing on which of its properties can be ohserved, For
instance in pure logic programs one can observe sac-
cesses, finite failure, computed answer substitutions,
partial computed answer substitutions or any com-
bination of them. A given choice of the ohserv-
able induces an equivalence on prograams, namely
two programs are equivalent :ff they are ohservation-
ally indistinguishable, When the semantics correctly
captures the observable, two programs are equiva-
lent if they have the same semantics. When also
compositionality is taken into account. for a given
abservable property we can obtain different seman-

tics {and equivalence relations) depending on which
kind of program composition we consider. Indeed,
the semantics of logic programs is usually concerned
with AND-composition (of atoms in a goal or in a
clause body). Consider for example logic programs
with computed answer substitutions as observable
[Falaschi et al. 198%9a). The cperational semantics
can be defined as _

O(P) = {p(X)8 |X are distinct var, p(X) —=p 0O}

where the denotation of a program is a set of non-
ground atoms, which can be viewed as a possibly infi-
nite program |Falaschi et al. 198%a]. Since we have
syntactic objects in the semantic domain, we need
an equivalence relation in order to abstract fram
irrelevant syntactic differences. If the equivalence
s aceurate enough the semanties is fully abstract.
According to [Gabbrielli and Levi 1981b], Herbrand
interpretations are generalized by w-interpretations
which are possibly infinite sets of (equivalence classes
of ) clauses. The operational semantics of a pro-
gram P iz then a w-interpretation [, which has
the following property. P and [ are chservation-
ally equivalent with respect to any goal G. This
is the property which allows to state that the se-
mantics does indeed capture the observable behavior
[Felaschi et al. 158%a). The following example shows
that when considering OR-composition (i.e. union of
sets of clauses), non-ground atoms {or unit clauses)
are not sufficient any longer to define a compositional
semantics.

Example 2.1 Let uz consider the following pro-
grams

B={ gX}):-plX). F={ pb. }
X} =slX).
s(b).
pla). }

According to the previous definition of O(P),
O(P) = {p(a),g(a), (b}, s(b)} and O(P,) = {p(b}}.
Since O(P, U Py) = {p(a), p(b),q(a), g(b),r(b), s(b)},
the semantics of the union of the two programs con-
not be obtained from the semantics of the programa.

In order for a semantics to be compositional, it
must contain information in the form of a mapping
from sets of atoms to sets of atoms. This is indesd
the case of the semantics based on the closure op-
erator [Lassez and Maher 1984] and on the Tp op-
erator [Manecarella and Pedreschi 1988). If we want
a semantics expressed by the program syntax, OR-
compositionality can only be obtained by choosing
as semantic domain a set of (equivalence classes of)
clanses. In example 2.1, for instance, the semantics
of Py should contain also the clause g{ X)) : —p(X).



Let us formally give the definition of the program
composition we consider.

Definition 2.2 Let P be e program and ( be o set of
predicate symbols. P is open word (0 for Q-open) of
the mformation on the predicates in 1} 4 considerad
to be partial. Moreover of P} are [l-open programs
and (Pred(Q)) N Pred(P)) © O then P Uy Q) is the
(-open program PUEG. If (Pred(Q)NMPred(P)) € 1
then P Up 0 is not defined.

Note that when considering an {l-open program
P and an O-open program @, the composition of
P and @ is defined only if {Pred{Q}) N Pred{P)} C
(02N Q7). Moreover, the composition of P and () 15
a T-open program, where & = {1 U (V.

The definition of any predicate symbal p € Q1 in
an {-open program PP can always be extended or
refined. For instance in example 1.1 program 4 is
aopen w.r.t. the predicate perent and this predicate
is refined in program Js. ‘Therefore, a deduction
concerned with a predicate aymbol of an f¥-open pro-
gram P can be either complede (when it takes place
completely in the program P) or pertial (when it ter-
minates in [ with an atom p(f) such that p € 0 and
pl:t-] does not wnify with the head of any clause in
P}). A partial deduction ean be completed by the
addition of new clauses. Thus we have an hypothetic
deduction, conditional on the extension of predicate
p.

Let us consider again the program Py of exam-
ple 2.1 and assume 2 = {p}. Then, the goal r{X)
produces a complete deduction only, computing the
answer substitution { X/b}. The goal g X) produces
a complete deduction, computing the answer sub-
stitution {X/a} and an hypothetical deduction re-
turning any answer that could be computed by a
definition of p external to B, The goal g(b) instead
has one hypothetical deduction only, conditional on
the provability (outside P ) of p(h). We want to ex-
press this hypothetical reasoming, i.e. that g{b) is
refutable if p(b) is refutable. Hence we will consider
the following operational semantics [recall that by
B we denote By, B, with n > 0).

Definition 2.3 Let 5} be o set of predicaie zymbals.
We define
(0= {p(X):—p(X)| pe, X are
distinet variables |
Definition 2.4 ({}-compositional computed answer
substitutions semantics) Led P be & program and et
P =PUIdifl). Then we define Og(P) =
{A : -'Ez | j]_;.i-}"-l-’-fp .E]_ ':-'-rpf E';
X distinct variables, )
A =plX )W, {Pred(B:)} € 1}
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The set of clauses Jd{{!) in the previous defini-
tion is used to delay the evaluation of open atoms.
This is a trick which aliows to obtain by using
a fixed fanr selection rule K, all the derivations
A &) "Eﬁp By, ..., By which use any selec-
tion rule &', for Pred( 8y, ..., 0,) C 2. Note that
the first step of the derivation uses a clause in P (in-
stead than in P*) because we want Og{ P) to contain
a clause p{ X} : —p{ X} if and only if p(X) 5p p(X).

Example 2.5 Let Py, Py be the fl-open pragrams of
example 2.1 where § = {p]}.

Then Op{Ps) = {p(b)} and '
Oa(F) = {9(X} : —p(X), pla), gla), r(b), s(b}}.
Oq containg enough informaiion fo compute the se-
mantica of compositions.  [Indesd O[P, U ) C
Do AUPR) and Og(PUPR:) = OalOn{ P U0 FL))
{aee thearem 2.9},

Example 2.6 Lei & = {g,7) ond let (.C}; be the

Sfollowing progroms

h = {p(&, ¥ : —r(X),g(Y)
ria). }

Then On(Qq) = {r(b}}, Oalth)=

[p(X, ¥} : = (X)q(Y), pla,¥): —glY), rla)} and

Ol U Q) = Og{Op( ) U OplQ:)) =

{P(XY) : =r(X), g(Y), pla,V): —ql¥),

plb. Y ) —gl¥), vla),r(b)} (zee theorem 2.9)

Mote that Op{P) is essentially the result of the
partial evaluation [Lloyd and Shepherdson 1987 of
P, where derivations terminate at open predicates.
This operational semanties fully eharacterizes hypo-
thetic deductions, conditional on the extension of the
predicates in {1, Indeed the semantics of a program
F can be viewed as a possibly infinite set of clauses
and the partial computed answer substitutions can
be obtained by executing the goal in the “program”.
The equivalence [Zq) on programs induced by the
computed answer substitution abservable when con-
sidering also programs union, can be formally de-
fined as follows.

=1 r(b). }

Definition 2.7 Let P, P be Q-open programs.
Then Py Zq Py of for every goal G ond for ev-
ery program Q@ sb FiUn @, ¢ = 1,3, &= defined,
e} liip,,unq 0if G Iﬁfpwnq O where p 15 a renam-
ing.

Oy allows to characterize a notion of anawer sub-
stitution which enhances the usual one, since also
{unresolved) atoms, with predicate symbols in £, are
considered. Therefore it is able to model computed
answer substitutions in an OR compositional way.
The following results show that @g( P) is composi-
tional w.r.t. Up and therefore it corvectly captures
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the computed answer substitution observalle notion
when considering alse programs unton.

Theorem 2.8 Let P be an (oopen pragram.
Then P =y Qg P).

Theorem 2.9 Let B P be Q-open programs and
let PyUp Py be defined.
Then Op{Op{ Py} U Op{Fy)) = Oal Py Ug Py

Corollary 2.10 Let Fy P be Q-open programe.
ff ﬂn[P.]l = Ol Py then Py =25 P

3 Semantic domain for (2-open
programs

In this section we formally define the semantic do-
main which characterizes the above introduced op-
erational semantics 0. Sinee Og contains clanses
{whose Dbody predicates are all in ), we have
to accommodate clauses in the ZiI.'Jt-EI‘l‘-Il'EtB‘tiO.m we
use, Therefore we will define the notion of -
interpretation which extends the usual notion of in-
terpretation sinee an f-interpretation containg con-
ditional atoms. As usual, in the following, 1 s a set
of predicates.

Definition 3.1 [Conditional atoms)
An Q-conditional afom iz & clonse

A =By, ....B, such that Pred{By..... o, ci.

In order to abstract from the purely syntactical
details, we use the following equivalence = on con-
ditional atoms,

Definition 3.2 Let ¢; = 4, : =By..... B, g =
A 1 =Dy,.... Dy be clawses. Then o) < ep ff I
sueh thet 34, .,i,) C {1..... m} such that 4,0
= Ay, in £ ix for h £ k. and (B0...., B,0) =
(Do I, ) Mereover we define ey = e iff o) € oo
and ¢z = €.

Note that in the previous definition bodies of
clauses are considered as multisets (considering sets
would give the standard definition of subsumption].
Eguivalent clauses have the same body {considered
as a multiset) up to renaming. Considering sets in-
stead of multisets (subsumption equivalence) is not
correct when considering eomputed answer substitu-
tions. The following is a simple eounterexamyle.

Example 3.3 Let

e =p(X.V): —g{X,¥)¢{X.T)

and ¢ = p{X, Y} : —q(X.Y). Let P, = {1} and
Py = ez} be (t-open programs where 0 = {g}. Obuwi-

wusly, considering bodies of clowses as sets. ¢y = 96

where € 15 the emply renaming. However, Py Bp
Py since by considering Q@ = {g(X,b),q(a,¥)},
PLALYY) 'f*pguq O where F = {X/a, Y/b}, while the
goel p{X Y} dn the prograrn Py LG} con compule ei-
ther {X/a} or {Y/5) only.

Deefinition 3.4 The 0-condifional base, Cg, is the
quotient set of all the Q-conditional atoms word r2

In the following we will denote the equivalence
clags of a conditional atom e by ¢ itself, since all
the definitions which use conditienal atoms are not
dependent on the element chosen to represent an
equivalence class. Moreover, any subset of O will
Ize considered implieitly as an {l-open program. Be-
fore giving the formal definition of fl-interpretation,
we need the notion of w-closed subset of Cp.

Definition 3.5 A4 subset I of O t5 w-closed iff
WH: -By,.... B c T and VB : -A,.... A, €T
such that 30 = mgu(B;, B), for 1 <i < n,

[H B _Bh--- 155-11 -'qln----u-‘qm\-Ei-l-h"\_“ I‘Bﬂ}ﬁ 3 I-
Moreower if T € Cp, we denote by I its w-closure
defined as the least fw.or.t. C) I C Cn w-closed such
that IC I,

Proposition 4.5 will show that the previous notion of
u-closure is well defined. 4 u-closed interpretation I
i5 an inferpretation which, if viewed as a program,
is closed under unfolding of procedure ealls. Inter-
pretations need to be u-closed for the validity of the
model theory developed in section 5. Therefore, in
order to define §1-interpretations we will consider u-
closed sets of conditional atoms only. Let us now
give the formal definition of Q-interpretation.

Definition 3.6 An (-interpretation I i3 any sub-
set of Cp which is w-closed. The sel of all the 11-
interprefations &5 denoted by 3.

Lemma 3.7 (5, C) i3 a complete laitice where the
minimal element iz § end oIb(X) = U,y r for any
XC9.

In the following the operational semantics Dy will
be formally considered as an (-interpretation.

4 Fixpoint semantics

In this section we define a fixpoint semantics Fql F)

which in the next subsection is proved to be equiva-

lent to the previously defined operational semantics

On{F). This can be achieved by defining an imme-

diate consequence operator TH on the lattice (3, C)

;fﬁﬂ-interpretahions. FalFP} is the least fixpoint of
.



The immediate consequences operator Tﬂ is
strotgly related to the derivation rule used for 01
open programs and hence to the unfolding rule
Therefore TH models the observable properties in an
OR compositional way, and may be useful for mod-
ular (i.e. OR compositional) bottom-up program
analysis.

Definition 4.1 Lei P be an {l-open program. Then
TR(I) = TH(I) where TR(I) is the operator defined
in (Bossi and Menegus 1991 as follows,
=
f(A:=Ly,.... Lo €Cnl
34:-By,..., B. € P,
3B -LieTUMD), i=1,....n, mi=0
st ¥ =mgu((By,..., B, L(B.....,B.)}}

Pmpnsitinn 4.2 'I“F? 18 conlinuwons in the wmp{e!e
lathice (F,C).

The notion of ordinal powers for TE iz defined as
usual, namely TE 10 =0, T8 Tn+1 = TH T tn )
and T§ Tw = Uuzo { TF Tn ). Since Tf is contin-
wous on {33, ), well known results of lattice theory
allow to prove proposition 4.3 and hence to define
the fixpoint semantics as follows.

Proposition 4.3 T8 Tw is the least fizpoint of T3
in the eomplete lattice (T, C).

Definition 4.4 Let P be an O-open  program.
The fizpaint semantics Fo(P) of P iz defined as
FalP) =T§ Tus.

Remark

The original definition of I'}(J) does not require (-
interpretations to be u-closed subsets of Cp. I we
consider an (-nterpretation as any subset of Oy and
the T8 operator, even if the intermediate results
T T n are different, the following proposition 4.3
and theorem 4.6 show that the least fixpoint T8 T w
is a u-closed set and it is equal to Fo(P) (I'$ is con-
tinuous on (p(Cq), ©)). Therefore, when considering
the fixpoint semantics we can use the TR operator.
Moreover, proposition 4.3 ensures us that the previ-
ous notion of u-closure is well defined.

Proposition 4.5 Let | C Cp and let TR(T) be de-
fined us in definition . 7. Then the following hold
1. Iis w-closed iff I = THI),
2. for any program P, 'l Tw is u-closed,
8. I = T% 1 w is the least (w.r.t. set inclusion)
subset of Cp such thef it 45 u-closed and T C I,

Theorem 4.6 Let P an l-open program. T2 Tw =
FalP).
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4.1 Unfolding semantics and equiva-
lence results

To clarify the relations between the operational and
the fixpoint semantics, before proving their equiva-
lence, we introduce the intermediate notion of wn-
folding semantics Ui(P) [Levi 1988, Levi and Man-
carella 1988]. I{n(P) is obtained as the limit of the
unfelding process. Since the unfolding semantics can
be expressed top-down in terms of the I'} opera-
tor, the unfolding semantics can be proved equal to
the standard bottom-up fixpeint semantics. On the
other hand, since Un(P) and Op{P) are based on
the same inference rule (applied in parallel and in
sequence respectively) Wn(P) and Op(P) can easily
be proven equivalent.

Definition 4.7 Let P oand @ be D-open programs,
Then the unfolding of P word @ is defined as

unfR(Q)=
{[A _LJ:-'- 1-['r|.:|1'5.|
- d4:-By,...,B, EP,

Bl -Lieruld(f), i=1,....n, m =0
st 9 =mgu((By,...,B,)(B,.... B}

Note that the only difference between un f2(Q) and
T'3(Q) is that the second restricts to clauses in Cq
the set resulting from the definition, Therefore if I is
an {l-interpretation (ie. I € Cq), TR(I) = unf2(I)
holds. In general, T'%(J) = sa(unfB(I}} where iq(P)
extracts from a program P an (-interpretation.

Definition 4.8 Let P be an Q-open program. Then
we define

in(Pl={ceP|celn}

Definition 4.9 Let P be an Q-open program and led
itn(P) be as defined in definition 4.8 Then we define
the collection of programa

Fao=PF
Fi = unfg_,(P)

The unfolding semantics Ly P) of the program P s
defined as

Ua(PY= ) wiPF).

=12

The following thecrem states the equality of the un-
fﬂld.‘i.l:!E and the opera tional semantics,

Theorem 4.10 Let P be an ﬂ-np:n ProgriT. Then
Ou(P) = Ua(P).

~ Note that TR T n+1=unff(B). where P} =
P and Pl; = unf8(P!). Therefore we have the
following theorem,
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Theorem 4.11 Let P be a program. Then Fpi P) =
UHa(P).

Corollary 4.12 Let P be o program.
FalP) = Oal P

Then

5 Model Theory

As we have shown, the operational and fixpoint se-
manties of a program P define an Q-interpretation
Ip, which can be viewed as a syntactic notation for
a set of Herbrand interpretations denoted by H(Ip).
Wamely, H{Ip) represents the set of the least Her-
brand medels of all programs which can be obtained
by closing the program Ip with a suilable set of
ground atoms defining the open predicates, Our aim
is finding a notion of Q-model such that Og(F) (and
FalP)) are f-models and every Herbrand mode] is
an {-model. This can be abtaned as follows.

Definition 5.1 Let J be an {l-interpretation. Then
we define

Atemg(J) = {p(f) | p €0 and p(i)} 15 o ground
instance of an atom in J}.

Example 5.2 Let {t = {p, g} and
J={pla): —g(b)}. Then Atoma(J}= {p{a).e(b)}.

Definition 5.3 Let T be an Q-inderpretation for an

Q-open program. Then we define
H{I)={M{TUJ)|JC Atomp(I)}

where M{R') denotes the least Herbrand model of I

Example 5.4 Let T = {pla) : —gib)]} be an {1-
interpretofion, Then
1) for 2= {g)
Atomg(I) = {g(b)} and
H(I} = {8.{pla).qlb)}}.

2) for 2= {p.q}
Atemg(I) = {pla),q(b)} and
H(I) = {B. {p{a)}. {pla}.a(5)}}.

Definition 5.5 Let P be an fl-open program and.

I be an Q-interpretotion. [ is an Q-model of P iff
W J e M), Jiz o Herbrand model af P,

Obviously, in general given & Herbrand model M
of a program P, M U N is not anymore a model of
P for an arbitrary set of ground atoms N. Since
we want a notion of O-meodel which encompasses the
standard noticn of Herbrand model, the “closure” of
the interpretation J can be performed by adding only
ground atoms which unify with atems already in T.
The following example 5.6 shows that if such a con-
dition is not satisfied, a standard Herbrand model
would not any meore be an f-model,

Example 5.6 Let us consider the N-open program
P = {pla) : —q{a)} where @ = {q}. Then @ is
@ {the least) Herbrand model of P. If, by violating
the J C Atomp(l) condition, {g(a)} € H(B), since
{gla}} is not & Herbrand model of P, | would nod be
an {l-meodel of P.

Example 5.7 Let us constder the program By where
= {p}] of the ezample 2.1, Then

On(P1) = {a(X) : —p(X), pla), a(a), r(B), s(b)}
s an f-model of Py since

H(Oa(R)) = {Hy,Hy, Hy, ...}

where, denoting by [p( X)) the set of ground instances
of p(Xo),

Hy = {p(a), q(a},r(b), s(b)}

Hy = {p(a), p(b). a(a)}, q(b), r{b), s(1)}

H, = {r(b),s(b)} U [p(X)] U [a( X))}
and Hy Hy, ... H, are Herbrand models of P,

The following proposition states the mentioned prop-
erties of fl-models.

Proposition 5.8 Let P = {c1,...,cq} be an §1-
opeR program. 1hen

1. every Herbrond model of P is an (3-model of P,
2. Oa(P) is an Q-model of P. '

A relevant property of standard Herbrand mod-
els states that the intersection of a set of models of
a program P is always a model of P. This allows
to define the model-theoretic semantics of P as the
least Herbrand model obtained by intersecting all
the Herbrand medels of P. The following example
shows that this imporfant property does nof hold
any more when considering {+-models with set theo-
retic operations.

Example 5.9 Let 2 = {g] and P be the followsng
{1-open program P = {p(b} : —q(b), p(X), g(a)}.
Then Oa(P) = {p(b) : —a(b), plz), a(a)} and
M(P) = {qgla)} U {p() | f is a ground term }.

By propoesition 5.8 Op(F) and M P) are fl-models
of P. However Op(P) N M(P) = {g(a))} i not gn
Q-madel of P.

The {}-model intersection property does not hald
because set theoretic operations do not adequately
model the operations on conditional atoms. Namely,
the information of an (-interpretation f; may be
contained in fy without I being a subset of . In
order to define the model-theoretic samantics for -
open programs as & unique (least) Q-model, we then
need a partial order C on (-interpretations which



allows to restore the model intersection property. T
should model the meaning of {-interpretations, in
such a way that (%, C) is a complete lattice and the
greatest lower bound of a set of fl-models is an -
model. As we will show in the following, this can
be obtained by considering C as given in definition
5.10. According to the above mentioned property,
there exists a least {3-model. It is worth noting that
such a least (l-model is the standard least Herbrand
model (propesition 5.21). Mereover nofe that, the
most expressive {l-model Op( F) is 2 non-minimal £2-
medel. The following definitions extend those given
in [Falaschi et al. 1989b] for the non compositional
semantics of positive logie programs.

Definition 5.10 Let [, I be Q-inferpretefions,
We define

] Il 'E Ig tﬂ- 19"{:1 e f]_ 363 [= f'; siech that oy T ogy.

L I] E I'_i iﬁ {I1 = I‘i,;l amd rIﬂ = I'I

= implies
L i)

Proposition 5.11 The relation < {5 o preovder and
the relation C is on ordering.

Note that if [y © [, then [} C Iy, sinee [; © 5
implies ; < ;. The following definitions and propo-
sitions will be used to define the model-theoretic se-
mantics.

Definition 5.12 et [ be an {l-interpretetion. We
define Min'(I)={c€ 1|V eI. ¢ Sc= ¢ =c)
and Min(I}= Min'{1.

Example 5.13 We show Min and Mo’ for the fol-
lowing Q-tnterpretations I and J. Let

I= {F{TL E{_bL P{“Jl P‘“}'- '?[b] }

J=1{ glz): =plz)r{z)
glb} : —pl(b)
g(d) : —ple)
r(b) }
Then

Min'(I) = Min(I) = {p(z), 4(b)}.
Min'(J) = {#(b), glz): =ple).rix). alby: —plzi},
Min{J) = J.

Definition 5.14
Lot A be o sel of Qi-interpretaiions
the following notations,

o GA=Upgal
o Min[A}) = Min(gA)

s UA = A where A = Min(A) | (I € A |
Min(A) C I} )

We introdice
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It is worth noting that ¥ I Min(I) C I (recall that
I is u-closed) and MiniA) = Mn{|JA).

Proposition 5.15

For any set A of Q-interpretations there exisls the
least upper bound of A, lueb{A), and lul{A) = A
holds.

Proposition 5.16 The set of all the O-inferpreta-
tions & with the ordering C is o complete lndtice, Cg
is the fap element and @ i3 the bottom element,

The model-theoretic construction is possible only
if fl-interpretations can be viewed as representations
of Herbrand interpretations. Notice that every Hee-
brand interpretation is an {H-interpretation. The fol-
lowing proposition generalizes the standared intersec
tion property of Herbrand models to the case of 0-
madels.

Proposition 5.17 Let M e o non-empty sed of Q-
maodels of en {1-open program P, Then glb{M) iz on
fi-maodel of P.

Corollary 5.18 The set of all the Q-models of a
program P owith the ordering C 42 n complete lnitice.

We are now in the position to formally define the
model-theoretic semantics.

Definition 5.19 Let P be a program. [ model-
theoretic semantics 15 the greatest lower bound of the

set of ity models, e,
Ma(Py=glt{{I € T | I is o Q-meodel of P}).

Proposition 3.21 shows that the above defined
model-theoretic semantics is the standard least Her-
brand model. This fact justifies o choice of the
ordering relation.

Proposition 5.20 For any (-model T there eriats
o stendard Herbrond model Y such thet ' T 1

Proposition 5.21 The least stondard Herbrand
model is the least Q-maodel,

6 Sp-models

We will now consider the relation between 3-
models {definition 5.5} and the Sp-models defined
in [Bossi and Menegus 1991] on the same set of in-
terpretations. Both the {l-models and the Sg-models
are intended to eapture specific operational proper
ties, from a model-theoretic point of view. However,
Sp-models are based on an ad hoe aotion of truth
{ Sg-truth) and the least Sp-medel is exactly Fa P).
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Conversely, {l-models are based on the usual notion
of truth in a Herbrand interpretation through the
function H.. Moreover the least {1-model is the usual
least Herbrand model, while Fg( P} is a non-minimal
t-model.

Definition 6.1 [Bossi and Menegrs 1991
{Sq-Truth) Let £ be o set of predicate symbols aend T
be an [-inderpreletion. Then

{a) Ar atom A is Q-frue in T iff A€l

{b) A definste clawse A-By,.. ., B is (-true in Tiff
¥B;,..., B, such that
By :=Ly,....B.,:—L, €Iufdf)
ﬂw=mﬁj{ﬂl1";1ﬂﬂj: {B:“"*B;J}
then (A : =Ly,... L.)d €I

Sa-models are defined in the obvious way.

Proposition 6.2 Every Sp-model ic an (-model
{uecording to defintlion 5.5}

Proposition 6.3 [Bossi and Menegus 15811 If A 1s
e non-empty sel of Sp-models of an (Q-open program.
P, then [Nyrep M 15 an So-model of P,

The previous proposition allows o define the maodel
theoretic semantics Mg [P} for o program P o
terms of the Sg-models as follows.

Definition 6.4 fﬂasai and Menegus .E,"J‘ﬁ'.{JI' Let P be
wne Ll-ogpen program and let § be the set of all the
Sp-medels af P. Then Mg (P) = Nyes M.

Corollary 6.5 Lel A be a now-empiy scef of Sy-
models of an Q-open program P, Then [ypey W o1
an Q-mode! of P,

By definition and by propuosition G.3, Mg 4 P) is
the least Sp-model in the lattice (3. C) {recall thae 3
iz the set of all the Q-interpretations ). The following
proposition shows that Mg (P) s also the least Sg-
maedel in the lattice (5. C).

Proposition 6.6 Let P be o program ced let 5 be
the ael of all the Sp-medels of P, Then My (Pl =
alb( 8} feeeording o © ordering ).

The following theorem shows the equivalence
of the fixpoint semantics (definition 4.4) and the
model-theoretic semanties Mg, [PL

Theorem 6.7 [Bossi end Menequs 1001] Let P be
an {t-open program. Then Fo(P)= M, (P).

Corollary 6.8 Let P be an (2-opew program.  Thes
FalP) 45 an fl-model of P.

It is worth noting that, since Op{P)= Fp(P)
= Mgz, (P), theorem 2.9 shows that the model-
theoretic semantics Mg, (P) is compositional w.r.t,
Q-union of programs when considering computed an-
swer substitutions as obeervables. This result was
already proved in [Bossi and Menegus 1991) for the
Mz, P) model. Finally note that, as shown by the
following example, T2 is not monotenic {and there-
fore it is not continuous) on the complete lattice
{%,C). However, proposition 6.10 ensures us that
FalP) is still the least fixpoint of T8 on (3, C).

Example 6.9 Consider the program

P = {r(b) p(r): —g(z}}.

Let =0, I, = [g(a).q(z)) and I = {r(b), g(x)}.
Then I, C I while TE(5)={p(2).p(a),r(8)} ¥
TR(L)={plx), r(B)}.

Proposition 6.10 T Tw is the least fizpoint of TH
on the complete lattice {3, C).

7 Related work and conclu-
sions

he result of our semantic construction has sev-
eral similarities with the proof-theoretic semantics
defined in [Gaifman and Shapire 1988a, Gaifman
and Shapiro 198%h], Our construction however is
cloger to the usual characterization of the seman-
tics of logic programs. Namely we define a top-
dowen operational and botiom-up fxpoint semantics,
ane, last but not least a model-theoretic seman-
ties which allows us to obtain a declarakive char-
acterization of syntactically defined models. The
semanties in [Gaifman and Shapiro 1989a] does not
characterize computed answer substitutions, wlle
the denotation defined by the fully abstract seman-
tics in [Gaifman and Shapive 1989h] iz not a set of
clauses (i.e. a program). The framework of [Gaifman
and Shapiro 18892, Gaifman and Shapiro 1980h
can be useful for defining & program equivalence no-
tion, even if our move declavative |model-theoretic)
characterization 15 even more adequate. Moreover,
the presence of an operational or a fixpoint seman-
tics makes our construction useful as a formal ba-
sis for program analysis. Another related paper is
[Brogi et al, 1991], where (-open logic programs are
called open theories. Open theories are provided
with a model-theoretic semantics which is based on
ideas very similar to those underlying owr definition
5.3. [Brogi et al. 1991) however does not consider
semantic definitions in the stvle of our Qg P) which
gives a vnieue denotation 1o any open program.



Let us finally remark some interesting propetics
of the Q-model Ogl P).

« By means of a syntactic deviee, we obrain a
unique representation for & possibly infinite set
of Herbrand models when s unique vepresenta-
tive Herbrand model does not exist. A simni-
lar device was used in [Dung and Kanchana-
sut 1988, Kanchanasut and Stuckey 1990, Gal-
brielli et al. 1991] to characterize logic programs
with negaticn.

& Operators, such as Up are quite easy and natu-

ral to define on Ol ).

¢ Op(P) can be used for modular program analy-
sis [Giacobazzl and Levi 1091] and for studying
new equivalences of logic programs, based on
computed answer substitutions, which are ot
considered in [Maher 1988].

o It is strongly related to abduciion [Eshghi anc
Kowalski 1988, If {1 i= the set of abducible pred-
icates, the abductive consequences of any goal
{r can be found by executing & in Opl P).

s The delayed evaluation of open predicates which
is typical of Opl F) can easily be generalized to
other logic languages, to achieve composition:l-
ity w.r.t the unicn of programs. In particular
this maiches quite naturally the semantics of
CLP and concurrenl constraint prograins given
in [Gabbrielli and Levi 1990, Galbrielli and Levi
1991a).
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