PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © 1COT, 1992

473

Sound and Complete Partial Deduction
with Unfolding Based on Well-Founded Measures *

Bern Martens

Danny De Schreye

Maurice Bruynooghe'

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
e-mail: {bern,dannyd,maurice }@cs.kuleuven.ac.be

Abstract

We present a procedure for partial deduction of logic pre-
grams, based on an automatic unfolding algorithm which
guarantees the construction of sensibly and strongly ex-
panded, finite SLD-trees. We prove that the partial de-
duction procedure terminates for all definite logic pro-
grams and queries. We show that the resulting program
satisfies important soundness and completeness eriteria
with respect to the original progeam, while retaining the
essentially desired amount of specialisation.

1 Introduction

Since its introduction in logic programming by Ke-
morowski ([Komorowski, 1981]), partial evaluation has
attracted the atiention of many researchers in the field.
Some, e.g. [Venken, 1984], [Venken and Demoen, 1988],
[Sahlin, 1990], have addressed pragmatic issues re-
lated to the impurities of Prolog. Others were at-
tracted by the perspective of eliminating the over
head associated with meta interpreters. Seme ex-
amples are: [Gallagher, 1986], [Levi and Sardu, 1988,
[Safra and Shapiro, 1986), [Sterling and Beer, 1985] and
[Takeuchi and Furukawa, 1986]. Finally, & firm the-
oretical basis for the subject was described in
[Lloyd and Shepherdsen, 1991).

Just as in [Bruynooghe ef al, 1991a], we use the
term “partial deduction” in this paper, rather than
the more familiar “partial evaluation”. Following
[Komorowski, 1989), we do so because we want to leave
the latter term for works taking into account the nen-
logical features of Prolog and the order in which answers
are produced. In the present paper, we adhere to the
viewpoint taken in [Lloyd and Shepherdson, 1991] which
states that the specialised program should have the same
answers as the original one.

*work partially supported by ESPRIT BHA COMPULOG
{project 3012)

tAll sathers are supported by the Belgian National Fund for
Seientific Hessarch.

Indeed, the authors of [Lloyd and Shepherdson, 1991]
present important criteria which, when satisfied by the
specialised program, guarantee this to be the case. A
partial deduction procedurs imposing these criteria, is
described in [Benkerimi and Lleyd, 1990]. However, ter-
mination of this procedure is not guaranteed, not even
for definite logic programs. In this paper, we propose
an alternative method which does terminate for all def-
inite logic programs. A central part of any partial
deduction procedure ie an unfolding algorithm which
builds the SLD{NF)-trees used as slarting point for
synthesising specialised clanses. In general, termine-
tion of this unfolding process is problematic in its own
right. In [Bruynooghe et al, 1991a], a general crite-
rion for avoiding infinite unfolding is presented. In the
present paper, we build on those results for formulat-
ing a terminating procedure for partial deduction, re-
specting the soundness and completeness conditions of

fLloyd and Shepherdson, 1991,

The paper is organised as follows. In section 2, we
recapitulate (and adapt) some basic concepts in par-
tial deduction from [Lloyd and Shepherdson, 1891], as
well as the criteria for soundness and completensss pre-
sented thers. We sketch the partial deduction method
from [Benkerimi and Lloyd, 1990] and show an exam-
ple on which the unfolding rules mentioned there do
not terminate. [n section 3, we introduce an au-
tomatic algorithm for finite unfolding, adapted from
[Bruynooghe ef al., 1901a]. Next, in section 4, our par-
tial deduction procedure is presented. We give an al-
gorithm which implements it and prove its termination.
Meoreover, we prove that the method satisfies the criteria
introduced in [Lloyd and Shepherdson, 1991]. We also
show that the intended specialisation is indeed obtained.
We conclude the paper in section 5 with a short dis-
cugsion, including a brief comparison with the approach
of [Benkerimi and Lloyd, 1990] and some directions for
further research.

474

2 Partial Deduction

2.1 Basic concepts, soundness and

completeness

We assume familiarity with the basics of logic pro-
gramming. Definitions of the following concepts
can be found in (Lloyd and Shepherdson, 1991] and
[Benkerimi and Lloyd, 1990]: most specificic general-
isation (msg), incomplete SLD-tree, resuliani of a
derivation, parfial deduciion for an etom in a pro-
gram, partial deduction for a sel of afoms in a pro-
gram, partial deduction of a program wrf a set of
afoms, independence of a set of atoms, A-closedness
of a set of formulas, A-coveredness of a program
and goal. In [Lloyd and Shepherdson, 1991] and
[Benkerimi and Lloyd, 1990], the definitions are given
for normal programs and using the term “partial eval-
wation”. In the present paper, we restrict ourselves
te definite programs and goals and, as menticned
above, use the term “partial deduction”. The neces-
sary adaptations are straightforward (as exemplified in
[Bruynooghe et al, 1991a]),

We adapt the lollowing
[Lloyd and Shepherdson, 1881].

{rom

theorem

Theorem 2.1 Let P be a definite logic program, & a
definite goal, A 2 finite, independent set of atoms, and
£ a partial deduction of P wrt A such that P'U {G} is
A-covered. Then the following hold:

* P'U{G} has an SLD-refutation with computed an-
swer & iff PU{G} does.

o P'U{G} has a finitely failed SLD-tree iff P L {G]-
does.

In other words, under the conditions stated in this theo-
rem, computation with a partial deduction of & program
is sound and complete wrt computation with the original
program. This is clearly a very desirable characteristic
of any procedure for partial deduction. It is thersfore
important to devise methods for partial deduction that
ensure the conditions of theorem 2.1 are satisfied.

In [Benkerimi and Lloyd, 1990], one such method is
presented. Basically, it proceeds as follows. For a given
goal 7 and program P, a partial deduction for G in P is
computed. This is repeated for any goal occurring in the
resulting clauses which is not an instance of one already
processed. Assuming the procedure terminates, one geis
in this way a set of clauses § and a set A of partially
deduced atoms such that 5 is A-closed. But one also
wants A to beindependent. In order to achieve this, the
procedure is modified as follows. Whenever 2 goal occur-
ring in 8 is not an instance (nor & variant) of one in A,
but has a cemmeon instance with it, the latter is removed
from A and a peartial deduction is computed for their
msg (which itself is therefore added to A) and added to

S. The original partial deduction for the removed goal
is itzelf also removed from S. The process stops if A be-
comes independent and 5 A-closed. S can then be used
to synthesize a partial deduction of P wrt A which sat-
isfies the conditions of theorem 2.1 for any goal G’ which
is an instance of G.

However, the tactic of taking msgs to make A inde-
pendent causes an unacceptable loss of specialisation in
the resulting partial deduction. To remedy this, the
authors of [Benkerimi and Lloyd, 1990] introduce a re-
naming transformation as a pre-processing stage be-
fore running their algorithm. It amounts to duplicat-
ing and renaming the definitions of those predicates, oc-
curring in the original goal G, which are likely to pose
specialisation problems. The details can be found in
[Benkerimi and Lloyd, 1990].

2.2 Unfolding

One question is left more or less unanswered until now:
How to obtain the (incomplete) SLD-trees used as a basis
for producing partial deductions ? In other words, which
computation rule should be used for buildiag these trees
{including the question of deciding when to stop the un-
folding) 7 [Benkerimi and Lloyd, 1990) mentions 4 eri-
teria and proposes the following one as the best : The
computation rule f, selects the leftmost atom which is
not & variant of an atom already selected on the branch
down to the current goal. However, this rule fails to
guarantes the production of finite SLD-trees in all cases,
We present a counter-example. It is the well-known “re-
verse” program with accumulating parameter.

Example 2.2

SOUrCe program:
reverse([],L,L).
reverse([X|Xs],¥'s,Zs) + reverse(Xs,[X|Ys},Zs).

query:
;-r:va[[l .2 p{’] -U:Z“‘J'

The reader can verify that B, generates an infinite SLD-
tree.

Somne authors have therefore combined R, or other
computation rules with a depth bound:
(a.0.) [Levi and Sardu, 1988), [Sterling and Beer, 1986],
[Takeuchi and Furukawa, 1986). This does of course

- guarantee finiteness, but it seems a rather ad-hoc so-

lution which does not reflect any properties of the
given unfolding problem. ~ We therefore proposed
an alternative solution in [Bruynooghe et al, 1991a).
(An extended version of this paper can be found in
[Bruynooghe ef al., 1991b].)

3 An Algorithm for Finite Un-
folding

In [Bruynooghe et al, 1991a), a general criterion for
avolding infinite unfolding during partial deduction and
a terminating unfolding algerithm based on it, are pre-
sented. In this section, we intreduce a fully auto-
matie version of thal algonithin, tuned towards unfold-
ing object-level definite logic programs. A slightly more
sophisticated approach may be desirable when dealing
with meta interpreters. We will not address thal point
in the present paper and concentrate on object-level pro-
grams. Although a slightly more accurate presentation of
the algorithm itself is given, most of what follows now iz
adapted from [Bruynooghe et al, 1991a]. The intereated
reader is referred to that paper for a full (and more gen-
eral} account with all the technical details on the well.
founded measures underlying our approach. Here, we
only introduce what is necessary for a good understand-
ing of algorithm 3.6.

For technical reasons, we will assume a numbering on
the nodes of an SLD-tree (e.g. left-to-right, top-down
and breadth-first). We will use the following notation
for nodes in an SLD-tree: (G,i) where (7 is a goal of the
tree having 4 as its associated number. [The notations
YG,1)" and *G" will be used interchangeably, as the
context requires.)

We first define a weight-function on terms. It counts
the number of functors in its argument.

Definition 3.1 Let Term dencte the set of terms in the
first order language used to define the theory P. We
define |.| : Term — IV as follows:

Ht=flts,... . ta},m >0

thea [f = 1+ [t + -+ [t

elge || = 0

It is then possible to introduce weight-functions on
atoms.

Definition 3.2 Let p be a predicate of arity n and 5=
{a1,...,8mb]l £ ap < n,1 £ k < m, a set of argument
positions for p. We define ||, 5 : {4|A is an atom with
predicate symbel p} — IV as follows:

|ﬂ:th ves r!nlll.f = Jta| + -+ [tan

" The next two definitions introduce useful relations on
literals and goals in an SLD-tree.

Definition 3.3 Let (G,1) = ((—Ay,..., 44,.. ., Aa),i)
be a2 neds in an SLD-tree 7, let R(G) = A4; be the
call selected by the computation rule R, let H «
Bi,..., By be a clause whose head unifies with A;
and let # = mgu(d; H) be the most general uni-
fier. Then (G,¢) has a son (G', k) in 7, (G" k) =
{[4—.14.1,...'A:'_t,Bi,,-..,,B,._,Aj_l.]_,..'.,-d“]ﬂ,kj. We
sey that Bi#, ..., Bf in G' ate direct descendents of 4;
in {7 and that 4; in &is a direct ancestor of 58, ..., B0

475

in &

The binary relations descendent and ancestor, defined on
atoms in goals, are the transitive closures of the direct de-
scendent and direct ancestor relations respectively. For
A an atom in & and F an atom in &', 4 i3 an ancestor
of B is denoted as A >, B (“pr" stands for proof tree).

Notice that we alse speak about one goal G' being an an-
cestor (or descendent) of another goal 3. This terminel-
ogy refers {o the obvious relationships between goals in
an SLD-tree and should not be confused with the proof-
tree based relationships between literals, introduced in
the previous definition. The following definition does
introduce a relationship between goals, based on defini-
tion 3.3.

Definition 3.4 Let 7 and &' denote two different nodes
in an SLIMtree r. Let B be the computation rule used
in r. Then &' covers & iff

1. R(G'") and R{G) are atoms with the same predicate
2. R(G") >p R(G)

Notice that G covers (7 implies that &' is an ancestor of
G
We need one more piece of terminelogy,

Definition 3.5 Let @ and & denote two different nodes
in an SLD-tree 7. We call &' the youngest covering an-
cestor of G iff

1. &' covers @

2. For any other node G such that G" covers &, we
have that G" covers &'

We are now finally able to formulate the following al-
gorithm:

Algorithm 3.6

Input

& definite program P

a definite goal ~d
Dutput

a finite SLD-tree r for P U {«—A}
Initialisation

7= {{+~4,1)}

Pr:=0

Terminated := 0

Failed .= @

For each recursive predicate p/n in P and
for the derivation D in :

Spp = {1,...,n}
While there exista a derivation I? in 7 such that
D & Terminated do
Let (G,i) name the leaf of D

476

Select the leftmost atom plty,. ... t,) in @
satisfying the following condition:
If p is recursive and there is
& youngest covering ancestor (&',) of (3,1) in [}
then |R(G‘f}|#.$rlnmtl -2 |p{t|,, v !tﬂjlnﬁp.n"" whers
Sp 0™ = Spp N Spo™™™ and
SP‘DFIM -
13 € Spo | p(fy,... ltn]}r.{n} > ER(G":HF‘{,,_}}
If such an atom p{t;,...,t.) can be found
then
R{Gj = P{ila' v ltP|-:I'
Let Derwve{l, i) name the set of all derivation steps
Lthat can be performed
If Derive(G,i) =10
then
Add [} to T'erminated and Failed
'CJ.I'E
Let Descend(R(G),1) name the set of
all pais ((R(G),q), (BS, 7)), where
— B is an alom in the body of a clause
applied in an element of Derive(F, 1)
— 0 is the corresponding m.g.u.
— 7 is the number of the corresponding
descendent of (&, 1)
Expand [} in v with the elements of Derive((, 1)
Add the elements of Descend(R(@),1} to Pr
For every newly created extension D' of D and
for every recursive predicate g in P:
if § = p and (G,1) has a covering aneestor 1a D

then 5, pr 1= 5, 0™
else Sgpr 1= Syp
else
Add D to Terminated
Endwhile

We have the following theorem.

Theorem 3.7 Algorithm 3.6 terminates, If a definite
program P and 2 definite goal +— A are given as inputs,
its output r 18 a finite (possibly incomplete) SLD-tree for
Pu{—A}.

Proof The theorem is an immediate consequence of
proposition 3.1 in [Bruynooghe ef al,, 1991a]. O

Example 3,8 The SLD-tree generated by algorithm 3.6
for the progrem and the query from example 2.2, are
depicted in figure 1. (“reverse® has been abbreviated to
“rey?.)

4 Combining These Techniques

4.1 Introduction

In the previous section, we introduced an algorithm for
the automatic construction of (incomplete) finite SLD-
trees, In this secticn, we present sound and complets

= pev(f 1,20¥5],[]. 25}

= per{[2008 [1].Z3)

- rev(s[2,1],25)

Za=[2,1]
Xe=[]

O ~ rev(Xs" X", 2.11.Z5)
Figure 1: The SLD-tree for example 3.8.

partial deduction methods, based on it. Moreover, these
methods are guaranteed to terminate. The following ex-
ample shows that this latter property is not obvious, even
when termination of the basic unfolding procedure is en-
sured. We use the basic partial deduction algarithm from
[Benkerimi and Lloyd, 1990], together with our unfold-
ing algerithm.

Example 4.1 For the reverse program with accumulat-
ing parameter (see example 2.2 for the program and the
starting query), an infinite number of (finite) SLD-trees
is produced (see figure 2). This behaviour is caused by
the constant generation of “fresh” body-literals which,
because of the growing accumulating parameter, are not
an instance of any atom that was obtained before.

In [Benkerimi and Lloyd, 1989], it is remarked that a so-
lution to this kind of problems can be truncating atoms
put inke A at some fixed depth bound. However, this
again seemns to have an ad-hoe flavour to it, and we there-
fore devised an alternative method, described in the next
section.

4.2 An algorithm for partial deduction

We first introduce some useful definitions and prove a
lemma.

Definition 4.2 Let P be a definite program and p a
predicate symbol of the language underlying P. Then a
pp'-renaming of F is any program obtained in the fol-
lowing way:

o Take P together with a fresh—duplicate—copy of
the clauses defining p.

» Replace p in the heads of these new clauses by some
new (predicate) symbol p' (of the same arity as p).

s Heplace p by ¢ in any number of goals in the bodies
of (old and new) clauses,

w— rev{] 1,20Xs] §],Zs)

= pev([20K =], [1].Zs)

=— e (X (211,22

Za=[2.1]
Xl

Ksw[XTXs']

O - rev(Xe' [X'2,1].25)

== rev(Xs" (X" 2,1].25)

=X 2.1) As'=[X"Xs"]
Ka'=[]
O = rev(Xs", X" X", 2,1],25)

== e (X", [X0 X, 2,11, 28

Figure 2: An infinite number of (finite) SLD-trees,

Lemma 4.3 Let P be a definite program and F. a pp'-
renaming of P. Let G be & definite goal in the language
underlying P. Then the following hold:

s B U {G} has an SLD-refutation with computed an-
swer § iff PU{G} does.

s P. U{G} has & finitely failed SLD-tree iff P U {G}
does.

Proof There is an obvious equivalence between SLD-
derivations and -trees for P and F,. O

Definition 4.4 Let P be a definite program and p 2
predicate symbol of the language underlying F. Then
the complete pp'-renaming of P is the pp'-renaming of P
where p has been replaced by ' in all goals in the bodies

of clauses.

Our method for partial deduction can then be formu-
lated as the following algorithm,

477

Algorithm 4.5

Input
a definite program F
a definite goal —A =plt;, ..., 1.)
in the language underlying P
a predicate symbol p/, of the same arity as p,
not in the language underlying P

Output
a sef of atoms A
a partial deduction B’ of E.,
the complete pp'-renaming of F, wrt A
Initialisation
P, = the complete pp'-renaming of P
A = {A} and label 4 unmarked

While there iz an unmarked atom B in A do
Apply algorithm 3.6 with F, and + B as inputs
Let 75 name the resulting SLD-tree
Farm Fop, a partial deduetion for B in F,, from 7g
Label B marked
Let Ag name the set of body literals in P g
For each predicate g appearing in an atom in Ag
Let msg, name an msg of all atoms having g
as predicate symbol in A and Ag
If there is an atom in A having g es predicate
symbol and it is less general than mag,
then remove this atom from A
If now there is no atom in A having g as
predicate symbol
then sdd msg, to A and label it wnmarked
Endfor '
Endwhile
Finally, construct the partial deduction P,' of P, wrt A:
Heplace the definitions of the partially deduced
predicates by the union of the partial deductions F, 5
for the elements B of A.

We illustrate the algorithm on our running example.
Example 4.6

complete renaming of the reverse program:
reverse([|,L,L).
reverse([X|Xsl,Ys,Z8) +— reverse'{Xs [X|Ys],Zs).
reverse'([],L,L).
reverse'([} |Xs],Ys,&5) — reverse'(Xs,[X|Ys],Zs).
partial deduction for +—reverse([L,2|Xs],[},Zs):
reverse([1,2],[],(2,1]).
reverse{ [1,2,%|Xs,[],25) ~— reverse'(Hs,|3,2,1],2s).
partial deduction for ereverse'{Xs,[X,2,1] Zs):
reverse'{ [],[X,2,1],]X,2,1]).
reverse'{[X'|Xs],[X,2,1],28) «~
reverse'{ Xs,[X' X,2,1],25).

msg of reverse'{ Xs,[X,2,1],2s} and
reverse'| Xs,[X',X,2,1],Zs): reverse'{Xs,[X,Y,Z|Ys],2s)

478

partial deduction for «—reverse'(Xs,|X,Y,2|Ys],Zs):
reverse/([,[X,Y,Z|Ys],[X,Y 2] Ys]).
reverse{ X' Xs],[X,Y,Z|Ys],Zs) —
reverse'{ Xs,[X', X, Y, Z[Ys],Zs).

resulting set A:
{reverse([1,21Xs] [}, Zs),reverse’{ Xs,[X,Y 2| Ys],Zs)}

resulting partial deduction:
reverse([1,2],1],(2,1]).
reverse{[1,2, X[Xs|,[|,Zs) « reverse'(Xs,[X,2,1],Zs).
reverse'([|,[X,Y,Z]Ys],[3,Y,Z[Ys]).
reverse'([X'|Xs],[X,Y,2|Ys),Zs)
rmrscrfxs,[x',x,Y,z.'Ya],?‘ﬁ}.

We can prove the following interesting properties of
algorithm 4.5,

Theorem 4.7 Algorithm 4.5 terminates,

Proof Due to space restrictions, we refer to
[Martens and De Schreye, 1992]. O

Theorem 4.8 Let P be a definite program, 4 =
Pl .. ,ta) be an atom and p' be a predicale symbol
used as inputs to algorithm 4.5, Let-A-be the {finite) set
of atoms and F,’ be the program cutput by algorithm 4.5.
Then the following hold:

* A is independent.

o For any goal G =«~d;,..., 4, consisting of atoms
that are instances of atoms in A, £'U {@F} is A-
covered.

Proof

¢ We first prove that A is independent.
From the way A is constructed in the For-loop, it
is obvious that A cannot contain two atoms with
the same predicate symbol. Independence of A is
an immediate consequence of this,

* To prove the second part of the theorem, let P.* be

the subpregram of P’ consisting of the definitions
of the predicates in P’ upon which @ depends. We
show that 2* 1 {G} is A-closed.
Let A be an atom in A. Then the For-loop in algo-
rithm 4.5 ensures there is in A a generalisation of
any body literal in the computed partial deduction
for Ain P,'. The A-closedness of P.* U {G} now
follows from the following two facts:

1. P;'is a partial deduction of a program (F,) wet
A.

2. All atoms in & are instances of atoms in A,

Corollary 4.9 Let P be a definite program, 4 =
pt1,...,tx) be 2o atom and p' be a predicate symbol
used as inputs to algorithm 4.5. Let A be the set of
atoms and P be the program output by algorithm 4.5.
Let G =«A4,,..., Ay be a goal in the language under-
lying P, consisting of atoms that are instances of atoms
in A, Then the following hold:

¢ P.'U{G} has an SLD-refutation with computed an-
swer § iff PU{G} does,

o P'U{G} hes a finitely failed SLD-tree iff P L {G}
does.

Froof The corollary is an immediate consequence of
lemma 4.3 and theoremes 2.1 and 4.8, m|

Proposition 4.10 Let P be a definite program and 4
be an atom used as inputs to algorithm 4.5. Let A be
the set of atoms cutput by algorithm 4.5. Then A € A.

Proof Ais put inte A in the initialisation phase. From
definition 4.4, it follows that no clause in P contains a
condition literal with the same predicate symbol as A.
Therefore, A will never be temoved from A, a

This proposition ensures us that algorithm 4.5 does
not suffer from the kind of specialisation loss mentioned
in section 2.1: The definition of the predicate which ap-
pears in the query 4 used as starting input for the
partial deduction, will indeed be replaced by a partial
deduction for A in P in the program output by the al-
gorithm.

Finally, we have:

Corollary 4.11 Let P be a definite program, A =
P(t1,...,ta) be an atom and 7 be a predicate symbal
used as inputs to algorithm 4.5. Let P, be the program
output by algorithm 4.5. Then the following hold for any
instance A’ of A4:

& B0 {—A} has an SLD-refutation with eomputed
answer 8 iff PU {+A'} does.

® F'U{—A'} has a finitely failed SLD-tree iff P U
{+—A'} does.

Proof The corollary immediately follows from corol
lary 4.9 and propaosition 4.10. o

Theorem 4.7 and corollary 4.11 are the most impor-
tant results of this paper. In words, their contents can
be stated as follows. Civen a program and a goal, algo-
rithm 4.5 produces a program which provides the same
answers as the original program to the given query and
any instances of it. Moreover, computing this (hopefully
more efficient) program terminates in all cases,

5 Discussion and Conclusion

In [Lloyd and Shepherdson, 1991], important criteria en-
suring soundness and completencss of partial deduc
tion zre introduced. In the present paper, we started
from a recently proposed strategy for finite unfolding
([Bruynooghe ef al., 1991a]) and developed a procedure
for partial deduction of definite logic programs. We
proved this procedure produces programs satislying the
mentioned criteria and, in an important sense, showing
the desired specialisation. Moreover, the algorithm ter-
minates on all definite programs and goals.

The unfolding method as it is presented in section 3
was proposed in [Bruynooghe et al., 1991a}, but appears
here for the first fime in this detailed and automati-
sable form, specialised for objeet level programs. It
tries to maximise unfolding while retaining termination.
We know, however, of two classes of programs where
the first goal is not achieved. First, meta programs
require & somewhat more refined control of unfolding,
This issue is addressed in [Bruynooghe et al., 1991a),
We refer the interested reader to that paper {or to
[Bruynooghe ef al., 1991b]) for further comments on this
topic. Second, (datalog) programs where the information
contained in constants appearing in the program text
plays an important role, are not treated in & satisfactory
way. Further research is necessary to improve the unfold-
ing in this case. {A combination of our rule with the R,
computation rule seems PJ,'{;I'I'.I.'[;:E:‘I.I:I.E.} As far as the used
unfolding strategy dees maximise unfolding, however, it
probably diminishes or eliminates the need for dynamic
renaming as proposed in |[Benkerimi and Hill, 1089},

We now compare briefly algorithm 4.5 with the par-
tial deduction procedure with static renaming presented
in [Benkerimi and Lloyd, 19%0]. First, we showed abowve
that our procedure terminates for all definite programs
and queries while the latter does not. The culpnt
of this difference in behaviour is (apart from the un-
folding strategy used) the way in which msg's are
taken. We do this predicatewise, while the authors of
[Benkerimi and Lloyd, 1990] only take an msg when this
is necessary to keep A independent. This may keep more
specialisation (though only for predicates different from
the one in the starting goal), but causes non-termination
whenever an infinite, independent set A is generated (az
illustrated in example 4.1). Observe, moreover, that we
have kept a clear separation between the issues of conirol
of unfolding and of ensuring soundness and complete-
ness. The use of algorithm 3.6 — or further refinements
(see above) — guarantees that all sensible unfolding —
and therefore specialisation — is obtained. The way in
which algorithm 4.5, in addition, ensures soundness and
completeness, talkes care that none of the obtained spe-
cialisation is undone. Therefore, it does not seem worth-
while to consider more than one msg per predicate. Note
that one can even consider restricting the partial deduc

479

tion to the predicate in the starting query and simply
retaining the original clauses for all other predicates in
the result program. This can perhaps be formalised as a
partial deduetion where only a I-step trivial unfolding is
performed for these predicates.

Next, the method in |Benkerimi and Lloyd, 1980] is
formulated in a somewhat more general framework than
the one presented here. A reformulation of the latter
incorporating the concept of L-selectability and allow-
ing more than one literal in the starting query seems
straightforward. However, a generalisalion lo normal
programs and gqueries and SLDNF-resolution while re-
taining the termination property, is not immediate. In
e.y. [Benkerimi and Lloyd, 1990], it is proposed that
during unfolding, negaied calls can be executed when
ground and remain in the resultant when non-ground.
This of course jecpardises termination, since termina-
tion of "erdinary” ground logie program execcution is not
guaranteed in general. One solution is restrieting at-
tention to specific subclasees of programs (e.g acyelic
or acceptable programs, see [Apt and Besemn, 1990],
[Apt end Pedreschi, 1990]). Another might be to use an
adapted version of our unfolding criterion in the evalu-
ation of the ground negative call, and fo keep the lat-
ter one in the resultant whenever the SLD{NF}-tree pro-
duced is not a complete one. Yet a third way might be
offered by the use of more powerful techniques related to
constructive negation (see [Chan and Wallace, 1085]).

Finally, [Gailagher and Bruynooghe, 1900] presents
enother approach to partial deduetion focusing both on
soundness and completeness and on control of unfolding.
The main difference is the control of unfolding by a con-
dition based en maximal deterministic paths, where cur
approach is based on maximal data consumption, moni-
tored through well-founded measures.

References

[Apt and Bezem, 1990) K. R. Apt and M. Bezem.
Acyclic programs. In D. H. D. Warren and
P. Szeredi, editers, Proceedings [CLP'90, pages 617-
633, Jerusalem, June 1990, The MIT Press. Revised
version in New Generation Computing, 9(3 & 4):335-
364,

[Apt and Pedreschi, 1990] K. R. Apt and D. Pedreschi.
Studies in pure prolog: Termination. In J. W.
Lioyd, editor, Proceedings of the Esprit Symposium on
Computational Logic, pages 150-176. Springer-Verlag,
Novermnber 1904,

[Benkerimi and Hill, 1989] K. Benkerimi and P. M. Hill.
Supporting transformations for the partial evalua-
tion of logic programs. Technical report, Department
of Computer Science, University of Bristol, Great-
Britain, 1989,

450

{Benkerimi and Lloyd, 1988] K. Benkerimi and J. W.
Lloyd. A procedure for the partial evaluation of logic
programs. Technical Heport TH-89-04, Department
of Computer Science, University of Bristol, Great-
Britain, May 1989,

[Benkerimi and Lloyd, 1990] K. Benkerimi and J. W.
Lioyd. A partial evaluation procedure for logic pro-
grams. In 5. Debray and M. Hermenegildo, edi
tors, Proveedings NACLP 90, pages 343-1358. The MIT
Press, October 15960,

[Bruynooghe et al., 1991a] M. Bruynooghe, [). De Schr-
eye, and B. Martens. A peneral criterion for aveid-
ing infinite unfolding during partial deduction of lagic
programs. In V. Saraswat and K. Ueda, editors, Pro-
ceedings ILPS'91, pages 117-131, October 1991,

[Bruynooghe ef al, 1991b] M. Bruynooghe, D. De Sche-
eve, and B. Martens. A general criterion for aveiding
infinite unfolding during partial deduction. Technical
Report CW-126, Depariement Computerwetenschap-
pen, K.U.Leuven, Belgium, March 1991,

[Chan and Wallace, 1989] D. Chan and M. Wallace, A
treatment of negation during partial evaluation. In
H. D. Abramson and M. H. Rogers, editors, Proceed-
ings Meta'85, pages 209-318. MIT Press, 1985

[Gallagher and Bruynooghe, 1950]
J. Gallagher and M. Bruynooghe, The derivation of
an algorithm for program specialisation. In D. H. D.
Warren and P. Sgeredi, editors, Proceedings [OLP'90,
pages T32-T46, Jerusalem, June 1980, Revised version
in New Generation Computing, 9(3 & 4):305-334,

|Gallagher, 1986] J. Gallagher. Transforming logic pro-
grams by specialising interpreters. In Proceedings
ECAI8E, pages 109-122, 1986,

|Komerowski, 1981] H. J. Komorowski. A specification
of an abstract Prolog machine and its application to
partial evaluation. Technical Report LS5T69, Linkop-
ing University, 1981,

|Komorowski, 1989] H. J. Koemorowski. Synthesis of pro-
grams in the framework of partial deduction. Technical
Report Ser.A, No.Bl, Departments of Computer Sci-
ence and Mathematics, Abo Akademi, Finland, 1989,

[Levi and Sardu, 1988] G. Levi and G. Sardu. Partial
evaluation of metaprograms in a multiple worlds logic
language. New Generation Computing, 6(2 & 3), 1988.

ILloyd and Shepherdson, 1991] J. W. Lloyd and J. C.
Shepherdson. Partial evaluation in logic programming.
Journal of Laogic Programmiing, 11(3 & 4):217-242,
1991.

[Martens and De Schreye, 1992] B. Martens and D. De
Schreye. Scund and complete partial deduction with
unfelding based on well-founded measures. Technical
Report CW-137, Departement Computerwetenschap-
pen, K. U.Leuven, Belgium, January 1092,

[Safra and Shapiro, 1986) S. Safra and E. Shapiro. Meta
interpreters for real. In Information Processing 86,
pages 2T1-278, 1086,

[Sahlin, 1990] D. Sahlin. The Mixtus approach to
automatic partial evaluation of full Prolog. In
5. Debray and M. Hermenegildo, editors, Proceedings
NACLP'20, pages 377-398, 1890

[Sterling and Beer, 1986] L. Sterling and R. D. Beer. In-
cremental avor-mixing of meta-interpreters for expert
system construction. In Proceedings ILPS'86, pages
20-27. IEEE Comp. Society Press, 1986,

[Sterling and Beer, 1989] L. Sterling and R. D. Beer.
Metainterpreters for expert system construction.
Journal of Logic Programming, pages 163-178, 1089,

[Takeuchi and Furukawa, 1986] A. Takeuchi and K. Fu-
rukawa, Partial evaluation of Prolog programs and its
application to metaprogramming. In H.-J. Kugler, ed-
itor, Information Processing 86, pages 415-420, 1986.

[Venken and Demoen, 1988] R. Venken and B, Demoen.
A partial evaluation system for Prolog : Some prac-
tical considerations. New Generation Computing, 6(2
& 3):279-200, 1988.

[Venken, 1984] R. Venken. A Prolog meta interpreter
for partial evaluation and its application to source to
source transformation and query eptimization. In Pro-
ceedings ECAI'8{, pages 91-100. North-Holland, 1984,

