PROCEEDIMNGS OF THE INTERNATIOMAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by 1COT. @ ICOT, 1992

463

Logic Program Synthesis from First Order Logic
Specifications

Tadashi KAWAMURA
Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
tlkawamur@icot.or.jp

Abstract

In this paper, a logic program synthesis method from first
order logic specifications is described, The specificalions
are described by Horn clauses extended by universally
quantified implicational formulae. These formulas are
transformed into definite clause programs by meaning-
preserving unfold /fold transformation. We show some
classes of first order formulae which can be successfully
transformed into definite clauses automatically by un-
fold/fold transformation.

1 Introduction

Logic program synthesis based on unfoldfold transfor-
mation [1] is a standard method and has been investi-
gated by many researchers (2, 3, §, 6, 11, 12, 19]. As
for the correctness of unfold/fold rules in logic program-
ming, Tamaki and Sato proposed meaning-preserving
unfoldfold rules for definite clause programs [20]. Then,
Kanamori and Horiuchi proposed unfold /fold rules for 2
class of first order formulae [7]. Recently, Sato proposed
unfold ffold rules for full first order formulae [18].

In the studies of program synthesis, unfold/fold rules
are used to eliminate quantifiers by folding to obtan def-
inite clause programs from first order formulae, How-
ever, in most of those studies, nafold/fold rules were ap-
plied nondeterministically and general methods to derive
definite clauses were not known. Recently, Dayantis [3]
showed a deterministic method to derive logic programs
from a class of first order formulae. Sato and Tamalki [15]
also showed a deterministic methoed by incorporating the
concept of continuation.

This paper shows another characterization of classes of
first order formulae from which definite clause programs
can be derived automatically. Those formulae are de-
scribed by Horn clauses extended by universally quanti-
fied implicational formulae. As for transformation rules,
Kanameori and Horiochi's unfold ffold rules are adepted.
A synthesis procedure based on unfold /fold rules is given,
and with some syntactic restrictions, those formulae are
successfully transformed into equivalent definite clause
programs. This study is also an extension of those by

Pettorossi and Projetti [14, 15, 16] on logic program
transformations,

The rest of this paper is organized as follows. Section
2 describes unfold/fold rules and formalizes the synthesis
process. Section 3 describes 2 program synthesis proce-
dure and proves that definite clanse programe ean be sue-
cessfully derived from some classes of first order formulae
using this procedure. Section 4 discusses the relations to
other works and Section 5 gives & conclusion,

In the following, familiarity with the basic terminolo-
givs of logic programming 7s assumed[13], As syntactical
variables, X, ¥, Z, U,V are used for variables, A, B, H
for atoms and F, & for formulae, possibly with primes
and subscripts. In addition, § is used for a substitution,
F¥ for the formula obtained from formula F by applying
substitution 8, X for a vector of variables and Fi[G'] for
replacement of an cecurrence of subformula & of formula
F with formula &".

2 Unfold/Fold Transformation
for Logic Program Synthesis

In this section, preliminary notions of our logic program
gynthesis are shown,

2.1 Preliminaries

Preliminary notions are described firat.

A formula is called an implicational goal when it is of
the form Fy — 55, where Fy and Fy are conjunclions of
atoms.

Definition 2.1 Definite Formula

Formula & is called a definite formuola when ' is of
the form

Ae= Gy AGe A A Gp(n 210,

where G} is a (possibly universally quantified) conjune-
tion of implicational goals for £ =1,2,... ,n. A is called
the head of &, Gy A Gy A ... A G, is called the body of
' and each & is called a goal in the body of C.

464

Note that the notion of a definite formula is & restricted
form of that in [7].

A seb of definite formulae is called & definite formula
program, while a set of definite clauses is called 2 definite
clause program. We may simply say programs instead of
definite formula (or clause) programs when it is obvious
to which we are referring.

Definition 2.2 Definition Formula

Let P be a definite formula program, A definite for-
mula [is called a definition formula for P when all the
predicates appearing in s body are defined by definite
clauses in P and the predicate of 's head does not ap-
pear in [*, The predicate of D's head i5 called a new
predicate, while those defined by definite clauses in P
are old predicates, A set of formulae T is called a defi-
nition formula set for F when every element D of D is
a definition formula for F and the predicate of D's head
appears only onee in D,

Atoms with new predicates are called new atoms, while
those with old predicates are called old atoms.

2.2 Unfold/Fold Transformation

In this subsection, unfold/fold transformation rules are
shown following [7]. Below, we assume that the logical
constant true implicitly appears in the body of every unit
clause. Further, we assume that a goal is always deleted
from the body of a definite formula when it is the logical
constant true, and a definite formula is always deleted
when some goal in its body is the logical constant false.

Further, we introduce the reduction of implicational
goals with logical constant frue and false, auch as
~true = false,frue A F =+ F, and so on. (See [7] for
details.) Let @ be an implicational goal. The reduced
form of G, denoted by & [, is the normal form in the
above reduction system.

Variables not quantified in formula F are called global
variables of F. Atoms appearing positively (negatively)
in formula F are called positive (negative) atoms of F.

Definition 2.3 Pesitive Unfolding

Let F; be a program, ¢ be a definite formula in 5,
G be a goal in the body of C and A be a positive old
atom of & containing no universally quantified variable.
Then, let Gy be Ga[false] | and C} be the definite for-
mula obtained from € by replacing ' with . Purther,
let ©y,0%,...,Ch be all the definite clauses in B; whose
heads are unifiable with A4, say by mgu's &,8s,..., 8.
Let G be the reduced form of GO, after replacing A8 in
(78; with the body of C;#;, and € be the definite formula
obtained from C0; by replacing Go; in the body with @;.
(New wvariables introduced from C; are global variables
of Gj.) Then, Ay = (B = {CYH U {C,,C),CL, ..., CLL
G 01 Gy o0y O are called the results of pnamve umn-
folding C at A {or &).

Example 2.1 Let P be a definite clause program as fol-
lows
Cy ¢ list([]).
Cy ¢ list([X[L]) ~ list{L).
O 0 0 < sue(Y).
Cy ¢ suc(X) < sue(Y) — X < Y,
Cy : member{U,[U[L]).
Cp : member(U,[V|L]) + member(U,L).
Let C7 be a definition formula for P as follows :
C+ ¢ less-than-all{X,1.) ~—
list(L) A ¥ Y (member(Y, L:l — X<Y)
Suppose that Fy = PU {C;}. Then, by unfolding C; at
list{L}, program P, = PU {5, T} is obtained, where
Cg: less-than-all(X[}) — ¥V Y{member(Y,]) — X<Y).
Cs ¢ less-than-all(X,[Z]L]) ~—
list(L) A ¥V Y{member(Y,[Z|L]) - X<Y).

Before showing the negative unfolding rule, we intro-
duce the notion of terminating atoms. Intuitively, atom
A is terminating when every derivation path of 4 is fi-
nite. See 7] for the precise definition.

Definition 2.4 Negative Unfolding

Let F; be a program, ' be a definite formula in P, &
be a geoal in the body of C and A be a negative old atom
of & such that every atom obtained from A by instanti-
ating all global variables in A to ground is terminating.
Let ©1,Ch,. .., Gk be all the definite clauses in P whose
heads are unifiable with A, say by mgu's §,0;,..., 8.
where #; instantiates no global variable in . Let Gy be
Galfalse] | and G; be the reduced form of G¥; after re-
placing Af; in G8; with the body of C;#;. (New variables
iniroduced from O} are universally quantified variables in
Gi.) Let C” be the definite formula obtained from ¢ by
replacing @ in the body of C with Go AGyL A ... A Gy
Then, Fryq = (F; — {CH U {C"}. C" is called the results
of negative unfolding C at A (or G).

Example 2.2 Let P and P, be programs in Exam-
ple 2.1. By unfolding Cs at member(X,[J}, A = PU
{Cs, Cia} is obtained, where
Cio : less-than-all {X) =¥ Y (false = X < Y) |.
that is,
Cho ¢ less-than-all{X,[]).
Further, by unfolding Cs at member(X,[Z|L]), Pa= P U
{Ch0,Ci} is obtained, where
Chy @ less- than-a]l{}{,[E]L]} — list(L) A
¥ Y(false — X<Y)| A
¥ Y{true — X<Z)] A
V'Y (member(Y L) — X<Y)].
that is,
Cun ¢ less-than-all(X,[Z|L]) — list(L) A
X<ZAYY (member(Y,L) = X < Y).

Definition 2.5 Folding
Let F; be a definite formula program, C be a definite
formula in B of the form A — K AL and D be a definite

formula of the form B « K', where K K and I arc
conjunctions of goals. Suppose that there exists a sub-
stitution & such that K'6 = K helds. Let O be a clause
of the form A — BY, L. Then Py, = (F;— {C}}U {Cr]

MNote that when applying folding, some conditions have
to be satisfied to preserve the meanings of programs. See
[7] for details.

Example 2.3 Let F and Py be programs in Exams-
ple 2.2. By folding Cyy by Cy, Py = PU {Cip, Cha} is
obtained, where
Chz ¢ less-than-all{X,[Y|L]) —
X <Y A less-than-all{X,L)

2.3 Program Synthesis by Unfold/Fold
Transformation

In this subsection, our program synthesis problem js for-
malized. Firstly, several notions are defined to formalize
the program synthesis processes.

Definition 2.6 Descendant and Ancestor Formula
Let P be a definite formula program, © be a definite
formula-in P and P be a definite formula program-ob-
tained from P by successively applying positive or nega-
tive unfolding to P. A definite formula " i P is called
a descendant formule of © when
[2) 7 is identical to O or
(B) £ is the result of positive or negative unfolding of
a descendant formula of C.
Conversely, © is called an ancestor formula of C".

Example 2.4 In Examples 2.1 - 2.3, definite formulae
Uy, Cgyo oo, Oy are descendant formulae of Cy.

Definition 2.7 U-selection Rule

A rule that determines what transformation should be
applied to a definite farmula program is called a selection
rule. Let P be a definite formula pregram and © be a
definite formula in P. A selection rule R is called a [~
selection rule for P rooted on 7 when R always selects
positive or negative unfolding applied to a descendant
formula of €. ' is called the root formula for & (or
of the transformation.) A definite formula program ob-
tained from P by successively applying transfermation
rules according to R is called a definite formula program
obtained from P via R.

Definition 2.8 Closed Program

Let P be a definite clause program, C be a definition
formula for P, D be a definition formula set for P and R
be a U-selection rule for PU{C} rooted on . Let P’ be
a definite formula program obtained from PU{C]} via R,
P! 15 said to be closed with respect to triple < P,C, D =
when every descendant formula & of £ in P’ satisfies
one of the fallowing:

465

(a) C'is a definite clause.

(b} There exista a goal G consisting of positive atoms
only in the body of € such that an old atem in & is
not unifiable with the head of any definite clause in P

(&) By successively folding &' by clausesin {CIUD, a
definite clause can be obtained.

Pu{('} is said to be closed with respect to T when there

exists a closed program with respect to < F,C, D > and

for every definition formula D in T there exists a closed
program with respect to < P,.D, DU {C} =,

Example 2.5 Let P and F; be programs in Exam-
ple 2.2 Then, P is closed wri. < F,0:, 0 >, Further,
Pu{C;} is closed w.r.t. (.

The above framewark is an extension of the one shown
in [8], and also a modification of the one Pettorossi and
Proietti proposed [14, 15, 16] in their studies of program
transformation.

MNow, our problem can be formalized as follows: for
5iven definite clause program P and definition formmla
' for P, find & finite definition formula set D for P such
that P U {7} is closed with reapect to T

3 Some Classes of First Order
Formulae from Which Logic
Programs Can Be Derived

In this section, we specify some classes of first order for-
mulae from which definite clause programs can be de-
rived by unfold /fold transformation.

3.1 A Program Synthesis Procedure

In this subsection, we show a naive program synlhesis
procedure. In the following, we barrow some notions
about programs in [15, 16]. We consider definite formula
{clause) programs with predicate =, which have no ex-
plicit definition in the programs. Predicate = is called
a base predicate, while other predicates are called de-
fined predicates. Atoms with base predicates are called
base aloms, while those with defined predicates are called
defined atoms. Transformation rules can be applied to
defined atoms only.

A formula containing base atoms can be reduced by
unifying arguments of =. When a universally quanti-
fied variable and a global variable are unified, the global
variable 13 substituted for the umversal one. The above
reduction is called the reduction with respect to =. We
assume that no formulae are reduced w.r.t. = unless this
is explicitly mentioned.

Further, we assume that the following operations are
always applied implicitly to the results of positive or neg-
ative unfolding. Goals & i said to be connected when
al most one universally quaniified implicational goal &'

466

appears in 7 and each atom in &' has common univer-
sally quantified variables with at least one another atom
in &". Let ' be 2 definite formula such that all the goals
in its body are conmected, Let € be one of the results of
positive or negative unfolding C' at some goal, By logical
deduction, definite formulae C§,C4,...,Ch(m = 1) are
obtained from £’ such that all the goals in the body of
Cj are connected. (Note that some goal 7 in the body of
C" is of the form F; — Fy or F; V F; and no universally
quantified variables appear in both £ and 7, £ can he
split into two formulae by replacing & in O with —F,
(or Fy) and F3.)

Before showing our program synthesis procedure, a no-
tion iz defined,

Definition 3.1 Seund Unfolding

Suppose that positive or negative unfolding is applied
to a definite formula at atom A. Then, the application
of unfolding is said to be sound when no two distinct
universally quantified variables in A are unified when
reducing the result of unfolding with respect to =.

Some syntactic restrictions on programs ensure the
soundness of all possible applications of unfolding. In
fact, the restriction-shown in [3] ensures the soundness.
However, in the following, we assume that every applica-
tion of unfolding is sound, without giving any syntactic
restriction, for simplicity.

Now, we show our program synthesis precedure, which
is similar to partial evaluation procedures(ef.[p, 100,
First, a procedure to synthesize new predicates is shown,

Procedure 8.1 Synthesis of New Predicotes

Suppose that definite formula program P and definite
formula € in P of the form A « &, G, ..., G, are
given. Let & be the reduced formula obtained from &
by removing all base atoms and by replacing all univer-
sally quantified variables appearing in every base atom
with distinet fresh global variables if global variables are
sabstituted for them when reducing G; w.r.t. =. Let I;
be of the form H; +— @ for { = 1,2,...,n, where H; ia
an atom whose predicate does not appear in P or H; for
i # j and whose arguments are all global variables of (7
appearing in &L Then, Dy, Dy, ..., D, are returned.

Note that in Procedure 3.1, €' can be folded by
Dy, Iy,..., Dy after reducing it w.r.t. = when C is the
result of sound unfolding, and the result of the folding is
a definite cdause.

Example 3.1 Let P be a program as follows.
Cy ¢ all-less-than(L,M) «— list(L) A List(M) A
¥ U,V (member(U,L) A member(V,M) — U < V).
€ : member{U[VIX]) — U= V.
Cs : member(U,[VIX]) — member{U,X).
The definition of ‘<" is given in Example 2.1. Suppose
that C% body consists of cnly one goal. By applying

positive unfolding and negative unfolding to € sueces-
sively, the following formulae are obtained. (The reduc-
tion w.r.t. = is done when no universally quantified vari-
able appears as an argument of =)
Cy @ all-less-than([],M) « List{M).
Cs ¢ all-less-than([X|L],M) « (list(L) A Lst(M)) A
(Hist{L) A list(M) A
VUV (U =X A member(V.M) = U < V) A
{list(L) A list(M) A
: ¥ U,V (member(U,L)Amember{V,M) — U < V)).
Then, by Procedure 3.1, the following new predicates aze
defined from .
Dy : newl(X,LM) «— list(L) A List(M) A
WV (member(V,M) — X < V),
DOy : new2(L,M) « list(L) A list{M) A
VU,V (member(U,L) A member(V,M) — U < V).

Next, the whele procedure for program synthesis is
shown.

Procedure 3.2 4 Program Synthesis Procedure
Suppose that definite clause program P and definition
formula C' for P are given. Let D be the set {C].

(a) If there exist no unmarked formulae in D, then re-
turn Frand stop.

{b) Select an unmarked definition formula D from D.
Mark D ‘selected.’ Let P! be the set {D}.

(c) If there exist no formulae in P' which do not satisfy
conditions (a) and (b} in Definition 2.8, then P :=
P U F' and go to (a).

(d) Select a definite formule C" from P'. Apply positive
or negative unfolding te C'. Let Cy,...,C. be the
results, Remove ¢ from P,

(e) Apply Procedure 3.1 t0 Cy,...,Cy. Let Dy,..., Dn
be the outputs. Add ; to T if it is not a definite clause
and there exists ne formula in D which is identical to D,
except for the predicate of the head. Fold 4,...,0,
by the formulae in D and add the results to P/,

{f} Goto(c).

Example 3.2 Consider the program in Example 3.1
again. We see that Dy is identical to ' except for the
predicate of the head. Cj can be folded by D; and €
after reduction w.r.t. =. The resuit is as follows.

Cp : all-less-than([X|L],M) + hst(L) A List{M} A

aewl{X,L,M) A all-less-than(L,M).

Similar operations are applied to [, and finally, the
following clauses are obtained.

Dy : newl(X,L.[) « hst(L).

Dyt newl (X,L,[YM]) — X <Y A newl(X,L,M).

Note that Procedure 3.2 does not necessarily derive
a definite clanse program from & definite formula pro-
gram. For example, when the following program is given
as input, Procedure 3.2 does noi halt.

Cr: p(X,Y) & p(X,Z) A p(Z,Y)

Cp: B(X,Y) — VY Z (p(X,Z) — p(Y,2))

3.2 Classes of First Order Formulae

In this section, we show some classes of definite formula
programs which can be transformed info equivalent def-
inite clause programs by Procedure 1.2,

Throughout this subsection, we assume that unfolding
is always applicable to every definite formula at an atom
when there exist definite clanses whose heads are unifi-
able with the atom. Note that the above assumption
does not always hold. This problem will be discussed
in 3.3.

After giving a notion, we show a theorem which is an
extension of the results shown in [L5]. A simple expres-
sion is either a term or an atom.

Definition 3.2 Depth of Symbol in Simple Expression

Let X be a variable or & constant and E be a simple
esepression in which X appears. The depth of X in E,
denoted by depth({X,E), is defined as follows.

(a) depth(X,X)=1.

(b) depth(X,E) = max{depth(X)X appears in &
for i = 1,...,n} + 1, if Fis either f{t1,... %) or
plti, ... ta), for any function symbal f or any predi-
cate symbol p.

“The deepest variable or constant in E-is- denoted by

maxdepth(£).

Theorem 3.1 Let P be a definite clause program. Sup-

pose that for any definition formula C for P, there exists

a U-selection rule B for PU{C} rooted on € such that R

is defined for all descendant clanses of O in which at least

one defined atom appears. Suppose also that there exiat
twa positive mtegers H and W such that every descen-
dant clause " of € in every program P' obtained from

PU{C} via R satisfies the following two conditions.

{a) The depth of every term appearing in every goal in
the body of C' is less than H.

(b) Lel &4,Gy,..., 5, be connected goals in the body
of ¢". Then, the number of atoms appearing in Gy s
less than W, for:i = 1,2,...,n.

Then, there exists a finite definition formula set T for P

such that P U {C} is closed with respect to D.

Froof, From hypothesis (a), only a finite number of dis-
tinct atoms (modulo renaming of variables) can appear
in the goals of all the descendant formulae of C'. Then,
apply Procedure 3.2 to P and . Note that every goal in
the body of every descendant formula of C is connected.
Then, for every goal of every descendant formula of C,
the number of atoms appearing in the goal is less than
W, from hypothesis (b). Hence, only a finite number of
distinct goals can appear in all the descendant formulae
of . Thus, we can obtain a finite definition formula
set Ty for P such that there exists a closed program P’
wrt. < P,C, Dy >.

The above discussion holds for all the definition for-
mulae in Dg, since those farmulae are constructed from

467

bodies of the descendent formulas of &. Evidently, only
a finite number of distinet definition formulae can be de-
fined. Thus, there existe a finite definition formula set T
for P such that P U {C} is closed w.rl. D. o

Theorem 3.1 shows that Procedure 3.2 can derive a
definite clanse program when {a) a term of infinite depth
can not appear, or (b} an infinite number of atoms can
not appear in a connected goal during a transformation
procesa. In the following, we show some synfactic restric-
tions on programs which satisfy the above conditions.

Proietti and Petlorossi showed some classes of definite
clause programs which satisfy the conditions in Theo-
rem 2.1 in their studies of program transformation [15].
We show that some extensions of their results are appli-
cable to our problem.

The following definitions are according to [15]. The set
of variables oceurring in simple expression E s denoted
by var(&),

Definition 3.3 Linear Term Formufa and Program

A simple expression or a formula is said to be linear
when no variable appears in it more than once. A definite
formula (clause) is called a linear term formula (clavse)
when every atom appearing in it is linear. A definite
formula {clause) program is called a linear term program
when it consists of Hnear term formulae (clauses) only.

A linear term formula {clause) is called a strongly lin-
ear term formula (clanse) when its body is linear. A def-
inite formula (clause) program is called a strongly linear
term program when it consists of strongly linear term
formulae (clauses) only.

Mote that the following definite clause is not a linear
term clause.
mesber(X,[XIL])-
However, it is easy to obiain an equivalent linear term
clanze as follows :
member(3,[Y|L])+~ X=Y.

Definition 3.4 A Relation < belween Linear Simple
Expressions

Let By and E; be linear simple expressions. When
depth(3, B,) <depth(X,E;) holds for every variable X in
var(By Jnvar{ Es), we write By < Fs. (Both B, < Fa and
E; < E; hold when var{ By)var(Ey)= .)

Definition 3.5 Non-Ascending Formula and Program

Let ' be a linear term formula and H be the head of
(. € iz said to be non-ascending when A < H holds
for every defined atom A appearing in the body of C. A
linear term program is said to be non-ascending when it
consists of non-ascending formulae only.

A definite formula {clause) is sald to be strongly non-
ascending when it is a strongly linear term formula
{clause) and non-ascending. A definite formula (clause)
program is said to be strongly non-ascending when it

468

consists of strongly non-ascending formulae (clauses)
only.

Definition 3.8 Synchronized Descent Rule
Let P be a linear term program, R be a Usselection
rule for P and ¢ be any descendant formula of the raat
formula for R, Let A, As,..., A, be all the atoms ap-
pearing in the body of €. Then, R is called & synchro-
nized descent rule when
{a) H selects the application of positive or negative wn-
folding to C at A, if and only if 4; < A; helds for
i=1,...,n, and
{b} Ris not defined for ', otherwise.

Note that synchronized descent rules are not neces-
sarily defined uniquely for given programs and definition
formulae.

The following theorem is an extension of the one shown
in [15, 16).

Lemma 3.2 Let P be a non-ascending definite clause
program, ' be a linear term definition formula for P, and
f be a synchronized descent rule rooted on €. Let P be
a program obtained from PU{C} via B. For each defined
atom A appearing in the body of every descendant clanse
of Cin P, the following holds :
maxdepth(A) <
max{maxdepth{ B)| B is a defined atom in PU{C}}

Proof By induction on the number of applications of
unfalding, a

Now we show some classes of definite formula programs
which satisfy the hypotheses of Theorem 3.1, Tn the fol-
lowing, for simplicity, we deal with definition formulas
with only one universally quantified implicational goal
in the body., The results are easily extended to the defi-
nite formulae with a conjunction of universally quantified
implicational goals.

The following results are also extensions of those
shown in [15].

Theorem 3.2 Let P be a strongly non-ascending def-

inite clavse program and C be a linear term definition

formula for P of the form H «— A, AYX(A4; — A;), such
that the following hold.

(a) For every clause D in P of the form Hp — By A... A
B, ABIA.. .AB,, where B,,..., B, are defined atoms
and B, ..., 8] are base atoms, the following hold.
(a-1) Let {4 be any argument of Hp. For every argu-

ment §; of &, if ty containg & common variable with
t;, then #; is 2 subterm of ¢y,

{(a-2] For every argwment & of By, if ¢; is 2 subterm
of an argument tg of Hp, then no other arsument of
;i a subterm of 1y,

(b) There exist two arguments ¢; and s; of some A; (t; #
si;t = 1,2 or 3) such that the following held.

{b-1} There exists an argument #; of A; (i # j) such
that
+ vars(A;)Nvars(A;)=vars(t;)vars(t;), and
- either {; is & subterm of ¢;, #; is & subterm of 4 or
vars(t;)vars(t;)=
(b-2} There exists an argument s of A (k # 4,7)
such thal the same relations as above hold for s; and
ETR
{(b-3) A; contains no common variable with A,.
Then, there exists a definition formula set D for £ such
that P U {7} is closed with respect to D.

Proof. Note that there exists an atom 4 in the body of O
e.t. an argument of A iz a maximal term in the body of
C w.r.t. subterm ordering relation. Let " be any result
of unfolding C at A and & be any connected goal in the
body of C* of the form Fy A VX [F; — F3), where F, is a
conjunction of atoms. Then, from the hypothesis, it can
be shown that 2 similar property to hypothesis (b) holds
for G. Note that the number of implicational goals dose
not increase by applying positive unfolding and no global
variables are instantiated by applying negative unfolding.
Then, again there exists an atom in the body of C° .5,
one-of-itg-arguments is & maximal ternr in-the body of
C' w.r.t. subterm ordering relation. By induction on
the number of applications of unfolding, a synchronized
descent rule can be defined for every descendant formula
of C. Then, from Lemma 3.2, the depth of every term
appearing in every descendant clause of (7 is bounded.
Note that the number of different subterms of a term
is bounded. Then, from the hypothesis, the number of
atoms appearing in every connected goal in the body of
every descendant formula of €' is bounded. Thus, P and
C satisfy the hypotheses of Theorem 3.1. Hence, there
exists a definition formula set D for P such that PU{C)
is closed with respect to 2. O

Note that Theorem 3.3 holds for any nondeterministic
choice of synchronized descent rules in the above proof.
Note also that any program can be modified to satisfy
hypothesis (a) of Theorem 3.3 by introducing atoms with
= in the bm‘lj’.

Corollary 3.4 Let Phea strongly non-ascending defi-

nite clause program and P’ be a definite elause program

such that no predicate appears in both P and P'. Let

€ be a linear term definition formula for P U P of the

form B — Ay AVE(A; — A3), where the predicates of

Ay and A; are defined in P and that of A; is defined in

P'. Suppose that the following held.

(2) Hypothesis (a) of Theorem 3.3 holds for every clause
Din P.

(b} There exist arguments ¢, of A; and #; of A, such
that the [ollowing hold.

(b-1) vars{A;)Nvars(A;)=vars(t,)Nvars (ta).

(b-2) FEither f; is a subterm of t,, {7 is & subterm of §,
or vars(ty Jvars(t; =0,
(¢} No variable in Ay is instantiated by applying posi-
tive or negative unfolding fo £ successively.
Then, there exists 2 definition formula set D for P U P
such that P U P'U{C] is closed with respect to D.

Proof. Suppose that unfolding is never applied at Ay. A
synchronized descent rule can be defined by neglecting
Ay. Since variables in As are never instantiated, no other
atoms are derived from A;. Thus, the corollary holds. O

In Corollary 3.4, no restrictions are required on the
definition of A3. This result corresponds to that in [3].
Mote that any program can be modified to satisfy hy-
pothesis (c) of Corollary 3.4 by introducing atoms with
= in the bady.

Example 3.3 The program and the definition formula
in Example 2.1 satisfy the hypotheses of Theorem 3.3 and
Corollary 3.4, if clause Cj is replaced with the equivalent
clanse :

¢y« member(U,[V|L]) « U=V,
In fact, & definite clause program can be obtained, as
shown in subsection 2.2,

Mext, we show an extension of the results shown in
Theorem 3.3. Let P be 2 non-ascending definite clause
program and ' be a definition formula for P of the form
H — ANYX(F, — F3), where A is an atom, and Fy and
F; are conjunctions of atoms. Let [; be the definition
clange for P of the form B, « F for 1 = 1,2, If I
can be transformed info & set of definite clauses which
satisfies the hypotheses of Theorem 3.3, by replacing F;
with H;, we can show that P U {C} can be transformed
into an equivalent definite clanse program.

The above problem is related o the foldability prob-
lem in [16]. The foldability problem is described infor-
mally as follows, Let P be a definite clause program and
C be a definition clause for P. Then, find program P
obtained from P LU {C'} which satisfies the following : for
every descendant clause O of O in P, there exists an an-
cestor clause D of O such that C*'s body is an instance
of IM's,

Proietti and Pettorossi showed some classes of definite
clause programs such that the foldability problem can be
solved [16]. We show that their results are also available
o our problem.

A definite clause program P is said to be linear recur-
sive when at most one defined atom appears in the body
of each clause in P, MNote that a linear recursive and
linear term program (clause) is a strongly linear term
program (clause).

Lemma 3.5 Let P be a linear recursive non-ascending
program and & be a non-ascending definition clavse for
F of the form H +« Ay A Asg n By AL 0 By, where A,

469

and Ag are defined atoms and By, ..., B, are base atomas.

Suppose that the following hold.

(a) For every clause [in P of the form Hp +— Ap A
Bl A A B, where Ap is the only defined atom in
the body of D, the fellowing hold.

{a-1) Let ty be any argument of Hp. For every ar-
gument 14 of Ap, if iy containg a cornmon variable
with {4, then 1,4 is a subterm of ig.

(a-2) For every argument 14 of Ap, if 14 is a subterm
of an argument £y of Hp, then no other argument of
Ap is a subterm of ig.

[h} There exist arguments t) of A and t; of A; such
that the following hold.

(b-1) vars(A, Jrvars Ag)=vars(t,)Mvars(f;).

(b-2) Either 4, is 2 sublerm of {;, {3 1 a subterm of {,
or ‘i'a.m{iljl‘]varsl: ta)=M.

Then, from P U {C}, we can obtain & linear recursive

non-ascending program which define the predicate of &

by unfold/fold transformation.

Proof. As shown in [16], we can get a solution of the
foldability problem for P and ©. Then, obviously, a
linear recursive program is obtained. O

Example 3.4 Let P be a linear recursive non-

~ ascending program as follows.

4+ subseq([].L).

Oy ¢ subseq([X|L]LIYIM]) — X =¥ A subseq(L,M).

Ca: subseq([X|LL[Y|M]) ~ subseq([X|L].M).

Let O be a non-ascending definition clause for P as fol-
lows.

- esub(XY,Z) — subseq(3LY), subseq(X,7).
Then, PU{C} can be transformed into & linear recursive
non-ascending program as follows.

csub([,Y 7).

csub(JAIX)[BIY].Z) — A = B A cs(A,X,Y.Z).

csub([A]X],[B]Y],Z) — esub([A[X],Y,Z).

es(A,X.Y,[BIZ]) — A = B A esub(X,Y,Z).
es(A,X,Y,[BZ)) + es(AX.Y,Z).

Though Proletti and Petirossi showed one more
class [16], we will not discuss this here,
Mow, we get the following theorem.

Thecrem 3.6 Let P be a linear recursive non-ascending
program and O be a linear term definition formula for
P of the form H — Ay AVX([A; A By — Az A By), such
that the Fu“uwing hold.
() Hypothesis (a) of Lemma 3.5 holds for P.
[h:l Let 5; be the set of all the arguments of Ay, and
S; be the set of all the arpuments of A; and 5; for
i = 2,3. Then, there exist two terms t; and s; in
gome 5; (t; # 8;,7 = 1,2 or 3) such that the following
held.
{b-1) there exists a term #) in Si {j # &) such that
- vars(S;)Nvars(Sy J=vars(t; Nvars{f), and

470

- either i; is a subterm of #, #; is a subterm of ¢; or
V&.rﬁl:i_f]nvafﬂfﬁk :I=||-§I
(b-2} There exists a term s; of 5 (I # 7, k) such that
the same relations as above hold for &; and s
{b-3) 5, contains no common variable with 5.
Then, there exists a definition formula set T for P such
that PU {C7} is closed with respect te D,

Proof. Obvious from Theorem 3.3 and Lemma 3.5. O

Note that it is easy to extend the result of Theorem 3.6
to allow the conjunction of an arbitrary oumber of atoms
te appear in the bady of the definition formula. Note also
that it is possible to extend the result to allow arbitrary
definition of Ay and By, in a similar way to Corollary 3.4,

3.3 Further Consideration about Syn-
tactic Restrictions

As described in 3.2, the application of unfolding may
be prohibited in Kanamori and Horiuchi’s framework.
In this subsection, we discuss some methods to aveid
prohibition, though we do not necessarily give the pre-
cise syntactic restriction. (Due to space limitations, we
do not refer to the terminating property, though several
sufficient conditions are known to guarantee it.)

(1) Universally Quantified Variables Appearing
in Positive Atoms

Pasitive unfolding can not be applied to definite formulas
at positive atoms with universally quantified variables,
Thus, we have the following two problems.

(a) Synchronized descent rules can not be defined when
universally quantified variables are instantiated by neg-
ative unfolding.

(b} We ean not unfold formulae of the form ¥X A when
A is an atom and some variables in ¥ appear in A.
To avoid case (a), the following restriction is sufficient.
When applying negative unfolding, no universally guan-
tified variable is instantiated. Though the restriction
seems to be strong, most of significant examples of pro-
gram synthesis can be dealt with under the restriction.

Case (b) corresponds to the compilation failure in Sato
and Tamaki's first order compiler [19). They restricted
their language as follows. For every implicational goal
Fy, — F; appearing in a formula, uvar(Fy)2uvar(Fy)
holds, where uvar{F;) means the set of universally quan-
tified variables appearing in Fj.

The above condition is available for our problem. Note
that the application of pesitive unfolding does mot af-
fect the condition. When applying negative unfolding at
atom A in universally quantified implicational goal (3,
the following restrictions are also required. All the uni-
versally quantified variables appearing in A alsc appear
in some negative defined atom in each result of negative

unfolding &, or they are unified with terms consisting of
constants and global variables by reduction w.r.t. =.

We believe that techniques such as mode analysis are
available to guarantes that every applicable negative un-
folding satisfies the above conditions.

{2) Global Variables Appearing in Negative
Atoms

Negative unfolding should be applied without instantiat-
ing global variables. In some cases, this restriction may
be critical. Howewver, we can deal with most of those
cases by adding positive atoms to the formula such that
the global variables can be instantiated by applying pos-
itive unfolding at these atoms. Atoms with predicates
which specify data types (cf. list) are available. For

.example, with the definitions of ‘member’ and ‘<’ in Ex-

ampie 2.1, negative unfolding can not be applied to the
definite formula below.
less-than-all(X,L) «~ ¥ Y(member(¥Y,L) — X<VY).
However, we can apply negative unfolding to the formula
below, after positive unfolding list(L).
less-than-all(X,L) +
list{L) A ¥ ¥(member(Y,L) — X<Y).

(8} Sato’s Unfold,/Fold Transformation

Recently, Sato proposed unfold/fold transformation rules
for full first order programs [18]. Their unfolding op-
eration does not require conditions like Kanamori and
Horiuchi’s. On the other hand, more complex condi-
tions are required when applying folding. Thus, when
we adopt Sato’s tules in place of Kanamori and Hari-
uchi's, we need not consider the restrictions discussed
in (1) and (2) above, while some other difficulties are
introduced to satisfy the folding conditions.

4 Discussion

The work described here is an extension of Pettorossi and
Froietti's work on program transformation [14, 15, 16].
They formalized the successful unfold /fold transforma-
tion in three ways, and showed that the problem of
whether a given program can be transformed successfully
or not is unsolvable. They also showed some elasses of
definite clause programs which ean be transformed suc-
cessfully. Our results owe much to their work, though
currently we do not know whether our problem is decid-
able,

Proietti and Pettorossi also showed that any defi-
nite clause program can be transformed successfully by
performing suitable generalization of the atoms to be
folded [15, 16]. However, the generalization technique
18 not available for our problem. Folding by a definition
formula ebtained by generalizing atoms with universally
quantified variables may not satisfy the conditions for

folding [7], since universally quantified variables can nof
appear in the head of the formula,

Proietti and Pettorossi also showed a transformation
procedure called loop absorption [15, 16]. In this pre-
cedure, they found clause O and its descendant clause
" such that C"'s body is an instance of C's [or a sub-
set of C"s body is identical to C's body). Then, a new
definition clause whose body is identical to that of O
is constructed. They also showed a procedure to elimi-
nate unnecessary variables [17]. We can modify our naive
procedure described in 3.1 by incorporating the loop ab-
sorption and the elimination of unnecessary variables,
Programs obtained by the modified procedure are ex-
pected to be more efficient and have less code than those
obtained by the naive procedure.

There have been several studies on logic program syn-
thesis from universally quantified implicational formu-
lae [3, 4, 18]. Our work is closely related to that of
Dayantis [3]. There, program synthesis was also consid-
ered from formulae of the form H +— ¥YX (A — B). They
showed that a class of those formulae can be transformed
into definite clauses by deductive derivation. They also
discussed the generality of the class using several exam-
ples. Their deductive method is analogous to unfold /fold
transformation and the derivation processes almost cor-
respond to those by our procedure when our procedure
does not apply positive unfolding. They also mechanized
their derivation processes. Cur notion of the sound-
ness of the application of unfolding is ensured by part of
their syntactic restrictions on the arguments of formulae,
though we have not discussed how this is ensured. How-
ever, the classes we have shown are still wider than those
they showed after we incorporate those restrictions.

Sato and Tamaki showed a deterministic algorithm te
transform logic programs with universally quantified im-
plicational formulae into definite clause programs [19].
In their method, unfold/fold transformation is applied
to universal continuation forms. Their method can be
applied to a wider class of first order formulas than curs,
while the results of the compilation are not necessarily
efficient and the code sizes of those results increase gen-
erally.

5 Conclusion

A logic program synthesis method from some classes of
first order logic specifications have been shown. The
method 15 based on unfold/fold transformation. Some
classes of firet order formulae which can be transformed
into definite clavse programs by unfold ffold transforma-
tion have been shown.

Acknowledgments

[would like to thank Tadashi Kanamer and anonymous
referees for helpful comments. [would also like to thank

471

Koichi Furukawa and Ryuzo Hasegawa for their advice,
and Kazuhiro Puchi for giving me the opportunity to do
this research.

References

[1] Burstall, R.M. and J.Darlington, “A Transforma-
tion Systemn for Developing Heeursive Programs™,
JACM, Vol 24, No.1, pp.44-67, 1977,

[2] Clark, K.L. and 5. Sickel, “Predicate Logic: A Cal-
culus for Deriving Programs®, Proc. of 5th Inter-

national Joint Conference on Artificial Intelligence,
pp.419-420, 1977.

[3] Dayantis, G., “Logic Program Derivation for a
Class of First Order Logic Relations™, Proc. of 10th
International Joint Conference on Artificial Intel-
ligence, pp.9-14, Italy, 1987,

[4] Fribourg, L., "Extracting Logic Programs from
Proofs that Use Extended Prolog Execution and
Induction”, Proc. of Tth [nternational Conference
on Logic Programming, pp.G85-6%9, Jerusalem,
1990,

5] Hanseon, A. and Tarnlund, S.A., *A Matural Pro-
gramming Calculus™, Proc. of fith International
Joint Conference on Artificial Intelligence, pp.348-
355, 1979,

[6] Hogger, C.J., "“Derivation of Logic Programs",
J.ACM, Vol.28, pp.372-302, 1981.

[7] Kanamori, T. and K. Horiuchi, “Construction of
Logic Programs Based on Generalized Unfold/Fold
Rules", Proc. of 4th International Conference
on Logie Programming, pp.744-768, Melbourne,
1987,

[8] Kawamura, T., “Derivation of Efficient Logic Pro-
grams by Synthesizing New Predicates”, Proc.
of 1991 International Logic Programming Sympo-
sium, pp.611-625, San Diego, 1991.

[8] Komorowski, J., “Partial Evaluation As A Means
for Inferencing Data Structures in An Applicative
Language : A Theory And Implementation in The
Case of Prolog”, Proc. of the ACM Symposium
on Principles of Programming Languages, pp.255-
267, 1982,

18] Komorowski, J., “Towards a Programming
Methodology Founded on Partial Deduction”,
Proc, of the Furopean Conference on Artificial In-
telligence, pp.404-409,1990.

[12]

[L3]

[14]

[13]

[16]

[L7]

f18]

[19]

120]

Lan, K.K. and 5. D. Prestwich, “Top-down Syn-
thesis of Recursive Logic Procedures from First-
order Logic Specifications”, Proc. of Tth Interna-
tiemal Conference on Logic Programming, pp.667-
684, Jerusalem, 1990,

Lau, KK. and 5. D. Prestwich, “Synthesis of a
Family of Recursive Sorting Procedures”, Proc.
of 1991 International Logic Programming Sympo-
sium, pp.Gdl-658, San Diego, 1061,

Lloyd, J. W_, “Foundations of Leogic Program-
ming”, Springer-Yerlag, 2nd Edition, Berlin, Hei-
delberg, New York, 1987.

Pettorossi, A. and M. Proietti, “*Decidability Re-
sults and Characterization of Sirategies for the
Development of Logic Programs”, Proc. of 6th
International Conference on Logic Programming,
pp.539-553, Lisboa, 1985,

Proietti, M. and A. Pettoressi, *Construction of
Efficient Logic Programs by Loop Absorption and
Generalization”, Proc. of the Second Workshop
on Meta-programming in Logie, pp.57-81, Leuven,
19940,

Proietti, M. and A. Pettorossi, “Synthesis of Fu-
reka Predicates for Developing Logic Programe®,
Proc, of 3rd Furopean Symposivm on Program-
ming, Copenhagen, LNCS 432, Springer-Verlag,
pp.307-325,1990.

Proietti, M. and A. Petiorossi, “Unfolding - Def-
inition. - Folding, In This Order, For Avoiding
Unnecessary Variables In Logic Programs”, Proc.
of 3rd International Symposium on Programming
Language Implementation and Logic Frogram-
ming, Passau, LNCS 528, Springer-Verlag, pp.347-
358,1991,

Sate, T., “An Equivalence Preserving First Or-
der Unfold/fold Transformation System®, Alge-
braic and Logic Programming, Proceedings, LNCS
463, Springer-Verlag, pp.173-188, 1990,

Sato, T. and H. Tamaki, “First Order Compiler
: A Deterministic Logic Program Synthesis Algo-
rithm”, J.8ymbolic Computation, Vol.5, pp.605-
627, 1589,

Tamaki, H. and T, Sato, “Unfold/Fold Transfor-
mation of Logic Programs”, Proc. of 2nd Inter-
national Logic Programming Conference, pp.127-
138, Uppsala, 1984,

