PROCEEDINGS OF THE INTERMATIONAL CONFEREMCE
OM FIFTH GEMERATION COMPUTER SYSTEMS 1952,
edited by ICOT. @ 1C0T, 1992

951

Logic Programs with Inheritance

Yaron Goldberg, William Silverman, and Ehud Shapiro

Department of Applied Mathematics and Computer Science
The Weizmann Institute of Science
Rehovot 76100, Israel

Abstract

It is well known that while concurrent logic
languages provide excellent computational sup-
port for object-oriented programming they pro-
vide poor notational support for the abstractions
it requires. In an attempt to remedy their main
weaknesses — verbose description of state change
and of communication and the lack of class-like in-
heritance mechanism — new object-criented lan-
guages were developed on top of concurrent logic
languages.

In this paper we explore an alternative solu-
tion: a notational extension to pure logic pro-
grams that supports the concise expression of both
state change and communication and incorporates
an inheritance mechanism. We claim that com-
bined with the execution mechanism of concurrent
logic programs this notational extension results
in a powerful and convenient concurrent object-
oriented programming language.

The use of logic programs with inheritance had 2
profound influence on our programming. We have
found the notation vital in the structuring of a
large application program we are currently build-
ing that consists of a variety of objects and inter-
faces to them.

1 Introduction

We share with the Vulcan language proposal [8] the
view on the utility of concurrent logic languages as
object-oriented languages:

“The concurrent logic programming
languages cleanly build objects with
changeable state out of purely side-effect-
free foundations. [...] The result-

ing system has all the fine-grained con-
currency, synchronization, encapsulation,
and open-systems abilities of Actors [4].
In addition, it provides unification, logic
variables, partially instantiated messages
and data, and the declaralive semantics
of first-order logic,

Abstract machines and correspond-
inf concrete implementationssupport the.
computational model of these languages,
providing cheap, light-weight processes
[...] Since objects with state are not taken
as a base concept, but are built out of
finer-grained material, many variations
on traditional notions of object-oriented
programming are pessible. These include
abject forking and merging, direct broad-
casting, message stream peeking, priori-
tized message sending, and multiple mes-
sage streams per object.”

See also [7] for a more recent account of the
object-oriented eapabilities of concurrent logic pro-
grams.

We also share with the designers of Vulcan the
conclusion that:

“While [concurrent logic languages]
provide excellent computational support
[for object-oriented programming], we
¢laim they do not provide good notation
for expressing the abstractions of object-
oriented programming.”

However, we differ in the remedy. While Vul-
can and similar propesals [2,13] each offer a new
language, whose semantics is given via transla-
tion to concurrent logic languages, we propose a
relatively mild notational extension to pure logic

952

programs, and claim that it addresses quite ade-
quately the needs of the object-oriented program-
mer. Specifically, our notation addresses the main
drawbacks of logic programs for object-oriented
programming: verbose description of objects with
state, cumnbersome notation for message sending
and receiving, and the lack of a class-like inheri-
tance mechanism that allows the concise expres-
sion of several variants of the same object. We
explain the drawbacks and outline our solutions.

Inheritance

In certain applications, most notably graphical
user inferfaces, many variants of the same object
are employed to cater to various user needs and to
support smooth interaction. In the absence of an
inheritance mechanism, a variant of a given object
must be defined by manually copying the descrip-
tion of the object and editing it to meet the variant
specification. Both development and maintenance
are hampered when multiple copies of essentially
the same piece of code appear within a system.
Class-based inheritance mechanisms provide the
standard solution for defining multiple variants of
the same basic object in a concise way, without
replicating the common parts. In this paper we
propose an inheritance mechanism for logic pro-
grams, called logic programs with inherilance, or
Ipi for short.

The idea behind Ipiis simple. When a procedure
p inherits a procedure ¢ via the inheritance call
9(T1,...,Tk), add to p's clauses all of ¢’s clauses,
with the following two basic modifications:

1. Replace the head predicate gy by the head
predicate p, with “appropriate arguments”.

2. Replace recursive calls to ¢ by “corresponding
calls” to p.

The formal definition of Ipi will make precise the
meaning of the terms “appropriate arguments”
and “corresponding calls”. The effect of inheri-
tance is that behaviors realizable by ¢ are also re-
alizable by p, as expected.

Using common object-oriented terminalogy, Ipi
can be characterized as follows:

= Predicales are classes: Logic program pred-
icates are viewed as classes, and procedures
(.., predicate definitions) as class defini-
tions. Classes can be executed as well as in-

herited; that is, superclasses are executable in
their own right.

o Clauses are methods: In the concurrent read-
ing of logic programs, each clause in a proce-
dure specifies a possible process behavior. In-
heriting a procedure means incorporating ap-
propriate variants of the clauses of the inher-
ited procedure into the inheriting procedure.

» Multiple inheritance: A procedure may inherit
several other procedures.

s Paramelerized inkeritance: Inheritance is
specified by “inheritance calls”, which may in-
clude parameters. Hence an inheriting proce-
dure may inherit the same procedure in sev-
eral different ways, using different parameters
in the inheritance calls.

We shall see examples for these features in the fol-
lowing sections.

We note that the inherent nondeterminism of
logic programs (and the inherent indeterminacy of
concurrent logic programs) can accommodate con-
flicts in inherited methods with no semantic diffi-
culty. If necessary, an overriding mechanism can
be incorporated to enforce a preference of subclass
methaods over superclass ones.

Implicit Arguments

Objects with state, accessible via messages, are re-
alized in concurrent logic programs by recurrent
processes. Typically, such a recurrent process has
one or mere shared variables and zero or more pri-
vale state variables. The expression of a recurrent
process by a concurrent logic program has the gen-
eral form:

p(... old state of process ...)—
... message receiving and sending, . ..
P(... new state of process ...).

When a process has several variables, where only
a few of them are accessed or changed on each
process reduction, then the notation of plain logic
programs becomes quite cumbersome. This is due
to the need to specify explicitly all the variables
that do not change in a process’s state transition
twice: once in the “old” state in the clause head,
and once in the “new” state in the clause body. In
addition, different names need to be invented for

the old and new incarnations of a state variable
that did change in the transition.

This verbose syntax introduces the possibility
of trivial errors and reduces the readability of pro-
grams, since it does not highlight the important
paris (what has changed) from other details (rep-
etition of the unchanged part).

We define a notational extension, independent
of the inheritance notation, called implicil argu-
menls, to support the concise expression of re-
current processes, The notation allows specifying
what has changed in the process’s state during a
state transition, rather than the entire old and new
states required by a plain logic program, thus ef-
fectively providing a frame axiom for the state of
recurrent processes. The semantics of the extended
notation is given in terms of its translation to plain
logic programs.

Streams are the most commonly used data strue-
ture in concurrent logic programs. To describe
sending or receiving a message M on a stream Xs
one equates Xs with a list (stream) cell whose head
is M and tail is a new variable, say Xs', as in Xs
= [M—Xs']. In this notation the “states” of the
streamn before and after the communication have to
be named and referred to explicitly. We propose a
notation that, by exploiting the implicit arguments
notation, refers only once to the stream being used.

In practice we combine the two notational exten-
gion, inheritance and implicit arguments, into one
language. We find the resulting language greatly
superior to the “vanilla” syntax of (concurrent)
logic programs.

In the rest of the paper we formally define the
inheritance notation, the implicit arguments nota-
tion and give examples of their use,

2 Logic Programs with In-
heritance

2.1 An Example

The inheritance notation is an extension to plain
logic programs which allows inherifance calls,
which are calls of the form +p(T},...,Tn). Using
object-oriented terminology, we refer to a predicate
as a class and to a procedure as a class definition.
Each clause (or disjunct in a disjunctive form) of
the procedure is viewed as a method which manip-
ulates the class’s state,

953

As an example of inheritance consider the follow-
ing well known logic program which manipulates a
sirnple counter:

counter(In) :-
counter{In,0}.

counter([clear|Inl,_)} :-
counter(In,0).
counter([add|In],C) :-
c! := ¢ + 1, counter{In,C').
counter({[read(C)[In],C) :-
counter{In,C).
countex([],_)}.

An alternative representation of a logic program
can be in a disjunctive form, where all clauses of
a predicate are written with separating semicolons
and are under a single, simple head (an atom is
simple if its arguments are distinct variables). The
translation between plain logic programs and logic
programs in disjunctive form is trivial.

Put in disjunctive form, the definition of
counler/$ would appear as:

counter{In, C) :-
in = [clear|In’], counter{In’,0};

In = [add|In*], €* :=C + 1,
counter(In’,C’);

In = [read(c)|In’], counter{In*,C);

In = [.

We illustrate the inheritance notation by adding
a feature to counier, which enables us to retain a
backup value of the counter, named BackUp. The
checkpoint method backs up the counter value and
restore restores its value from the backup. The
syntactic changes from the previous counter ver-
sion are an added argument and two new digjuncts.
Using the inheritance notation we would write this
as:

counter2{In) :-
counter2(In, O, 0).

counter2({In, C, BackUp) :-
t+counter(In, C);

In = [checkpoint|In’],
counter2{In', €, C);

In = [restorelIn’'],
counter2({In’, BackUp, BackUp).

954

This procedure stands for:

counter2(In, C, BackUp) :-

In = [checkpoint|In’],
counter2(In’, C, C):

In = [restore|In’],
countex2(In’, BackUp, BackUp);

In = [elear|In’],
counter2(In’,0, BackUp);

In = [add|In’], C’ :=C + 1,
counter2(In’,C’, BackUp);

In = [read(C)|In’],
counter2(In’',C, BackUp):

In = [].

2.2 Syntax

A logic program with inheritance, Ipi, is a set of
procedures, each having a unique head predicate.
Each procedure is a disjunctive elause of the form:

PX1, .., Xn) = e o

where n, k > 0, X;'s are distinet variables and each
te; is either a conjunctive goal or an inhkeritance
call of the form +q(X;,,..., X;_), where the ij's
are distinct and 1 <4; <nforevery j,1 <7 < m.

Note that if p/n inherits ¢/m the definition im-
plies that m < n.

An inheritance graph for an Ipi program P is a
directed graph (V, £) where V is the set of predi-
cates defined in P and for every inheritance call to
a predicate ¢ in the procedure of pin P, (p,q) € E.

An lpi program P is well-defined if the graph
(V, E)} is well-defined (i.e., every predicate that oc-
curs in E is a member of V) and acyclic.

For convenience, we employ the following syn-
tactic default. Suppose the predicate g is defined
by:

oY, .- Yom)=Br..; .

Then the inheritance call +q is a shorthand for
+9(%i, .., Ym).

2.3 Semantics

The semantics of a well-defined logic program with
inheritance P is given by the following unfolding
rule, whose application to completion to P results
in a logic program in disjunctive form,. In the fol-
lowing rule p, ¢ are predicates, the 5% are terms,
X and Y are logic variables, a;, f; are disjuncts.

Lpi Rule: Replace the clause:

P{xh;{'g,...l.xn)i—-
;e (Xigy o Xin)i oo ke
where ¢ is defined by the (renamed apart) clause:

oY1, .. Ym)=h1;...; B

with the clause:

p(Xy, Xy Xn)— a5 Bl 80 oo
where §; is obtained from f; by the following trans-
formation:

1. Apply the substitution # af {v; — Xi, |1<
j=m}.

2. Replace each recursive call ¢(51, ..., Sm) with

the call p(X;,..., Xa)e, where ¢ = {Xi; —
Sil(1<j<m)}

This completes the definition of logic programs
with inheritance.

Assume some fixed first-order signature L. Let
P be the set of all well-defined logic programs with
inheritance over L. Let —+: P x P be the relation
satisfying P — P’ iff P’ can be obtained from P
by an application of the Ipi rule to a clause in P.

The pair {P, =} is not strictly a rewrite system
according to the standard definitions [3], since logic
programs with inheritance are sets, not terms, and
since they are not closed under substitution. How-
ever, these differences do not affect the applicabil-
ity of the relevant tools of rewrite systems, so we
ignore them.

Lemma 1 The rewrile system (P,—s) is termi-
nating and confluent up fo clause renaming, 1.e. if
P’ and P" are two normal forms of P then they are
equivalent up to clause renaming. Furthermore, all
normal forms are ordinary logic programs.

Proof outline: Termination follows from the
fact that any application of the Ipi rule elimi-
nates one inheritance call. Normal forms den’t
have inheritance calls since they can all be re-
duced by the requirement that P contains only
well-defined logic programs with inheritance. Con-
fluence follows from the associativity of substitu-
tion composition.O

Corollary 1 The semantics of Ipi is well defined.

2.4 An Example of Parameterized
Multiple Inheritance

As an example of parameterized inheritance, sup-
pose we have a “showid” feature which waits on
an input port fr for a message shew.id and then
fills the incomplete message with the value Id;

id(In, Id) :-
In = [show_id(Id)|NewIn],
id{NewIn, Id).

And suppose we have a class containing two input
ports Inf and /mg, where on each port the class can
receive requests to show its id. Instead of copying
the method twice, we shall write:

class(Inl, In2, Name) :-—
+id{Inl, Name);
+id{In2, Name);

<<class body>>

The result of applying the Ipi rule would be:

class(Ini, In2, Name) :-
Inl = [show_id(Name)|NewIn],
class(NewIn, In2, Name);
In2 = [show_id{Name) |WewIn],
clasa(Inl, NewIn, Nama);

<<class bady>>

The same id feature could be used when an ob-
jeet wishes to have different id’s on different ports,
t.e., refurn different answers on different ports for
the same incomplete message show_id, as in:

class(Ini, In2, Namel, Name2) :-
+id(Inl, Namel);
+id(In2, Name2);

<<class body>>
The expansion is as follows:
class(Ini, In2, Namel, Name2) :-
Ini = [show_id(Namei)|NewIn],
class (NewIn, In2, Namel, Name2):

In2 = [show_id(Wame2)]NewIn],
class(Inl, NewIn, MNamel, Name2);

<<class body>>

955

2.5 .Integration with a Module Sys-

tem

The power of logic programs with inheritance is en-
hanced when integrated with a module system. We
have integrated [pi with the hierarchical module
system of Logix [11]. To simplify the description,
we outline the principles behind the integration for
a non-hierarchical module system.

When p in module M inherits ¢ from another
module M, the semantics of inheritance is that
the definitions of all predicates in M’, called or in-
herited directly or indirectly by g, are incorporated
in M, unless they are already defined in M.

This overriding capability, which gives some of
the effects of higher-order programrming, proves to
be invaluable in practice. One can easily specify a
variant of a module M by inheriting its top-level
procedure and overriding the definition of one or
more of its subprocedures. For example, by in-
heriting a sorting module and overriding the com-
parison routine, one can turn an ordinary sort rou-
tine to a sort routine that operates on records with
keys.

We note that although the semanties specifies
“code copying”, the following semantics-preserving
optimization may apply. If M’ inherits from A,
P is a set of procedures in M that do not call or
inherit procedures outside of P, and none of the
procedures in P is redefined in M, then the code
for P need not be included in M, and any call
to a procedure in P may be served by M. This
optimization achieves runtime code sharing among
several modules inheriting from the same module,

3 Logic Programs with Im-
plicit Arguments

3.1 Example

We illustrate the notation of implicit arguments
via an example. The counier program (section 2.1)
is a typical logic program specifying a recurrent
process. A logic program with implicit arguments
that corresponds to the plain logic program for
counter is:

counter(In) + (C=0) :=
In = [elear[In’]l, C*' = 0, self;

In = [add|In*], C' := C + 1, self;

956

In

[read{C}|In’], self;

In = [].

Similarly, 2 binary merge can be defined using im-
plicit arguments by:

mergel(Ini,In2, 0ut) :-

Int = [X[Ini'], Out=[X|0ut’], self:
In2 = [X|In2*], Out=[X|[0ut’], self:
Ini = [1, Out = In2;
In2 = [], Out = Int.

3.2 Syntax

A logic program with implicit arguments is a set
of clauses. A clause is composed of a predicate
declaration and a disjunctive body. The predicate
declaration has the form:

P{xll ---.-Xn]“l' {Xn+1 = IL'I’lr'-';-xrnl-l-ﬁ: - P;il;l‘:_

where n, & > 0, the X s are distinct variable names
and the ¥'s are terms. We say that the predicate
p has n global and k local arguments, denote it
by p/ntk (or p/n if k = 0), and call ¥;,..., V2
the initial values of the local arguments of p/n+.
There can be at most one clause for any predicate
P-
A call to p/n+k in a procedure other than that
of p/n+k has the form p(7y,...,Trn), wherem = n
or m = n + k, where the T’s are terms. A call to
p/n+k that occurs in its own procedure may also
have the form p, i.¢., the call may have no argu-
ments whatsoever. Such a recursive call is called
tmplicit. In addition, any call to p/n+& that oc-
curs in its own procedure may use the predicate
name self as a synonym for p.

Variable names may be suffixed by a prime, e.g.
X' Y. X" denotes the variable name X suffixed
by n primes, n > 0. A primed version of a variable
name denotes a new incarnation of the variable
in the sense that the “most primed” occurrence
of a variable name is considered the most updated
version of the variable and hence is used in implicit
recursive calls as explained below. We assume that
the predicate =/2 is defined via the single unit
clanse X = X,

3.3 Semantics

The semantics of a logic program with implicit ar-
guments P is given by the following rewrite rules,

whose application to completion results in a dis-
junctive logic program F'.

Rule 1: Expand local argument of calls.
Replace each procedure call:

(T, . Ta)
to a procedure p/n + k, by the call:

P(Taye s T V1o - o Vi)

where Va,..., Vayp are the initial values of the lo-
cal arguments of p/n+k.

Raule 2: Expand implicii recursive calls.
HReplace each procedure call:

p or self
in the clause of p/n + &k by the call:
P(Uy Ungte)

where U; is the most primed version of X; in the
clause. We say thal X" is the most primed occur-
rence of X in a clewse C if X™ occurs in ', and
for no k& > n, does X* occur in C.

For example, applying the rewrite rules to the
merge procedure results in:

merge(Ini,In2,0ut) :-
Ini = [X[In1'], Out=[X|0ut’],
merga(Ini’,In2,0ut’);
In2 = [X[In2'], Out=[X|0ut'],
merge{Ini,In2*,0ut’);
Int = [], Out = In2;

In2 = [1, Out = Ini.

3.4 Special Notation for Stream
Communication

Streams are the most commenly nsed data strue-
ture in concurrent logic programs. Recurrent pro-
cesses almost always have one input stream and
often have several additional input and/or out-
put streams. Sending and receiving messages on
a stream X's by a process p can be specified by the
clause schema:

pl...Xs...) =
s = [MessagelXs'],

self,

where the difference between sending and receiving
is expressed using a langoage-specific synchroniza-
tion syntax. Since this is such a cornmeon case, we
found it worthwhile to provide it with a special
notation. Our notation is reminiscent of CSP [5)
and Occam [6] (and in logic programming the Pool

language [2]): -

¥z | Message,
s 7 Message,

These constructs specify, respectively, sending and
recelving a message Message on a stream Xs. Fach
is equivalent to Xs = [Message—Xs'] with the ap-
propriate language-specific synchronization syntax
added. The construct requires n+4 fewer charac-
ters, where n is the length of the stream variable
name, and hence is less liable to typing errors and
probably also more readable.

Using this notation, a binary stream merger can

be specified by:

merge{Ini,In2,0ut} :-
Inl 7 X, Out ! X, self:
Im2 7 X, Out ! X, salf;
Ini = [1, Out = In2;
In2 [1, Out = Ini.

1l

The predicate append/? can be specified using the
first and third disjuncts of merge/3:

append(Ini,In2,0ut) :-
Int 7 X, Out ! X, self;
Inil = [1, Out = In2.

[t is interesting to note that this description of ap-
pend facilitates its process reading . The program
can be read as: “append is a process with three
streams, Upon receiving an item on its first stream
it sends that item on its third stream and iterates.
If the first steam is closed, then the second and
third streams are connected”,

Using multiple primes allows multiple messages
to be sent or received on the same stream, as the
following example for the filtering of pairs of items
on a stream shows:

remove_pairs(In, Out) :-
Im? X, In’ 7 X, Out ! X, self;
In?7X, In’ ? Y, X =\= ¥,
Out ! X, Out’ ! ¥, self.

957

3.5 Special Notation for Arith-

metic

Arithmetic operations are quite common in ordi-
nary and concurrent logic programs. Recurrent
processes with a loop counter such as the follow-
ing are abundant:

list(N,Xs) :-
N>o0, ¥s = [NiXs'], W°
list(N* Xa');
W=0, Xs=[].

Following C conventions we allow variable names
to be suffixed by -- and ++, with the semantics
of the expression N—— given by replacing it with N
and adding the conjunctive goal §* := H-1. Using
the stream and arithmetic support, the above list
generator can be written as:

=N -1,

list(N,Xs) :-
H--= >0, X ! N, self;
N =0, Xs=[].
Similarly, we define += and ==, where N %= K

stands for ¥’
N == K stands for N’

:= N+K, and
1= N-K.

4 Implicit Logic Programs

with Inheritance

4.1 Concepts

The combination of inheritance and implicit argu-
ments proves o be both highly succinct and more
readable. For example, the program counier? of
section 2.1 can now be rewritten as:

counter2(In) + (C=0, BacklUp=0} :-
+eounter;
In 7 checkpoint, BacklUp' = €, self;
In 7 restere, C' = BackUp, self.

The new style differentiates belween global and
local (hidden) arguments and alsc avoids copying
counler's code as well as specifying the arguments
of the two recursive calls.

An implicit logic program with inheritance is
translated info a pure logic program by apply-
ing the two previously defined rules. That of Ipi
(section 2.3) and that of implicit arguments (sec-
tion 3.3). Minor changes in the rules are due.
Those changes depend on the order in which we
apply the two transformations.

958

4.2 Examples

A curious example in which Ipt gives us some in-
sight inte a program, is the redefinition of merge
(section 3.4) as:

merge(Ini,In2,0ut) :-
+append{Ini, InZ, Out);
+append({In2, Inl, Out).

which means that merging is actually trying non-
deterministically to append in both possible ways.

The following example implements a simple
lookup table as a list of key - walue pairs. The
creale predicate builds the list (named Table):

create{Table) :-
Table=[].

i.e, a new table is an empty list. The following
two predicates are not for direct usage. search iter-
ates through the list as long as the key-value pair
at the top of the list does not match a given Key.
find inherits search, and adds a termination clause.

search(Key, Table, Tablel) :-
Table ? Keyl - Valuel, Key=\=Keyl,
Tablel ! Keyl - Valuel, self.

find(Key, Table, Tablel, Ok) :-
+gearch;
Table = [],
Tablei = [J,
Ok = false('key not found’, Key).

The following check and lookup predicates in-
herit find and add a clause for the case where an
identical key was found. The replace predicate in-
herits search directly since we want a different error
message.

check{Key, Table, Tablel, Ok) :-
+find;
Table 7 Key - Value,
Tablel = Table,
Ok = trus.

lookup(Key, Valuel, Table, Tablel, Ok} :-
+Iind;
Table 7 Key - Valua,
Tablel = Table,
Valuel = Value,
Ok = true,

raplace[Kay, Value, NewValue, Table,
Tablel, Ok} :-
+search;
Table 7 Kay - OldValua,
Value = 0ldValue,
Tablel = [Key - NewValue
| Table’],
0k = true;
Table = [1,
Tablel = [],
Ok = false(’'key not found’,
Key - NewValue).

Finally insert and delefe add and remove key—
value pairs from the table.

insert(Key, Value, Table, Tablel, Ok} :-
+zearch;
Table 7 Key - Valuei,
Tablel = Table,
Ok = false{'key already exists’,

Key - Value};
Table = [1,
Tablel = [Hey - Value],
Ok = true.

delete(Hey,Value,Table, Tablet Ok} :-
+find;
Table 7 Key - Valuel,
Value = Valuail,
Tablel = Table’,
0k = true.

As a third example we demonstrate the capa-
bilifies of the inheritance mechanism in a graphi-
cal environment by rewriting the window handling
class from [ID].

The first class defines a rectangular area with
methods clear for painting the area specified by
Frame, and ask to retrieve the rectangular’s dimen-
sions. n is an input port and Frame is a four-tuple
of rectangle coordinates.

rectangular_area(In) +
(Frame = {X, ¥, W, H}) :-
In % clear,
clear_primitive(Frame},
salf;
In 7 ask(Frame),
salf.

The following class frame is a rectangular area
with some content, which means that aparl from
the methods clear and ask, one can draw the area
boundaries, and refresh it. Note that refresh is just
a combination of two previously defined methods
drew and elear. This also fixes a subtle synchro-
nization bug in Shapiro and Takeuchi [10] where
the two methods were simultaneously activated,
one by the class process and one by the indepen-
deni superclass process, which could have caused
drawing before clearing.

frame(In) + (Frame = {X,Y W, ,H}) :-
+rectangular_area;
In 7 draw,
draw_lines(Frame), self;
In 7 refrash,
galf{[clear, draw|In’]).

The final class labeled Window adds two more
methods: change, to change a label, and show to
show it. In addition we redefine the refresh method
to show the label after refreshing (we thus require a
method override mechanism). Another local vari-

able Label is added.

labeledWindow{In) + (Frame = {X,Y,W,H},
Label = default) :-

+frame;

In ? change(Label®), self;

In ? show,
show_label_primitive({Frame},
self;

In 7 refresh,
zelf([clear, draw, show|In’]}.

After we have the class labeled Window we can
subclass it to define our own window as in:

my_window{In,....) + (Frame = ...,
Label = ...} :-
+labeledWindow;
<<my_window_additional _methods>>.

The generated code derived from the semantics
of Ipi and implicit arguments is not shown here due
to space limitations.

5 Conclusions

5.1 Implementation

Both notations, implicit and Ipi, have been imple-
mented in FCP within the Logix system [11] by

959

adding language preprocessors. The Ipi preproces-
sor implements the combined notation of Section 4;
t.¢., it translates FCP with inheritance and im-
plicit arguments to FCP with implicit arguments.
Another preprocessor translates implicit FCP to
pure FCP. Each of Lthe preprocessors is about 1000
lines of code. The implicil preprocessor was first
written in FCP(:,7) [12]. That initial version was
then used to bootstrap a new version written in
the implicit notation. The [pi preprocessor is also
written using the notation of implicit arguments.

5.2 Further work

A certain form of overriding is already available
via the integration of lpi and a module system,
deseribed in Section 2.5. However, one may find
useful also the ability of a subclass’s method to
override a method of the superclass. This can be
achieved, for example, by stating that if several
methods apply, then textual order dictates prece-
dence. By appropriately placing inheritance calls,
one can achieve the desired override effect.

Additional clarity and concizseness could be
achieved by enabling an overriding methad to also
execute the overridden method (apart from do-
ing some processing of its own). This feature,
called send fo super in the object oriented termi-
nology, was easily implemented with Shapire and
Takeuchi’s scheme [10] of a subclass having also an
output stream fo its super, by putting the method
on the output stream. As an example of the send
to super feature, suppose in my window (section
4.2) we need to add functionality to the draw rou-
tine (e.g. drawing a grid on the rectangular_area),
which means averriding the current draw method.
Instead of copying the whole draw method, we
would write:

In ? draw, send_to_super,
draw_grid(Frame), my_window;

where send_to_super is a macro which copies the
necessary code from the appropriate superclass.

A redundaney problem oceurs when we want to
use multiple inheritance but the generated inher-
itance graph is not a tree. For example, classes
b and e both inherit g, and J inherits both b and
e. Applying the transformation would result in
d having a’s methods twice. This (harmless) re-
dundancy could be optimized later, e.g. by the
decision graph compilation methed [9].

Q60

5.3 Experience

The implicit arguments notation was incorporated
into Logix more than two years ago, and has been
used extensively by all members of our group. All
of us found it preferable to the notation of plain
logic programs.

Logic programs with inheritance were incorpe-
rated as an extension to the implicit arguments
notation less than a year ago. It has been used by
all of us extensively, and it has had & major effect
on our programming style. One notable effect is
that inheritance allows us to specify in a modu-
lar way processes with a dozen of arguments and
dozens of clauses, by specifying multiple methods,
each referring only to a subset of the process's ar-
guments, and using multiple inheritance to specify
the final process. This programming style meshes
well with the decision graph compilation method
to produce code which is readable, maintainable,
and efficient.

We have implemented two large systems using

Ipi, each having several thousand lines of FCP

code, and we find it hard to imagine how we could
have written them without an inheritance nota-
ticn.

6 Acknowledgments

The notation of implicit arguments was first de-
scribed in an unpublished paper by Kenneth
Kahn and the last two authors. We thank Yael
Moscowitz and Marilyn Safran for comments on
previous drafts.

References

(1] Clark, K.L., Gregory, 5., PARLOG: Parallel
FProgramming in Logie, ACM Trans. on Pro-
gramming Languages and Systems, 8(1), pp.
1-49, 1984,

[2] Davison, A., POOL: A PARLOG Object Ori-
ented Language, Imperial College.

[3] Dershowitz, N., and Jouwannaud, JI.-P.,
Rewrite Systems, in Handbook of Theoreti-
cal Computer Science, J. van Leeuwen (Ed.),
pp.243-320, Elsevier Science Publishing, 1990,

[4] Hewitt C., A Universal, modular Actor for-
malism for arfificial infelligence, Proc. Inter-

national Joint Conference on Artificial Intel-
ligenee, 1973,

(6] Hoare, C.A.R., Communicating Sequentinl
Processes, Prentice-Hall, New Jersey, 1985.

[6] INMOS Ltd., OCCAM Programming Manual,
Prentice-Hall, New Jersey, 1984,

[7] Kahn K. M., Objects - A Fresh Look. Proceed-
ings of the European Conference on Object-
Oriented Programming, Noltingham, Eng-
land, July 1989,

[8] Kahn K. M., Tribble D., Miller M. S., Bobrow
D.G;. Vulcan: Logical Concurrent Objects. in
Concurrent Prolog: Collected Papers, Vol 2,
Chapter 30, MIT press, 1987,

[9] Kliger, S., and Shapiro, E., From decision
trees to decision graps, Proc. of the 1840
North American Conf on Logic Program-
ming, S. Debray and M. Hermenegildo (Eds.),
MIT Press, pp. 97-116, 1990.

[10] Shapire E., Takeuchi A., Objeci Oriented Pro-
gramming in Concurreni Prolog. in Concur-
rent Prolog: Collected Papers, Vol 2, Chapter
29, MIT press, 1987,

[11] Silverman, W., Hirsch, M., Houri, A., and
Shapiro, E., The Logiz System User Manual,
Version {.21, in Concurrent FProlog: Collected
Papers, Vol 2, Chapter 21, MIT press, 1987,

[12] Yardeni, E., Kliger, S., and Shapiro, E., The
languages FCP(:) and FCP(:,7), New Gener-
atien Computing, 7(2-3), pp.85-87, 1990.

[13] Yoshida K., Ghikaarama; T. A'UM - A stream
based Concurrenl Object-Oricnted Language
FGCS, Vol 2, 1988,

