PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by TCOT. & 1COT, 1992

041

Concurrent Constraint Programs to Parse and Animate
Pictures of Concurrent Constraint Programs

Kenneth M. Kahn
Herox PARC
3333 Coyole Hill Road
Palo Alto, CA 94304

kahn@parc.xerox.com

Abstract

The design and implementation of a visual programming
environment for concurrent constraint programming is de-
scribed. The system is implemented in Strand. a com-
mercially available concurrent logie programming language,
Three components are now operational and are deseribed in
detail in this report; they are a perser, [ined-grained inter-
preter, and animator of Pictorial Janus programs, Janus,
a concurrent comsiraint programming language designed to
support distributed computation, has much in commeon with
concurrent logic programming languages such as FGHC. The
design of a visual syntax for Janus called Pictorial Janus is
described in [KKS90].

Wisual progrems can be created wsing any illustration or
CAD tool capable of producing a PostScript description of
the drawing. The Pictorial Janus Parser interprets traces of
PostScript executions and produces a textual clausal version
of the parsed picture which can be converted to Strand and
run as an ordinary Strand program.

The parser can also produce input to the Pictorial Janus In-
terpreter. The interpreter accepis as input & lerm representing
the program clanses and query. This tezm is annotated with
the colors, shapes, fonts, ete, used in the original drawing,
It spawns recurrent agents corresponding to each agent (i.c.
process or goal), rule (clause), message (term), port (vari-
able), link (eguality relation), and channel. These agents
interactto do the equivalent of elause reduction. The agents
also produce streams of major events (e.g. that some mes-
sage meved and rescaled to the location and size of some
other message). These streams are merged and fed into the
Pictorial Janus Animator,

The animator generates a stream of animation frames and
associated sounds. The resulting frames can then be printed;
more importantly, they can be converted to a raster format
and recorded on video tape or animated on a work station.
The colors, shape, fonts, line weiglits, used in the original
drawing are preserved so that the animation displays these
elements in the same graphical terms as they were conceived
and ereated.

Various lessons were learned in the process of constructing
the system, ranging from pearallel performance issues, to
deadlock, to trade-offs between the use of terms and agents,

1 Introduction

This paper presents a software architecre in which concur-
rent constraint (or logic) programming plays a predominant
role, The structore of this software #nd the programming
techniques used are described, and problems that arose and
the resulting redesigns are discussed. This paper is primar-
ily about a large concurrent logic program and the fact that
the program is one which supports a programming environ-
ment for concurrent constraint programming is unimportant
to this paper. The purpose of this paper is rather o re-
late experiences in writing a large, complex, and somewhat
unusual application in a concurrent logic programming lan-
guage. Much of the discussion centers around difficulties
in applying, adapting, and choosing between well-known
concurrent logic programming techniques. Other papers are
in progress which presen: the visual programming environ-
ment,

The software described is part of a **grand plan™ in which
parsers, editors, source wansformers, visvalizers, animators,
and debuggers all work together to support a programmer
in constructing, maintaining, and understanding concurrent
comstraint programs in a completely visual manner. This
work is driven by the belief that such an environment can
have s dramatic impact on the way in which software is
developed.

The grand plan is o support whole families of concurrent
constraint languages, including the familiar Herbrand family,
which includes FGHC [Ued&5], Strand [FT89], and Andorra
Prolog [HIH]. We also anticipate supporting constraint sys-
tems other than the traditional Herbrand constraints of logic
programming. Initially the system is being built to support
only a pictorial syntax for Janus [SKL90], a concurrent con-
straint language designed 1o address some of the needs of
distributed computing. Janus most closely resembles DOC
[Hir86], Strand, and FGHC.

An important aspect of the pictorial syntax of Janus is that
it is a complets syntax (i.e, anything expressible in textual
Tanus is expressible in Pictorial Janus) and that the syntax
is based upon the fopolegy of pictures. For example, a port
{ie. a varisble occurrence) is represented by any closed
contour which has no other elements of the picture inside, A
programmer is free to choose any size, color, shape, ete. for
the elements of the program. The syntax of Pictorial Janus
is discussed in greater detail in [KS90]. A simple example

944

pragramn that appends two lists is shown in Figure 1.

Computation is visualized as the reduction of asyn-
chronous agents. The rules for each sgent are inside it.
If at least cne of these rules can match, then the agent re-
duces. A matching rule expands and its “*ask™ deviees (its
head and guard) match the corresponding devices attached
to the agent. The rule is then removed, and its body remains
connected to the pre-existing configuration by links. These
links represent equality relations and are collapsed bringing
the ports at each end together.

The matching of an append agent with its recursive rule
is shown in Figure 2. The matching rule contour expands
to match the comtour of the agent. The messages and ports
rescale and translate to match the corresponding ports and
messages of the agents. In Figure 3 the commitment of &
rule is depicted. It shows the agent and the matched ¢le-
ments dissolving away leaving the configurationin the body
of the rale connected to the configuration of the compu-
tation. Figure 4 shows changes which have no scmantic
meaning and are performed to tidy up the picture, Links in
the configuration establish equality relations between ports
and ean be shrunk to zero, thereby bringing the equivalent
ports wgether. Newly spawned agents arc scaled.

2 Pictorial Janus Systemn Architecture

Figure 5 attempts to capture the essential modules and data
of a complete Pictorial Janus programming environment. It
depicts the various processing stages which take Pictorial
Janus program drawings to either a textual form for ordinary
compilation or 1o animations of its execution.

Source programs are drawings in PostScript. PostScript is
well-suited for this because of its ability to describe curves,
colors, fonts, ete. in a flexible and general manner, Since
PostSeript is a common page description language for laser
printers, every modern illustration or computer-aided design
program is capable of producing & PostSeript description of
a drawing. This is analogous to the situation in textual pro-
gramming where the text file for a program can be produced
by any texteditor. An alternativeto PostScript input yet to be
explored is & custom strecthure<ditor that only allows the con-
struction of syntactically correct pictorial programs and can
maintain & semantic representation of the program. Another
source of PostSeript is from automatic tracing tools such as
Streamline from Adobe which converts scanned images of
hand-made drawings into PostSeript strokes.

The problem of discovering the underlying program from
a PostScript description is complicated by the fact that
PostScrnipt is & full programming language, This is analo-
goes to the sinuation in conventional languages with solrces
which require pre-processing. Such sources are not parsed
by a compiler; instead the cutput of a pre-processor rin on
those sources is. We handle this by executing the PostSeript
with an ordinary PostScripl interpreler in an environment
which redefines the graphical primitives that draw strokes,

rule(aS7(272,485,308,521),
append(port(p61(bex(273,489,276,492)}),
port(p59(box(276,516,279,519))),
port(p63(box(309,501,312,504)))),

[equal(c6(312,504,324,516)
port(p63(box(309,501,312,504))),
$(port(p65(box(324,516,327,519))))),

equal(m55(262,488,277,493),
port(p61{box(273,489,276,492))),
[,

[equal(15(280,518,324,518),
port(p59{box(276,516,279,519))),
port(p65(box(324,516,327,519)))1,
1]

Figure : Annotated Janus Parse of the base case of Append

show text, etc. 1o, instead, print a trace of their calls to a file. -

The Pictorial Janus Parser is the module which accepis
such traces of calls to PostScript graphical primitives and
produces a parse in a format called **annotated Janus™. This
formet captures the parse trec of the program picture and
maintains correspondences with the original graphical ap-
pearances. These correspondences consist of anmotations
which give the animator guidance in choosing the appear-
ance, position, and scale of various program elements. They
are ignored if the program is simply to be compiled and
executed without the production of an animated trace. An-
notated Janus is the “*lingua france” of the system. It can be
produced by the parser, by a visualizer from textual Janus
to Pictorial Janus, by a custom structare editor, or by a pro-
gram transformationtool, It can be used by visual debuggers,
animators, or program transformation tools, or it can be con-
verted to textual Janus for ordinary compilation and execu-
tion. Figure 6 contains the snnotated Janus for produced by
parsing the base case rule of append in Figure 1. {Constants
such as “'p61™ also name PostScript drawing procedures.)

A central component of the system is & fine-grained in-
terpreter for annotated Janus. As it interprets the program
it produces a stream of events describing activities for each
element of the computation (i.e. each agent, rule, port, chan-
nel, message, eic.). The evenl descriptions include a start
and end time. By default, the interpreter performs every
reduction as soon as possible. This corresponds 1o a maxi-
mally concurrent scheduler. The scheduler can currently be
customized 1o some extent. It can follow a schedule based
upon the trace of real execution on & parallel machine or
network.

The third major compenent is the Pictoriel Janus Anima-
tor, It accepts the stream of event deseriptions from the
fine-grained interpreter and some layout control and pro-
duces PostScript deseribing each individual frame. This
PostSeript can be printed, converted to raster for viewing or
video taping, or converted to film.

Other componenis of the system such as the **visualizer™
which converts textusl Janus to Pictorial Janus and a spe-

945

First list followed by second

Figure 1: A Simple Example Program to Append Lists

HO— -

Figure 2: The Animation of a Sucessful Rule Match

e

Figure 3: The Animation of a Rule Commitment

Figure 4: The Animation of Links Shrinking and Agents Rescaling

946

Figure 5: Owverall Architecture of the System

cialized pen-based ediior for Pictorial Janus are under devel-
opment and will be discussed in future papers. Additional
components such as an interactive visual debugger, a pro-
gram transformation, and a partial evaluation system based
upon Pictorial Janus are only in the planning stages.

The three major components (the parser, interpreter and
animator) are operational prototypes and are discussed in
Further detail in the rest of this paper.

3 Pictorial Janus Parser

The parser begins with an unordered set of line and curve
scgments and located text which is the trace from executing
a PostSeript deseription of a Pictorial Janus drawing (see
Figure 7. These elements are analogous to the “*alphabet™
of the language. The first phase of the parser is a sort of
*‘tokenizing” where abutting curves are joined, closed curves
detected, and arrows recognized. As withmost of the phases,
some tolerance for sloppy drawings is allowed.

To reduce the complexity of further operations, a contain-
ment tree of the elements is constructed, The containment
tre¢ assotiates with each closed curve the sets of closed
curves directly contained within, as well as the end points
of open curves and arrows and the text directly contained
within. Since many parsing decisions depend upon which

ps(stroke 4,
[moveto{496,483),
curveto{496,487,485,490,472,490),
curveto(459,490,448 487,448, 453),
curveto(448,479,459,475,472,475),
curveto(485,475,496,479,496,483)],
box(448,475,496,490),
[eafill setrgbeolor(1,1,1) setdevicellnewldth(1) .

Figure 7: Sample Trace of PostScript Execution

elements are closest to other elemenis in the same contain-
ment level, the containment tree reduces the amount of search
necessary.

The parse proceeds by a series of phases,

o [dentification of Ports. A port is defined as a closed
contour with nothing inside of it. Once the containment
tree is completely built this is a trivial test.

o Classification of Arrows. Arrows are used for two pur-
poses in Pictorial Janus: channels between ports (ie.
distinguishing between the asker and teller occurences
of variables) and the association of agents with rules.
Once ports are identified it is casy to distinguish the two
cases since channels are arrows between ports while
definition arrows connect agents,

» Artachment of Ports. Pors cannot be free-standing;
they must be attached to either an agent contowr, a rule
contour, a message contour, or the head of an channel
arrow. Essentially the port attachs to the nearest syntac-
tically correct element. This phase also identifies which
ports are the internal ports of messages. Messages are
identified by having only an internal port and possibly
a label inside.

¢ Conneciing Links. Open curves depict links which con-
nect ports. This phase determines which port is closest
to the end of a link. The connecting port can be up or
down one containment level from the level of the link
end.

After these phases have completed, the parser can gen-
erate Annotated Janus or textual Janus by descending from
the top node in the containment tree and collecting informa-
tion. Agents are distinguished from rules here by allemnating
containment levels (i.e. the top level contains agents which
contains rules which contain agents and so on). Ports of
agents, rules and messages are collected into a list by going
clockwise from a distinguished port.

Early versions of the parser represented picture clements
by terms. Initially, little was known about the terms, 50 they
contained many unbound logic varjables for their role, their
attached ports, their label, etc.. Lists posed problems since it
can't be kmown beforehand how many clements they have.
If tails are left uninstantiated then at the phase where no mare
elements can be added, some process must find these tails and
bind them to the empty list. The lists are constructed in the
order the elements were discovered; another logic varable
was needed o hold the sorted list. This implementation
became more cumbersome and was forced to rely upon some
questionable primitives.

Because of these problems, the parser was completely
rewrillen to represent picture elements by recurrent agents
(processes). Lists are no longer a problem since agents can
simply recur with a different list. Soring the list is equally
straight forward.

This vse of recurrent agents is an object-oriented pro-
gramming style [STE3]. Unlike waditional object-oriented
programuming systems, however, the underlying fexibility of
eoncurrent logic programming can be used to incrementally
refine the type or class of elements. This might be called
"*object-oriented recognition”. Closed contours, for exam-
ple, begin as generic “'vanilla” nodes. As relationships are
discovered, a node may specializeitselfto a port or non-port.
Figure 8 is a skeich of the code for determining whether a
node is a port or not.

Similarly non-ports may be further specialized as mes-
sages, rule contowrs, or agent contours depending upon their
local relationships. The locality in this case is berween a con-
tour and the elements directly contained within and elements
conteined in the same contour,

In most object-oriented systems an instance cannot easily
{or at all) change 10 be the instance of another class, even if

947
node(In,Contents, State) -
In = [identify _ports[ln’],
Contents =[] |
port(In’State).

node(In, Contents State) :-
In = [identify_ports|In],
Contents £ [] |
non_port(In’,Contents, State).

Figure 8: An Example of Incremental Class Refinement

that ¢lass is subclass of the original class.

4 Pictorial Janus Interpreter

A detailed trace of every reduction in a computation is needed
by the snimator. A meta-level interpreter is wo coarse for
this purpose. Instead a fine-grained interpreter which can
report events such as each subterm match 15 needed,

The fine-grained interpreter of Pictorial Janus iz con-
structed out of recurrent agents. Agents are spawned which
represent cach clement of a program or configuration {pro-
grams and configurations are treated identically). There are
agents for each rule {clause), port (variable), message (term),
link (equality relation), channel (asker and teller pairs) and
agenl (process). They emulate the ordinary execution at a
message-passing level, An agent reduces by spawning an
arbiter and sending & message to cach of its rules. The rules
reduce by sending maich messages to ecach of their ports with
streams to the comesponding ports of the agent. If all of the
ports respond with a possible match then the rule sends a
message 1o the arbiter, The first rule to send a message to
the arbiter then commits and the others eliminate themselves,
A committing rule spawns new agent, port, rule, message,
channe] and link agents,

The agents of the fine-grained interpreter also generate
a stream of events. For example, when a rule commits it
produces two event descriptions. The first indicates that the
rule contour should ansform to match the contour of the
agent it is reducing. As with all event descriptions, it also
indicates the start and stop time for this activity. These times
are computed based upon a specification of the scheduler,
The second event describes the removel of the rule. All the
event streams are merged o produce a time-ordered stream
of events.

One problem with the fine-grained interpreter is how it
interprets pictorial programs which deadlock. Each rule
agent suspends, waiting to hear from its ports how the match
wenl. A port in hun passes the match request to its attached
message. The message asks the commesponding port of the
reducing agent for a deseription of its attached message.
If there is no message there then the whole eollection of
rule, message and port agents suspend until a message is

948

connected to the port. In a deadlocked computation there
never will be an attached message. These suspended agents
are unable to prodece events, which in tarn prevents the
ordered merge process from producing events; the whole
production of the stream of events is cut off,

In Strand it is possible to work around this by relying upon
the questionable *'idle™ guard that suspends until the whole
system is idle. The message agents waiting for a response
from the corresponding message which are also part of an
idle system can then proceed to return a match failure or
signal an exception and the interpretation can proceed. It
is possible to detect deadlock in & more principled manner
[SWESES], but the price is a significantly more complex and
verbose program.

A related problem is controlling the arbiter between com-
peting rule commitments. For example, a merge agent with
inputs on both incoming ports can reduce with either rule,
Which rule is chosen depends wpon which one is the first
to get a message 1o the arbiter of the reduction. Conse-
quenily, the fine-grained interpreter selects between compet-
ing clauses depending upon the scheduler of the underlying
Strand implementation. When run on a single processor this
means that the same nile is always chosen. To make more in-
teresting animations a random number generator was needed
te remove these biases.

5 Pictorial Janus Animator

The Pictorial Janus Animator consumes the stream of cvents
produced by the fine-grained interpreter. It also can be given
layout and viewpoint instructions. It produces a stream of
animation frames in PosiSeript. The animator currently mod-
els space as 4 sequence of ten planes. The graphics of lower
planes can be obscured by the graphics of higher planes. The
planes are infinite in extent but only & portion is “viewed"
at any one me.

The animator accepts event descriptions describing events
whose times are described by real numbers. Given a frame
rate (i.e. a sampling rate), these are converted to frame nurn-
bers. The animator is like a discrete-time simulator where
on every “‘tick"” every component needs to compute its next
state.

For cach kind of event, the animator has methods for de-
picting it. A typical method might ransform one element
w gradually match another {(currently the transform involves
translation, scaling, and rotation), For example, a message
matches another message by incrementally changing its po-
siion and size until it has the same bounding box as the
other message. The other message may be changing and
the animator needs 1o adjust the ransformation aceordingly.
Furthermore, the method must maintain various constraints
on the matching message contour so that it remains’in con-
tact with other elements. In order for a method to transform,
an element based upon the position of others, the animator
maintaing ransformation **histories” for each picture ele-

ment. The history of a visual element 15 & list of iransform
matrices, one for each frame. A frame is constoucted by
selecting from each history the appropriate transformation
to epply to the appearance of each element.

The histories are also used to deal with graphical interac-
tioms between elements. For example, if a port is to transform
itself vo match another port which itself is moving, then on
cach frame the position of the wracking port is a function of
where il is, where the other port is, and the amount of time
before they mest. An interesting alternative iz that it is a
function, not of where the other port is on esch frame, but
where it will be at the time of the meeting. As illustrated
in Figure 9, the former corresponds to one port chasing an-
other, while the later is more like a rendezvous, Generally,
the rendezvous Jooks better but it requires ““kmowledge of
the future”. With care it is possible to avoid cycles of such
requirements of future knowledge that would lead to 2 dead-
lock.

The first time the animator was run on a large problem
{i.e. one requiring several million reductions), it ran out of
memery. Increasing the amount of available memory to
30 or 40 megabytes helped but then it ran out again for
somewhat larger tasks, The cause of this kind of problem
is very difficult 1o rack down. After much experimentation
it was discovered that the problem was that agents inside
the animator were producing information faster than other
agents were able to consume it. Memory was being used
1o “"buffer” the messages from the producers to the lagging
COTSUMETS.

This is a well-known problem and there is 2 well-known
concurrent logic programming technique called *‘bounded
buffers” [TF87] for dealing with it. The simple case of a
single producer and a single consumer is rare in the animator
and a more complex variant was needed to deal with con-
sumers of streams that have multiple producers (typically
combined by an ordered merge). This fixed the problem but
significantly increased the complexity of the source code.
Many subtle bugs cropped up which evenmally were race-
able to some piece of code not following the bounded-buffer
protocol correctly. These were hard 1o debug becuuse they
resulted in deadlocks of thousands of agents.

Another shortcoming of using bounded-buffers is thatitis
difficult to tune for different language implementations and
hardware platforms. Under some schedulers all this com-
plexity is unneeded because the scheduler runs consumers
first. To both simplify the code and incresse its flexibility,
the bounded buffer technique was sbandoned and instead
cach agent was programmed o know the animation frame
number it is contributing to and which was the Iast frame o
be completed. Producers are now controlled by an integer
indicating how many frames ahead they are allowed to pro-
ceed. If this is set to a number larger than the total number of
frames in the animation, then buffering is effectively tumed
off. The use of frame numbers 1o control producers is casy
to generalize (o other problem domains such as simulation,
but it is not as general as the bounded-buffer technigue.

949

: :
H ii B it
i i1 P
: A £ ce ::

d

hrmrmas

Meeting A moves iowards B who moves fowanis C

anmn mmmy

H
H
:
H
H
H
:
H
H
H
i

H
H
H
H
:
i

R

s

g

P —— T
Lssnrassrmasansmnamunnd

Rendizvous A mover towards where B will be af the end and B mowes to where © will be af the nd

Figure 9: An Illustration of a Chase in Contrast to a Rendezvous

When bounded buffers were first introduced the enimator
would deadlock sometimes. Afier a few days of investiga-
tion it rurned out that the problem was an interaction with
the method for having two ports meet. Recall that there are
two alternatives: *‘chase” and *‘rendezvous”. Rendezvous
requires knowledge of where the other port will be at the end
of the event. Tt tumed out that the system was deadlocking
whenever the buffer size was smaller than the number of
frames needed to animate a port meeting. Once discovered
it was easy to conditionalize the meet method to use the ren-
dezvous style if the buffers are large enough and otherwise
use the chase style.

Concwrent logic programs can be written without care-
fully ordering events since the basic computational mecha-
nism reorders events based upon data dependencies. This
greatly simplified the construction of both the fine-grained
interpreter and the animator. Each event can be handled
independently regardless of whether the data it needs from
other concurrent activities has been produced. In a sequen-
tial language the programs would have to have been carefully
constructed so that, say, the agent contour changes are com-
puted before the dependent changes on their pors.

6 Preliminary Performance Results

The parser, interpreter and animator are implemented in over
11,000 lines of Strand code. The only tmportant component
in C is a routine which finds the closest point on & Bezier
curve to another point. A fypical parse takes a few CPU
minutes {on a SUN Sparc 2), The interpreter typically takes
a few CPU minutes as well. The animator typically takes
tens of CPU minutes {10 to 20 million reductions is not
LR OTTTMOTL).

The sequential execution of the system cannot be sped up
much by optimizing the Strand code or replacing it with C.
For the parser nearly half of its time is spent in the C routine
for finding the closest point to & curve. The Strand code

of the animator takes a third of the total time (o produce
&n animation; the PostScript rendering o raster takes up the
rest.

It would seem that parallel execution should speed up
the system significantly. Preliminary results have, however,
been disappointing. Possible reasons include:

o Communication costs. The coding style used strived
for maximal parallelism but little attention was paid 1o
the amount of information passed between agents. On
good shared-memory implementation, this would not
be a factor. There are many ceses where.much of this
eommunication can be programmed awsy. For exam-
ple, rather than communicate large shared structures
between agents, each processing node could have iis
private copy and the messages between nodes would
just contain tokens referring o elements of these strue-
tures. This rewriting has yet to be done. It would alsobe
counter to the dream of concurrent constraint program-
ming (including the special case of concurrent logic
programming) that straight-forward high-level portable
programs can run efficiently in different environments
without major revision. Some rewriting has been dome
to enable experimentation with parallelism. For exam-
ple, the outpat of the animator previously was a large
PostScript file and now is a set of files, ene for each
frame.

o Agentio Processor mappings. Experiments to datchave
used agent-to-processor mapping annotations. While &
few different mappings have been tried it is possible
that a good one exists but has yet to be discovered. No
experiments using aload balancing schedulerhave been
tried.

Speedups of a factor of 2 to 3 were easily obtained by
spawning Unix-level processes to convert PostScript to raster
format on separate processors in parallel.

950

7 Conclusions and Future Work

The building of a large prototype visual programming en-
vironment in 8 concurrent logic programming language was
described. The architecture was presented and some expe-
riences and lessons learned were described. These lessons
range from the rade-offs between using messages (terms)
and recurrent agents, lo difficulties with producers getting
toufnrahsadofmnsumm.mdnalingwirhdeﬂmh

For sequential executions the overhead of using a concur-
rent logic programming langeage was small, For parallel
executions on distributed memory machines, speedups are
not readily available and appear 1o require program rewrit-
ing andfor very clever dismributions of agents and data o
PrOCESSOTS,

The system is under development. Current plans include
extending the animator to deal with both spatial and temporal
gbstractions. The animator needs to desl better with the
layout of clements. The parser needs o be revised to deal
robustly with hand-drawn input. Support for primitives and
foreign procedure calls are needed, The interpreter needs
to be able to accept general scheduler specifications, The
animator is currently able o produce a simple sound track
5 ized with the animation. The sounds depend upon
the kind of activities occurring. This should be extended
to differentiate between different elements involved in the
activities,

A very challenging direction for foture development is to
build a *‘real-time"” version of the system that the user can
influence as the computation proceeds. This could lead to
very poweriul debugging tools. It could also be the basis
for user interfaces that are simultaneously interactive visual
programs. Such a system would need to run on platforms
capable of many milliens of reductions every second,

8 Acknowledgements

The design of this system benefited from discussions with
Vijay Saraswat and Volker Haarslev. [am grateful to Mary
Dalrymple, Vijay Saraswat, and Markus Fromherz for com-
mients on earlicr drafis of this paper.

References
[FT89] lan Foster and Stephen Taylor. Strand: A practi-
cal paralle]l programming language. In Proceed.-
ings of the North American Logic Programming
Conference, 1989,

[Hir86] Masahire Hirata, Programming language doc
and its self-description, or, x=x considered
harmful. In 3d Conference Proceedings of Japan
Society for Software Science and Technology,
pages 69-72, 1986,

Seif Haridi and Sverker Janson. Kernel andorra
prolog and its computation model. In Proceed-
ings of the Seventh International Conference on
Logic Programming, June 1990,

Kenneth M. Kahn and Vijay A. Saraswat. Com-
plete visualizations of concurrent programs and
their executions. In Proceedings of the IEEE
Visual Language Workshap, Qctober 10940,

Vijay A. Saraswat, Kenneth Kahn, and Jacob
Levy. Janus—A step towards distributed con-
straint programming, In Proceedings of the
North American Logic Programming Confer-
ence, MIT Press, October 19940,

Ehud Shapiro and A. Takeuchi. Object oriented
programming in concurrent prolog. New Gen-
eration Computing, 1:25-48, 1983,

[SWESEE] Vijay A. Saraswat, David Weinbaum, Ken
Kahn, and Ehud Shapiro. Detecting stable prop-
ertics of networks in concurrent Jogic program-
ming languages. In Proceedings of the Sev-
enth Annwal ACM Symposium on Principles of
Distributed Computing (PODC 88), pages 210~
222, August 1988,

(HI%0]

[KS90]

[SKL90]

[STE3]

[TF87] A, Takeuchi and K. Furukawa. Concurrent
Prolog: Collected Papers, volume I, chapter
Bounded Buffer Communication in Conewrrent
Prolog, pages 464-476. The MIT Press, 1987,

[Ued85] K. Ueda. Guarded Homn Clauses, Techmical

Report TR-103, ICOT, June 1985,

