PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT, © ICOT, 1992

1066

Reasoning With Constraints

Catherine Lassez

IBM T.J. Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598, USA
lassez@watson.ibm.com

Constraints are key elements in areas such as Opera-
tions Research, Constructive Solid Geometry, Robotics,
CAD/CAM, Spreadsheets, Model-based Reasoning and
Al Languages have been designed specifically to solve
constrainis problems. More recently, the reverse prob-
lem of designing languages that use constraints as prim-
itive elements has been addressed. Conziraints handling
techniques have been incorporated in programming lan-
guages and systems like CLP(R), CHIP, CAL, CIL, P1o-
log III, 2LF, BNR-Prolog, Mathematica and Trilogy.

In the rule-based context of Logic Programming, the
CLP scheme [§] provides a formal framework to reason
with and aboul constraints. The key idea is that the
important semantic properties of Horn clawses do not
depend on the Herbrand Universe or Unifieation. These
semantic properties and their associated programming
methodology hold for arithmelic constraints and solv-
ability {(and in many other domains including strings,
graphs, booleans,...). The CLP scheme is a main exam-
ple of the use of constraints as the primitive building
blocks of a class of programming languages, since logic
formulae can be themselves considered as constraints.

In the same spirit constraints have been introduced
in committed choice languages in Maher [14], and in the
work of Saraswat [15), and in Database querying lan-
gnages by Kanellakis, Kuper and Revesz [8]. The link
between classical Al work on constraints, and Logic Pro-
gramming has been described by van Hentenryek [17].

Not surprisingly there are many different paradigms
reflecting the integration of constraints and languages.
The main differences come from the aims of the lan-
guage: general purpose programming language, database
or knowledge based query language, or a tool for problem
solving. In mathematical programming the focus is on
oplimizgation, in artificial intelligence the focus is on con-
straint salisfaction and constrainl propagation, in pro-
gram verification the focus is on solvability. This should
be reflected in the design of appropriats langnages, but
constraint programming should also have its own foecus
and theory.

We have developped a general framework for a sys-
tematic treatment of specific domains of constraints. We
recall that a logie formula is viewed as an implicit and

concise representation of its set of logical consequences
and that the answer to a query @ is a set of substitutions
which establish a relationship between the variables of (),
salisfied if and only if @ is & logical consequence of the
formula. The key point is that a single algorithm, Resolu-
tion, is sufficient to answer all queries. These properties
of logic formmlae have counterparts in other domains. In
particular, Tarski's theorem for quantifier elimination in
closed flelds[16] establishes that an arithmetic formula
can be viewed as representing the zet of all its logical
consequences, that is the set of all arithmetic formulae
it entails. Furthermore, a single algorithm, Quantifier
Eliminalion, is required in analogy with logic formulae
and resolution,

At the design and implementation level, however, the
problems are far more difficult than for logic formulae.
To try and cireumvent these problems one must make
heavy use of results and algorithms from symbalic com-
putation, operations research, computational geometry
etc... Also, as in the case of logic formulae, we have
to sacrifice generality to achieve acceptable efficiency by
carefully selecting sets of constraints for which suitable
algorithms can be found.

Parametric queries Applying the paradigmatic as-
pects of reasoning with logic formulae to linear arith-
metic, we have that:

* 2 sel of constraints is viewed as an implicit repre-
sentation of the set of all constraints it enfails

» there is a query system such that an answer to a
query @ is a relationship that is satisfied if and
only if the query is entailed by the system.

e thers exists a single algotithm to answer all queries.

Given a set S of arithmetic constraints as a conjunc-
tion of linear equalities, inequalities and negative con-
straints (disjunctions of inequations), we define a para-
metric query [T] as:

B ¥y, 2. 8 = anm + apTs + .2
h‘R{aliaﬂl"‘lﬁ]?

3111, v - P

where & is the set of constraints in store and & is a set

of linear relations on the parameters @, ag,..., 5

Paramelric queries provide a general formalism to ex-
teact information from sets of constraints and to express
standard operations. For instance:

1. is § solvable? If not, what are the causes of unsolv-
ahility?

. does S contains redundancies or implicit equalities?
. 18 5 equivalent te S'7
. i5 it true that = = 2 is implied by 57

. does there exist o such that z = o is implied by 57

= = B S T R L]

. does there exist a linear relation ez 4+ fy+... =7
implied by 57

7. does there exist oy, oq, ... such that
S=2mztogy...<fand e =20, -17

The sclvability query is typical of linear programming
and corresponds to the first phase of the Simplex method.
Finding the causes of unsolvahility is a typical problem
of constraints manipulation system where the constraints
in slore can be modified to restore solvability using feed-
back information pmde:d I:::.r the solver. Qunries 2 and
3 both address the problem of constraint representa-
tion. Redundancy is a major factor of complexity in
constraints processing and the removal of redundancies
and the detection of implicit equalities are key steps in
building a suitable canonical representation for the con-
straints [10] [12). Queries 4 and 5 are classic Constraint
Salisfaction Problems (CSF) and queries 6 and 7 are
generalization of CSP to linear relations: variables are
bound to satisfy given linear relations instead of simply
values.

A priori, there does not seem to be any real con-
nections between these various queries. However, they
can all be expressed as parametric queries which ask un-
der what conditions on the parameters oy, a9, .. ., g, the
constraint in the query is implied by the constraints in
store. By varying the parameters, specific queries can be
formulated. For instance,

e 15 bound o g specific value al
oy, v, . .., B, 5k S = oy F gz +. .. = Fwith
o =lay=0,..,A=a

® iz T ground!
same as above but with # unconstrained.

& does § implies 2z, + 3z, <07
as above with oy = 2,05 =3,..., =10,

o what are the constrainis implied by the projection
af & the {zy, ya}-plane?
All parameters except oy, o, J set to 0

1067

The test for solvability and the classic optimization praob-
lem can also be expressed in this way:

o is 5 selvable?
as above with all paramebers o, aq,...
except § = 0.
(by Fourier’s theorem, which states that a set of
constraints is solvable if and only if the elimination
of all the variables results in a tautology)

set Lo O

o what are the upper and lower bounds of f = 2, +
s+ 23?
as above with &y = 1,a3 = 1,3 = 1, all other
parameters are set to O except § > 0. The an-
swer gives the upper and lower bounds for 7 that
correspond to the minimuem and maximun of £

Parametric gqueries generalize logic programming queries
which ask if there exists an assignment of values to the
variables in the guery so that the query becomes a logical
consequence of the program clauses. They also generalize
CSI's queries which are restricted to constraints of the
lype z = a.

We now must address the problem of finding a finite
representation for the answers to the gueries. Paramet-
ric queries are more complex than simple conjunctions of
constraints as they involve universal quantifiers, non lin-
earity and implication, Hewever by using a result linked
to duality in linear programming [8], we can reduce the
problem to a case of conjunction of linear constraints.
The Subsumption Theorem states that a conséreint is
implied by a set of conslraints 5 iff it is a grasi-linear
combination of constraints in 5. A quasi-linear combina-
tion of constraints is a positive linear combination with
the addition of a positive constant on the righ-hand side.
For instance, let 5 be the set

{2243y —2<L, z—y+2: <2, z2—y+: <0}
and € be the query
do, §\ ¥z, y, 5= az + fy < 17

The following relations express that the constraint in §
is a quasi-linear combination of the constraints in S,

2A1+}I']+:’I3=ﬂ'
Bh—h—dg=4
—A;+2A=+Aa=ﬂ
')'1‘4'2-}-2-"?':1

A 20, 20A209>0

where the A,'s are the mullipliers of the constraints in
5. It is from this simpler formulation that variables are
eliminated.

Variable elimination is the key operation to obtain
answers to queries. It plays the role of resclution in Logic
Programming. With inequalities, the complexity prob-
lems are far more severe than in Logic Programming,
even in the restricted domein of conjunctions of positive
linear constraints.

1068

Fourier’s method The basic algorithm is Fourier's[2].
The severity of the problem is illustrated by the table
below:

Number of Number of Actual number of
variables constrainis constrainis

eliminated generated needed

4] 32 18

1 226 40

2 12,744 1]

3 39,730,028 15

1 390.417,582,083,242 2

The middle column gives the sige of the output of Fourier’s
method to eliminate between 1 to 4 variables from an ini-
tial set of 32 constraints. The right most column gives
the minimum size of equivalent outputs. Fourier’s elim-
inaticn is in fact doubly exponential as it generates an
enormous amount of redundant information. Even if we
remove redundancy on the fly, we are still [eft with ex
ponential size for intermediate computation and poten-
tial exponential size for output. To solve this problem,
one must look for output bound algorithms (an impor-
tant area of study in computational geomeiry), that will
guarantee an output when its size is small, bypassing the
problem of intermediate swell, Alsc in the case where
the size of the output is unmanageable, there is no point
in computing it. However, we may sacrifice completeness
and search for an approximation of reasonable size. That
brings us back to avolding intermediate swell.

The extreme points method This method, derived
from the formalism of parametric queries, is interesting
as it shows that variable elimination can be viewed as
a straightforward generalization of a linear program in
its specification and as a generalization of the simplex
in its execution. Let S = Az < b and let V be the set
of variables to be eliminated, the associated generalised
linear program GLP is defined as:

extr(B{A))
J L Adqai, = oy
F= :
LA, =y
Zhby=g
[T Ay, =0
A=4¢ ¥ -}':‘ﬂi.: =0
Yh=1
Ai=0

where ezlr denotes the set of extreme points. A repre-
sents the conditions to be satisfied by a combination of
constraints of § that eliminates the required variables.
The normalization of the A's ensures that A is a poly-
tope. extr(®B(A)), sclutions of GLP, determine » finite

set of constraints which defines the projection of 5. The

coordinates of the extreme points of ${A) are the coef-
ficients of a set of constraints that define the projection.

The objective function in the usual linear program can
be viewed as a mapping from B* to R, the image of the

polyhedion defined by the constraints being an interval
in R. The optimization consists in finding a maximum
or a minimum, that is one of the extreme poinis of the

interval, In a GLP, ithe objective function represents a

mapping from A* te A™ and instead of looking for one

extreme point, we leok for the set of all extreme poiats.

At the operational level, we can execute this GLP by

generalizing the simplex meithod. The extreme points of
F(A) are images of extreme points of A. So we com-

pute the set of extreme points of A, map them by ¢ and

eliminate the images which are not extreme points. It

is important to note that although the extreme points

method is better that Fourier in general because it elim-"
inates the costly intermediate steps, there are still two

main problems: the computation of the extreme points

of & can be extremely costly even when the size of the

projection is small and also the method produces a highly

redundant output [1]. -

The convex hull method Variable elimination has
long been treated as algebraic manipulations based on
the syntax of the constraints rather than their semantics.
Fourier's Procedure and EPM are no exceptions. Conse-
quently, the complexity of these methods is tied to the
initial polyhedral set instead of to the projection itselfl.
Quantifier elimination can also be viewed as an operation
of projection. Exploiting this remark in a systematic way
leads to more output bound algosithms which guarantee
an output when its size is reasonable and an approxima-
tion otherwise [9]. In the bounded case, the idea is triv-
ial: by running linear programs we compute constraints
whose supporting hyperplanes bound both the polytope
to be projected and its projection. The traces of these
hyperplanes on the projection space provide an approxi-
mation containing the projection. At the same time the
extreme points provided by the linear programs project
on points of the projection. The convex hull of these
points is a polytope that is incduded in the projection.
lierating this process leads to the projection., Whether
we have an output bound algorithm or not will however
depend on the choice of points. The difficulties that re-
main are that we de not want te make any assumption
on the input pelyhedral set which can be bounded ar
not, full dimensional or not, redundant or not, empty
or not, Standard linear programming techniques can be
used to determine solvability and to transform the input
if required into a set of equations defining its affine hull
and a set of inequalities defining a full-dimensional poly-
hedral set in a smaller space. A straightforward variable
elimination in the set of equations gives the affine hull
of the projection which will be part of the fnal output,

This simplification based on geometrical considerations
allows us to eliminate as many variables as possible by
using only linear programming and gaussian elimination
before getiing into the costly part of elimination,

In the bounded case, the algorithm works dizectly
on the input constraints. The projection is computed
by successive refinements of an initial approximation ob-
tained by computing with linear programs enough ex-
treme points of the projection so that their convex hull is
full-dimensional. Successive refinements consist in adding
new exireme points and updating the convex hull. The
costly convex hull construction is done in the projection
space thus the main complexity of the algorithen is linked
to the size of the output. The process stops when either
the projection has been found or the size of the approx-
imation has reached a user-supplied bound.

In the unbounded case, the problem is reformulated
using the generalised linear program representation which
is bounded by definition. $#{A) is computed by projec-
tion. The output will consist of the convex hull of $(A)
but also the set of its extreme points, from which the
constraints defining the projection are derived. The ad-
vantage over the exireme points method is that we com-
pute directly the exiceme points of the projection. We
do not need to compute the extreme points of A, this
computation being the source of enormous intermediate
computation and high redundancy in the output.

Implicit equalities and causes of unsolvability
Fourier's algorithm can be used to trace all subsets of
constraints in 5 that cause unsolvability or that are im-
plicit equalities [11].

By using the guasi-dual formulation, we can acheive
the same effects by running linear programs. The quasi-
dual formulation which corresponds to Fourier's algo-
rithm is

F: f=tTx
ATA =0,

rﬁ.:{ Bhi=1,
i 20V

Here # maps ®™ to R, where m is the number of con-
straints in 5. Since we want to compute the minimum
of ® subject to A we need to solve the following linear
program I

minimize b7 A

subject to ATA =10
=1
A0V

It is obvious that, in general, solving 5 in this manner is
far more efficient than using Fourier’s algorithm. Since
i) is a variant of the dual simplex in Linear Program-
ming, it inherits nice properties from the standard dual
simplex such as good incremental behavior, no nesd to
introduce slack variables and no restriction to positive

1069

| Quasi-Dual I |

Properties of 5

. Strm:gi’y solvable
Full dimensional
» No implicit equalities
[Inbounded and

.]':Iu projection kas parallel facels
. ihed sok E } led radi

Unsolvable

* Selvable

¢ Full dimensional

* No implicit equalities

+ Bounded or

. il!IHSlﬁ_i projeciion with parallel facets
& In i

min(bTA) > 0

& Weakly Solvable

* Mot full dimensional

» Exials Implicit equalities

An evidend minimal subset of
im}PHd!. equalities

*

min(bTA) =10

¢ linsolvahble

3 :47A <0 | » An evident minimal infeasible sobset |

variables. More importantly as a side effect of the solv-
ability test we obtain informalion about the algebraic
properties of the constraints and about the geometric
structure of the assecialed polyhedron. The properties
of £} are summarized in the table,

Conclusion Much of the existing work on constraints
has been done in diverse domains with their own dis-
tinctive requirements. Even in the restricted domain of
linear arithmetic constraints, there is a wealth of knowl-
edge and algorithms. To build systems to reason with
constraints requires borrowing and synthesizing various
notions and this led to the emerging concept of a uni-
fied framework of a single representation, the parametsic
query, and solufion technigue, variable elimination, for
handling all the different operations on constraints, This
approach shares key aspects with Logic Programming,
with variable elimination playing the rule of resolution.
The viability of this approach, both from a knowledge
representation and lknowledge processing aspects, is bee-
ing tested with applicalions in the domain of spatial rea-
soning [3] and graphic user-interface [4]. Empirical re-
sults with an initial implementation have shown that a
variety of small {about a hundred inequalities in two di-
mensions) and fairly large problems {up to about 2,000
inequalities over 70 variables) can be processed in times
ranging from less than a second to a few minutes. Ongo-
ing work includes the design and implementation of an
integrated system based on the proposed framework and
incorporating several solvers. The potential applicabil-
ity of more recent interior points method is also investi-
gated. Many properties of lincar arithmetic constraints
hold for constraints in other domains. These properties
have been abstracted and generalized in [13).

1070

References

[t} T. Huynh, C. Lasses and J-L. Lassez, Practical Ts-
sues on the Projection of Palyhedral Sets, to appear
Annals of Maths and AT,

[% T. Huynh, ©. fassez and J-I Lassez, Fourier Algo-
rithm Revigited, fnd Internaiional Gon_f:rzn:f on
Algrbraic and Legic Programming Springer-Varlag
Lecture Motes in Computer Sciences, 1580

[3] L. Huyah, L. Joskowice, C. Lasses and J-L. Lasses,
Reasoning About Linenr Constraints Using Para-
metrke Queries, in Foundations of Software Tech-
nology and Theorelical C'umpul:r S’ci:nu‘. Leclure
Notes in Computer Seiences, Springer-Verlag vol.
472 December 1990,

[4] K. Helm, T. Huyah, . Lassez and 1{. Marriott, A
Linear Constraint Technology for User Interfaces, to
appear Proceedings of Grapkics Inlerface’08

[5] J. Jalar and J.L. Lassez, Conatraint Logic Pragram-
ming, Preceedings of POPL 1987, Manich.

[6] P. Kanellakis, G. Kuper acd P. Revess, Constraint
Query Languages, Proceedings of the ACM Confer-
ence on Principles of Dafabase Syslfems, Meshville
™).

[7] J-L. Lassez, Querying Constraints, Proceedings of
the ACM tonfersnce on Principles of Databose Sys-
terms, Nashvilie 1950,

[&] J-L Lasses, Parametric Queries, Linear Constrainta
and Variable Elimination Proceedings of DISCO 20,
Springer-Verlag Lectuse Notes in Computer Sei-
ences.

[9] C. Lassez and J-L. Lassez, Quantifier Eiimination
for Conjunctions of Linear Constraints via a Convex
Hull Algorithm, 1BM resenrch Report, T.J. Watson
Research Center, RO 16779 (1991), £o appear Aca-

demic Press,

[10] J-L. Lasses, T. Hoynh and K. McAloon, Simplifica.
tion and Elimination of Reduadant Arithmatic Con-
strainls, Proceedings of NACLP 88, MIT Press.

[11] J-L. Lassez and M.J. Maher, On Fourier's Algorithm
for Linear Arthmetic Constiraints, IBM Hessarch
Report, T.J. Watson Research Genter, O 14114
[1988). To wppear Journal of dutemated Heasoning,

[12] J-L. Lassez and K. MeAloos, A Canonical Form
for Generalized Linear Constraints, IBM Research
Report, T.J. Watson Research Center, RO 15004
[1989), to appear Jowrnal of Symbolic Computation.

[L13] J-L Lassez, I. McAloon, A Constraint Sequent Cal-
cules LICS 50, Philadelphia.

[14] M. Maher, A Logic Semantics for & class of Commil-
ted Choice Languages, Proceedings of FOLPY, MIT
Preas B7.

[15] V. Saraswat, Comcurrent Constraint Logic Program-
ming, {o appear MIT Preas.

[16] L. Van Den Vries, Alfred’s Tarski's Elitnination The-
ory for Closed Fields, The Jowrnal of Symbalic Logie,
vol.53 n.1, March 1988,

[17] P. van Hentenryck, Constraint Satisfaction in Lagic
FProgramming, The MIT Fress, 1989.

