PROCEEDIMGS OF THE INTERMATIONAL CONMFEREMCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. & IOOT, 1992

1063

Knowledge Representation Theory Meets Reality:
Some Brief Lessons from the CLASSIC Experience

Ronald J. Brachman
AT&T Bell Laboratories, 600 Mountain Ave.,
Murray Hill, NJ 07974-0636, U.S.A.

rjb@research.att.com

Abstract

Knowledge representation is one of the keys to Artificial
Intelligence, and as a result will play a critical role in
many next generation computer applications. Recent re-
sults in the field look promising, but success on paper
may be misléading: there is a significant gap belween a
theoretical result or proposal and its ultimale impaet in
practice. Clur recent experience in converting a fairly
typical knowledge representation design into a usable
system illustrates how many aspects of “reduction” to
praclice can significantly influence and force important
changes to the original theoretical foundation. I briefly
mativate our work on the CLASSIC representation system
and outline a handful of ways in which practice had =g-
nificant feedback to theory. The general lesson for next
generation applications is the need for us in our research
on core techmology to take more seriously the influence
of implementation, applications, and users,

1 Knowledge Representation

Hepresentation of knowledge has always been the foun-
dation on which ressarch and development in Artificial
Intelligence has rested. While no single representation
framework has come to dominate the field, and whils
there are important chellenges to the utility of conven-
tional representation techmiques from “connectionists”
and others, it is very likely that the next generation of
Al and Al-related applications will still subscribe to the
liypothesis that intelligent behavior can arise from for-
mal reasoning over explicit symbolic representations of
world knowledge.

The centeality of the need to represent world knowl.
edge in Al systems, expert syslems, robots, and Fifih
Generation applications has helped inerease interest in
formal systems for representation and reasoming—so
much so that owver the last decade, the explicié sub-
field of “Knowledge Representation” (KR) has taken on
its own identity, with its own international conferences,
IFIP working group, ete. This subfield has been prolific.
It has attracted the attention of the greater Al commu-
nity with hiﬁhl].r visible problems like the “Yale Sheaot-
ing Problem” and systems like Cye, It has collected its
own sel of dedicaled researchers, and has increasing num-
bers of graduate students working on formal logics, non-
monotonic reasoning, temporal reasoning, model-based
diagnosis, and olher important issues of representation
and reasoning.

It is probably fair to say that in recent years, formal
and theoretical work has become preeminent in the KR
community,! Ceoncomitantly, it appears to be generally

UThis has happened for numerous reasoms, and while it

believed that when the theory is satisfactory, its redue-
tion to practice will be relatively straightforward. This
transition from theory to practice is usually considered
uninteresting enough that it is virtually impessible to
have a technical paper accepted at a conference that ad-
dresses it: it seems to be assumed that all of the “hard”
work has heen done in developing the theory.

This attilude 3= somewhat defensible: it is common
in virtually all other areas of Al and there often really
isn't anything interesting Lo say further about a KR for-
malism as it is implemented in a system. However, my
own group hes had substantial recent experience wilh
the transition of a knowledge representation system from
theory to practice that contradicts the commeon wisdom,
and yields an imporlant message for KR research and
its role in next generation apphecations. In particular,
cur view of whal we thought was a clean and clear—and
“finished"—formal representation system was subslan-
tially influenced by the eomplexity and constraint of the
process of turning the logic into a usable tool.

2 The CLASSIC Effort

As of several years ago, we had developed a relatively
small, elegant representation logic that was based on
many years of experience with description hierarchies
and a key inference called classification. As described
in a companion paper al this conference [Brachman ef
al., 1992), the cLASSIC system was a product of many
vears of effort on numerous systems, all descended from
the KL-ONE knowledge representation system. Work on
KL-ONE and its successors grew to be guite popular in
the US and Europe in the 1980's, largely because of the
semantic cleanliness of these languages, the appeal of
object-centered (frame) representations, and theie pro-
vision for some key forms of inference not evailable in
other formalisms (e.g., description classification). The
reader familiar with KR research will note that numer-
ous publications in recent years have addressed formal
and theoretical issues in “KL-ONE-like" languages, in-
cluding formal semantics and compuiational complexity
of variant languages. However, the key prior efforts ail
had some fundamental flaws, and work on CLASSIC was
in large part launched to design a formalism that was
free of these defects.

Another central goal of CLASSIC was to produce a com-
pact logic and ultimately, a small, manageable imple-

may have some negative consequences (as addressed here),
it is positive in many respects. The early history of the field
was plagued by vagoe and inadequate deseriptions of ad hoe
soluticns and computer programs; recent emphasis cn for-
mality has encouraged more thorough and rigorous work.



1064

mented representation and reasoning system. A small
system has important advantages in a practical setting,
such as portability, maintainability, and comprehensibil-
ity. Our intention was to eventually put KR technology
in the hands of nen-expert technical employees, Lo allow
them to build their own domain modellzs and maintain
them. CLASSIC was also designed to fill a small num-
ber of application needs, We had had experience with
a form of deductive information retrieval (most recently
in the context of information about a large software sys-
tem [Devanbu et al, 1991]), and needed a better tool ta
support this work. We alse had envisioned CLASSIC a5 a
deductive, object-oriented database system (see [Borgida
et al., 1988]: success on this front was eventually reported
in [Selfridge, 1991]).

After analyzing the applications, pssessing recent
pmﬁress in KL-0KE-like languages, and solving & number
of the technical problems facing earlier systems, we pro-
duced a design for CLASSIC that felt complete; the logic
was presented in a typical academic-style conference pa-
per in 1989 [Borgida et ol 1989). In this design, some
small concessions were made to potential users, includ-
ing a procedural test facility that would allow some es-
cape to the host implementation language for cases that
€LASSIC could not handle. Given the clarity and simplic-
ity of this original design of cLASsIC, we ourselves held
the traditional opinion that there was essentially no re-
search left in implementing the system and having users
use it in applications. At that point, we began a typical
Al programming effort, to build a version of CLASSIC in
QODMMON LISP.

3 Influences in the “Reduction”
to Practice

As the research LISP version neared completion, we be.
gan io confer with colleagues in a development organiza-
tion about the potential distribution of cLASsIC within
the company. Despite the availability of a number of AT
tools in the marketplace, an internal implementation of
CLASSIC held many advantages: we could maintain it and
extend it ourselves, in particular, tuning it to real users;
we could assure that it integrated with existing, non- Al
environments; and we could guarantee that the system
had a well-understood, formal foundation (in contrast to
virtually all commereially available AT tocls). Thus we
underiook & collaborative effort to create a truly prac-
tical version of CLASSIC, written in . Our intention
was to develop the system, maintain it, create a training
course, and eventually find ways to make it wseful in the
hands of Al novices.

To make & long story short, it took at least as much
work to gel CLASSIC to the point of usability as it did
to create the original logic that we originally thought
was the culmination of our research. Cur view of the
language and knowledge base operations supporting it
changed substantially as a result of this undertaking, in
ways thal simply could not be anticipated when consider
a paper design af the logic.

The factors that influenced the ultimate shape of cLAS-
SIC were quite varied, and in most cases, wers noi in-
fluences that we—or most other typical researchers, 1
suspect—would have expected Lo have forced more re-
search before the logic was truly finished. These ranged
from the nesd to be reasonable in the release and main-

tenance of the software iteelf to some specific needs for
key applications that could not really have been antie-
ipatac{} until the system was actually put into practical
use. Here is a brief synopsis of the five main types of
issues that influenced the ultimate shape of the cLassIc
gystem:

* the constraints of crealing and supporting a system
Jor real users caused numerous compromises. For one
thing, upward compatibility of future releases is & erit-
ical 1ssue with real software, and it meant that any
construct in the language in which we were not com-
pletely confident might better be left out of the re-
leased system. Issues of run-time performance (which
also dictated the exclusion of some features) also had
surprising effects on what we could realistically include
in the released version.

cerfain detailed implementation considerations played
a role in determining what was included in the system,
These mcluded certain tradeofls that affected the de-
sign, such as the tremendous space consequences an in-
verse relationship {“inverse o 5" ) feature would have
had, or the consequences of certain fine-grained forms
of truth maintenance {to allow for later retraction of
asserted facts). Some features (our SAME-AS con-
struct, for example) were just so complex to implement
that they were better left out of the initial release.

¢ concern for real users alerbed us to issues easily ignored
with a pure logic. These involved the sheer learnability
and usability of the language and the system. Error-
handling, for example, was of parameunt concern to
our real consumers, and yet the very idea never arose
when considering the initial CLASSIC language. Sim-
ilerly, the uniformity of abstractions and the simplie-
ity of the interface were critical to acceptability of cur
system. The potential consequences of user “escapes”
with side-effects was another related concern. Finally,
explanation of the system's behavior—again, not an
issue when we designed the logic—might make the dif-
ference between success and failure in using the system.

® as soon as a system is put {o any real use, mismatches
in its capabilities and specific application needs become
very evident. In this respect, tﬁe:e seems to be all the
difference in the world between the few small examples
given in typical research papers and the details of real,
sizable knowledge bases. In the case of cLassic, our
lack of atiention to the details of numbers and strings
in the logic meant substantial mere work before imple-
mentation. Another issue that plagued us was the lack
of atlention to a query langnage for our KR system (a
common lack in mest AI KR proposals).

» finally, what Inoked good (and complete) on paper did
not necessarily hold up under the fire of real use. Even
with a formal semantics, certain operators prove tricky
to understand in practice, and subtle interactions be-
tween opetators thal arise in practice are rarely evi-
dent from the formal werk. Simply being forced by
an implementation effort to get every last detail right
certainly caused uws to re-examine several thi we
thought we had gotten correct in the original logic,
and I suspect this would be the case with virtually ev-
ery sufficiently complex KR logic that ends up being
implemented.



4 Some Lessons

The main lesson to be learned here iz that despite the
ability to publish pure accounts of logics and their the-
oretical properties, the true theoretical work on knowl-
edpe representation systems ie not really done until issues
of implementation and especially of use are addressed
head-on. The “theory” can hold up reasonably well in
the transition from paper to system, but the typical KR
research paper misses many make-or-break issues that
determine a propogal’s true valoe in the end. Arguments
about needed expressive power, the impact of complex-
ity resulte, the naturalness and utility of language con-
structs, etc., are all relatively hollow until made concrete
with specific applications and implementation consider-
ations.

For example, in our context, the right decision was
clearly to start with a small version of the system for
release, and extend it only as nesded. Given the com-
plexity of software maintenance, it may never make senss
to try to anticipate in advance all possible ways that
all possible wsers might want to express concepts.? A
small core with an extension mechanism might in reality
be better than a large, extraordinarily expressive—and
complex—system. In the case of CLASSIO, we have been
able to place in the hands of relatively naive users a fairly
sophisticated, state-of-the-art inference system with a
formal semantics and well-founded inference mechanism,
and have them use it successfully, needing only to make a
amall number of key extensions to meet their real needs.

There are several consequences here for next genera-
tion applications of knowledge representation research.
First, it is importani that the research community rec-
ognize as legitimate and important the class of issues
that arize from implementation efforis—issues relating
to size, for example, that have always been the legiti-
mate concern of the database community; issues relating
to implementation tradeoffs and complexities; and issies
celating to software release and maintenance. Second,
unless our KR proposals are put to the test in real use
on real problems, it is almost impossible to assess their
real value. So much seems to be different when a pro-
posal is reduced to practice that it is unclear what the
original contribution really is. Third, it is quite critical
that at least some fraction of the community address di-
rectly the needs of users and the constraints and issues in
their applications. Too much research with only mathe-
matics as its driving force will continue to lead KR (and
other areas of Al research) farther afield. Not only that,
it is clear that iruly interesting rescarch questions amse
when driven from real rather than loy or imagined needs.

References

[Borgida et al, 1989] A. Borgida, R. J. Brachman, D. L.
McGuinness, and L. A. Resnick. cLassic: A Struc-
tural Data Model for Objects. In Proceedings of
the 1988 ACM SIGMOD International Conference on
Management of Data, pages 59-67, June 1950,

[Brachman ef al, 1002] K. J. Brachman, A. Borgida,
N, L. McGuinness, P. F. Patel-Schoeider, and L. A,

*lronically, the ongeing and sometimes virulently argued
debate over how much expressive power to allow in KR sys-
tems may in the end be settled by simple soflware engineering

considerations.

1065

Resnick. The ¢cLASSIC Knowledge Representation Sys-
tem, or, KL-ONE: The Next Generation, In Proceedings
of the International Conference on Fifth Generation
Systems, Tokyo, June 1892,

[Devanbu et al, 1991] P. Devanbu, R. J. Brachman,
P. G. Selfridge, and B. W. Ballard. LaS5Ir:
A Knowledge-Based Software Information System.
CACM, 34(5):34-49, May 1991,

[Selfridge, 1991] P. G. Selfridge. Knowledge Representa-
tion Support for a Software Information System. In
Proceedings of the Seventh IEEE Conference on Al
Applications, pages 134-140, Miami Beach, Florida,
February 1981



