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Abstract

This paper describes a parallel inductive learning al-
gorithm for adaptive model-based diagnosis. Although
the model-based systems are more robust than the rule-
based systems, they require more computation time,
This is becanse they lack heunrisiic knowledge. On the
other hand, human experts can learn and utilize such
knowledge from experience. Therefore, in order to re-
alize efficient model-based diagnosis, learning capability
from experience is indispensable. We had proposed an
inductive learning mechanism but unfortunately it took
much computation time. In order to reduce the com-
putation time, this paper proposes a parallel learning
algorithm. The experiential knowledge is represented as
a fault probability model and the proposed algorithm
searches the most appropriate one out of all the poasible
modele. In order to search effactively, a partial order is
introduced into the search space. By using this order-
ing, two kinds of search control mechanizms, that are
local pruning and global pruning, are developed. The
algorithm is implemented in KL1 language on a paral-
lel inference machine, Multi-PS1. The experimental re-
sults show the effectiveness of the mechanisme. It is alse
shown that the 16 PE implementation is about 11 times
as fast as the sequential cne.

1 Introduction

Since the creation of the MY CIN system[Shortliffe 1976],
most of expert syslems, have incorporated the idea of
representing their knowledge in a form of symptom-
failure association rules. Those expert systems that take
rule-based approach have two major inherent disadvan-
tages. First, those gystems lack robustness because they
cannot deal with unexpected cases which are not covered
by rules in their knowledge bases. Second, their knowl-
edge bases are expensive to be created and maintained.

There has been a series of research to tackle those
problems. The most distinct ones are on model
based methods, ie first-principle methods. Model-
based methods use design descriptions, such as structure

and behavior descriptions [Davia 1984, de Kleer 1987,
Genesereth 1984].

However, model-based diagnostic systems are gener-
ally not as efficient as rule-based ones since they require
more complex computation, This is because they lack
heuristie knowledge which human experts ususlly uti-
lize. We have been working on a research to explore
a general architeclure to realize an adaptive diagnostic
agent and introduced its basic architecture[Koseki 1989].
Moreover, an experimental system based on the
architecture [Koseki et al. 1990a, Koseki et al. 1990,
Ohia et al. 1991a, Ohta et al. 1991b] have heen dewvel-
oped. The system realizes adaptability with learning ca-
pability from its experience. The experiential knowledge
is represented in a form of a fault probability model of
target system components. With this experiential knowl-
edge, it is able to diagnese & failing component faster
with a fewer tests than pure model-based systems.

However, it takes much computation cost to learn ex-
periential knowledge. This is because the hypothesis
space to search grows rapidly with the size of the tar-
get problem. In order to reduce the computation time,
we developed a parallel learaing algorithm.

The algorithm utilizes two kinds of search conirol
mechanism, that are local pruning and global pruning,
The search space is divided and assigned to each proces-
sor 5o that the transmission of local pruning information
does mot require interprocess communication. The in-
terprocess communication is restricted to the plavsible
global pruning information.

The algorithm is implemented in KLl language on a
parallel inference machine, Multi-PSL. The experimental
results show that the implementation wsing 16 PEs is
about 11 times as fast as the sequential one.

Section 2 presents the mechaniam of the adaptive di-
agnostic system. In section 3, the probabilistic-model
learning problem is described, A parallel learning algo-
rithm is presented in section 4, and experimental results
are shown in section 5.



2 Adaptive Diagnosis Mechanism

This section presents the architecture of an adaptive
model-based diagnosis. We can observe two kinds of
intelligent behavior in maintenance expert’s diagnostic
procedure. First, they can quickly identify a faulty com-
ponent with a little information utilizing their experi-
ence. Second, even if a novel symptom arises, the expert
ean reach a conclusion, by consulting with other informa-
tion sources, such as design description manuals. They
can reason which component might have gone wrong and
caused the symptam Lo appear, by knowing how the sys.
tem is suppesed to work.

To realize those kinds of intelligent behavior, the sys-
tem consists of several modules as shown in Figure 2-
I. The knowledge base consiste of design knowledge
and ezperiential knowledge. The design knowledge rep-
resents a correct model of the target device. It consists
of structural description which expresses component in-
terconnections and behavior description which expresses
component behavior. The experiential knowledge is ex-
pressed as component failure probability for each com-

ponent.
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Fig. 2-1  Strueture of the System

The general flow of the diagnestic system is shown
in Figure 2-2. The system keeps a set of suspected
components as a suspect-list. And it takes eliminafe-
not-suspected strategy(Tanaka et al. 1989] to reduce the
number of the suspects in the suspeet-list, repeating the
test-and-eliminate cycle.

It starts with getting an initial symptom. It calculates
an initial suspect list from the given initial symptom by
performing a model-based reasoning. After obtaining
the initial suspect-list, the system repeats a iest-and-
eliminate cycle, while the number of suspects is greater
than one and an effective tesl exists. A set of tesis is
generated by Lhe test patiern generator. Among the gen-
erated tests, the most cost effective one iz selected as the
next test to be performed, The selected test s suggested
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and fed into the target device. By feeding the test inlo
the target device, another set of observation is obtained
as a test result and is used to eliminate the non-failure

components.
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Dingnosis Flow

In order to compute test effectiveness, the system nses
fault probability distribution for each component. The
mechanism employed in the system ia basically same as
the one found in the reference [de Kleer 1983]. It is
so called minimum entropy technigue where entropy is
calcalated from the fault probability for each suspected
component. Here, an entropy E{SL) of & suspect-list
5L iz defined in terms of the estimated probabilities of
each component in the list. Let 5L denote the set of
suspected components,

SL = {81, 5m... 5}

and let py,pz, .- P L = 1, B = 0) be failure proba-
bilities of suspects §;, Ss,. .. 5,. Then an entropy E{SL)
ig defined as

B(SL) = - Y pilogp:.

=1

The system evaluates gain(T) for all of the available
iests. In addition to thiz valoe, the system considers
the test execution cost to select a cost effective tesl, The
systern selects a test according to the following evalua-

tion function.
gain{T)/cost(T)

At first, the diagnostic system does not know the prob-
ability distribution for a target device. Therefore, it
should assume that the all of the components have the
same fault probability. However, the aystem becomes ef-
ficient as it acquires information on the fault probability
from its experience.This is because il can estimate more
precize probability distribution and can penerate more
effective test sequence. In the next section, a learning
mechanism ia presented.
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3 Learning Probabilistic Models

The performance of the diagnostic mechanism relies on
the correctness of the presumed probability distribution
of components. However, it is not easy to predict ap-
propriate probability for each component from observed
data, especially when the number of observed data is
small.

For example, consider a diagnosis of a network sys-
Lem with 100 modems and 100 communication terminals.
Here, we agsume that 10 modems have broken down in
the past (once for each). A simple estimate concludes
that cach of the 10 componenis has higher fault proba-
bility than any cther component. However, human may
presume that a modem bas higher fault probability than
a terminal becanse modems hawve broken 10 fimes in the
past and terminals have never broken, Therefore, it is
important to select an appropriate estimation method
to derive a precise probability distribution (probabilistic
model).

Here, we consider an example of a target device which
congigis of 16 components. The obzerved number of
fanlts for each component js shown in Table 3-1. Sev-
eral attributes for each component are also shown in the
table.

Toble 3-1 Example
Component Attributes No. of Obs.
Type | Age {Times)
1 a ey 1
2 a old ]
3 b new 13
4 b old g9
5 [ new 1
i) e old 1
7 d new 0
8 d old 0
9 [ new 0
10 e old i}
11 f new 1
1z f ald 0
13 E new 1]
14 E old ]
15 h neww 1
16 h old 1]

First, we consider the relationship between the compo-
neot type and the fault frequency. A type b component
seems to have a very high fault probability, And it may
be natural to conclude that type g component has also
slightly higher probability than the other components.
On the other hand, it 1s dangerous to conclude that each
of the other components has different fanlé probability,
e.g., the fault probability of type ¢ component is about
bwice as large as type a component’s. Because the differ-
ence between the number of observation may be due to
an accident.

Next, we consider the relationship between component
age and the fault probability. In the example, it seems
that the component age does not affect the fault prob-
ghility. Therefore, in order to estimate the fault prob-
ability distribution precisely, it is important to consider
component type.

In general, some aftributes are important to estimale
the fault prebability and the other atteibutes are nob a0
important. Moreover, a combination of several attributes
mey be important. For instance, in the above example,
we had better to consider component age, in the case of
the component type is g.

In order to estimate the probability distribution pre-
cisely, we must find relevant atiributes (and/or their
combination) and consider how to estimate with those
attributes,

Here we define the presumption problem. Consider
a set of events X = {r,m,.., 2.} and atiributes
@9, @y ...y iy Here, we assume that the evenls are ex-
haustive and mutually exclusive, and that the domain for
each atbribute a; {(j = 1, 2,...,n} is a finite set Dom{a;),
As shown in Table 3-2, for each event, z;, a value,
i I[E Dml:nj}], for each attribute, a;, iz given. Also,
n;, the number of abservations is given.

Table 3-2 Table of events
Event Attributes MNo. of Ohs.
o | ez || a. (times)
Iy U1 Yy Tin T
&3 Un g2 e Uin Tz
Ly Un Lan Uin 3
Tm Ui L e Vs Tl

The problem is to presume the probability §; for each
event z;, from the number of observations n;. If enough
ameunt of data are given, it seems to be easy to estimate
the probability appropriately. However, if oaly a few ob-
servation data are given, we must consider the noise af-
fection. Therefore, it is important to extract reliable in-
formation by avoidiog the nolse affection. In order to es-
timate the fault probability appropriately, we introduced
an inductive learning mechanism [Nakakuki et al. 1990,
Nakakuki et al. 1991b, Nakakuki et al. 1991c].

In the learning mechanism, a presumption free is used
to express a probabilistic medel. Using a presumption
tree, all the evenis are classified into several groups.
Here, each event in & group is assumed to have the same
fault probability. Therefore, the probabilities for indi-
vidual events can be caleulate from a presumption tree,
The details are described below.
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Fig. 31 Presumption tree

As shown in Fig. 3-1, a presumplion tree consists
of several branching nodes and leaves. An attribute a;
corresponds to each branching node, and subset 4;; of
Dom(a;) corresponds to each branch. Here, each Ay
must satisfy the following conditions.

(7 #F)
U; Ais = Dom(a;)

AyNAyp=4¢

A presumption tree classifies all possible events into sev-
eral groups. For example, the tree in Fig. 3-1 has four
leaves, therefore, the events are classified into four groups
by using the tree as a decision tree[Quinlan 1986].

For example, Gy is a group of events which corresponds
to leaf 1. Fach event in 7y i considered to have the same
fault probability. Here, for each leaf k, let ils correspond-
ing group of event be X;, and for all event z; € X, let
the sum of n; be Op. By using a presumption tree, the
probability f; for each event =; € X, can be caleulated
as Tollows:

i = 1 Eaenm
|Xi| E:iex n;

As shown above, a presumption tree represents a prob-
abilistic model. The problem is to find the most appro-
priate presumption tree for given data.

As a eriterion for the selection, we introduced the min-
imum description length (MDL) criterion|Rissanen 1978,
Rissanen 1983, Rissanen 1986]. Rissanen argned that
the least description length model is expected to fit for
presuming the future events better than any other mod-
els. Here, description length for a model is defined as
the sum of the model-complexity and model-fitness for
the given data. The description length of & presumption
tree is the sum of:

(1) Code length of a tree, and

(2) Log-likelihood(distance) between the tree and ob-
served data.

The code length{model complexity), L1, for a presump-
tion tree ie defined as follows[Nakakuki et al. 1991b].
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n=% log{n—d=+l}+2%lugﬂg+
=EPUg =EQ
Z‘;{lng (k= = 1) + log c1{ks, 1)}
D

Here, P is a set of all the branching nodes and Q
is a set of all the leaves. For each branching node
z, I, is the number of branches, d. is the depth of
the node, k. = |Dom(a;)| (2 is a corresponding at-
tribute for node z), n is the number of attributes, and
ellka, L) = {I::Lj if I < ke, otherwise 1. On the other
hand, log-likelihood (model fitness), L2, between a model
and observed data is defined as follows.

L2 = - 5 n;log f;

Here, fi; is the presumed probability that is derived by
using the model. The total code length is the sum of L1
and L2

4 A Parallel Learning Algorithm

4.1 Local Pruning Mechanism

As deseribed in the previous section, the problem is to
search the least description length tree out of all the
possible presumplion trees. A heuristic algorithm for
the problem was implemented[Nakakuki et al. 1891b] for
a sequential machine by using branch-and-bound tech-
nique. The following summarizes the algorithm and then
proposes a parallel version of the algorithm.

Here, let the length of a presumption tree T' be denoted
by L{T). It ie the sum of model complexity(L1(T)) and
the model fitness (L2(T)). Tntuitively, a large tree has
large model-complexity, and a small tree has large(bad)
model-fitneas|Nakakuki et al. 1991d]. In order to discuss
such characteristics more precisely, we introduce a par-
tial order “=" among the possible presumption brees.
The order is defined as:

= Presumption tree T% can be obtained
by replacing some leaves in presump-
tion tree I} with branching nodes.

L=T

For example, presumption tree T3 in Fig. 4-1 can be
obtained by replacing leaf 2 in T, therefore,

T = T..

Similarly,
T =T, and T. = T}.
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Intuitively, T3 = T} means T3 is strictly larger than 7.

ai al al
A\ RS
Ty = X ¥ ¥
Ta Th Te

Fig. 4-1

If T » 17, then the following inequalities hold by the
definiticn:

Example

Li(Ty) < LU(Tz)
La(h) = L2T)

Therefore, for a certain presumption problem, if a pre-
sumption free T ia a maximal one under the ordering,
then L2(T) will take the least value, say L2prw. L2arrw
can be easily calculated in advance. By using these
characteristics, we can effectively find a least description
length tree.

The proposed algorithm searches the space of possible
presumption trees. It tests simpler ires before Lesting
more complex ones. That is, if there are two presumption
frees T' and T such that T = T, the aystem calculates
the leagth of T before trying T". .

Here, consider that the length of a tree T has been
tested. Then, the system considers the necessity of test-
ing T" which is more complex than T (ie. 7' = T). it
turned out to be unnecessary(i.e., there is no possibility
that 7' has shorter length than T, then all the trees
which are more complex than TV also turns out to be un-
neceggary to examine. The details of this techrique are
as follows.

In order to decide the necessity, the algorithm tesis
the following pruning condition:

log (n = d; 4+ 1) + log(k: — 1) + log el(k., )
L2 — L2T) > 0

Here, r iz one of the leaves in T" and its corresponding
node in 7' is a branching node. If the inequality holds,
it ia nol necessary to caleulate the length for T".

proof First, it is clear that the following inequality
holds by the definition of L1:

LY(T") - LA(T)

2log(n—ds+ 1) +log(kes — 1) + log el{ks, ).

Second, the following inequality holds ohvicusly:
L2AT") — L2(T) = L2psw — L2(T).

Here, if the sum of the right hand sides of the above
iwo inequalilies is positive[i.e., the pruning condition
holds}, then the sum of the left hand sides will be posi-
tive. Hence,

LUT") + E2(T") > L(T) + L2(T).

e, L{T') > L(TY):

Therafore, it is not necessary to test 77, |

Here we consider to implement a parallel version of the
algorithm. It is natural to divide the search space and to
assign each sub-space to individual processor. However,
we must be careful when we divide the search space be-
cause the performance of the system is greatly affected
by the dividing method. For example, in Fig. 4-2(a),
the search space ia divided into four parts and each of
them are assigned to processor py to p,. Here, we as-
sume that py found that the hatched area in the figure
can be eliminated from the search space. Then pa must
transmit fhat information to other processors. On the
other hand, if we divide the search space as shown in
Fig. 4-2(b), then p; can reduce the search space with-
oub communicating with other processors. Therefore, it
is better to divide the search space so that the reduction
can be done locally in & processor.

{ ol
N
(a)
L________-_____h
P1 Pz P3 Ps
"'----__\‘-‘__I.l'_‘_'__'__-I
(b)
Fig. 4-2 Search Space Division

In the presumption problem, the search space has a
iree structure, Hach node in the search tree corresponds



to a possible presumption tree. Moreover, for a infernal
node of the sexrch tree, each of ita child node corresponds
to a presumnption tree which has longer description length
than the parent node's corresponding one, Therefore, for
example, the root node of the search tree corresponds to
the simpleat presumption tree,

If a search process examined node T, and the pruning
condition for a child node of T is satisfied, then the sub-
tree below the child node can be pruned (Fig. 4-3(a)).
This means that the pruned area is included in a subtree
which has node T as a root. In other word, parallel search
for multiple digjoint subtrees can be performed indepen-
dently. The algorithm we propose divides the search tree
into several disjoint subtrees and searches each of them
with individual processor (Fig. 4-3(b}).

Search Tree

(b)
Local Pruning

Fig. 4-3

4.2 Global Pruning Mechanism

There iz another kind of search tree pruning mechanism.
If a certain process finds that 2 presumption tree T; has
less description length than ever known, then each pro-
cessor need not to test a tree that seems to have longer
description length than 7. The rest of this section de-
scribes details of this technique.

Here we consider two presumption trees T and TY such

that 7' &= T'. Then
LA(T) + L2(T")
> LL(T") + Lanryw

> LL(T) 4 L2prw

Here, if newly found tree Ty, which has shorter descrip-
tion length than ever known, satisfies the pruning con-
dition

LI(T) + L2prn 2 L{To)
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then, from the above inequalities, we can conclude:
LT + L2(T") = L{Ty)
e, L(T) > L(T).

Therefore, it is not necessary to examine T'. Therefore
if we find a presumption tree which has shorfer length
than ever known, then some portion of the search space
will be able to be eliminated.

However, reducible part of the search tree may be dis-
tributed widely throughout the search space. In other
words, the pruning information should be announced to
all of the other processors. Therefore, it is important to
consider the trade-off beiween the increase of communi-
cation cost and the reduction of computation cost. That
is, in & searching process, if a presumption tree is found
to have shorter length than ever known, then the length
of the tree should not always be announced to the other
processors,

In order to solve the problem, a simple mechanism ia
incorporated. That ie, the newly found length is trans-
mitted only if it iz over x bits smaller than the previously
known least length, Here, z is a threshold value.

5 Implementation and Results

The learning algorithm was implemented in KL1 lan-
guage on Multi-P5I, a distributed-memory multi proces-
gor machine. First, we implemented the algorithm with
the local pruning mechanism, The experiments were per-
formed by using up to 16 PEs in parallel. As a sample
data, a fault history which comprised about 100 fault ex-
amples was given. The computation time was measured
5 times, and we took the average. The speedup curve of
the example is shown in Fig. 5-1.

Speedup

10 A

1 I
12345675 8101112131a1616 *FE
Fig. 5~1 Speedup of the Algorithm

The implementation using 16 PEs iz about 11 times as
fast as the sequential implementation (1 PE). There is a
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possibility of further speedup by equalizing the load of
each PE. An example of the overzll load distribution is
illustrated in Fig. 5-2. The difference of the load among
the PEs may be improved by adding a dynamic lead
balancing mechanism into the system. Development of
this mechaniam is under investigation.

Load Distribution

Fig. 5-2

Mext, we implemented the global pruning technigue in
addition to the local pruning mechanism. The threshold
value for transmission s set to 2, This value was acquired
empirically.

The performance of the algorithm with both the local
and global pruning mechanism is shown in Table 5-1.

Table 5—1 Performanee of the Algorithms
(a)
No. of Reductions
Local I Local+Global
Example 1 BTOT1G 558661
| (ratio) 1.00 0.64
[Example 2| 3602255 2588851
{ratio) 1.00 0.71
Example 3 30773602 23342853
(ratio) 1.00 0.76
(b)
Execution Time (msec)
Local Local+Global
_E:{ample 1 4522 3378
(ratio) 1.00 0.75
Example 2 16050 11282
{ratio) 1.00 0.70
[Example 3 109802 80540
(ratio) L.00 0.81

Each experiment is performed with three randomly
generated examples. The number of reductions and the
execution time are messured for the two versions of the

alporithm. One is an algorithm with local pruning mech-
anism (Local), and another version incorporates both lo-
cal and global pruning mechanism { Local-+Global). Both
of them are executed with 18 PEs.

The results show that the global pruning mechanism
improved both of the number of red uetions and execntion
time about 20% to 30% in comparison with the local
pruning version. Fig. 53 shows an example of acquired
presumplion tree,

. [na, [owl
B 258 s.Em

Pt R R T o TR -8
Fig. 5-3 Example of Acquired Tree

6 Conclusion

This paper has described a parallel learning algorithm
for adaptive model-based diagnosis. The algorithm is
based on branch-and-bound technigue, and local and
global pruning mechanisms are incorporated into the al-
gorithm. The 16 PE implementation with local prun-
ing mechanism is shown to be about 11 times as fast as
the sequential one. Moreover, the global pruning mecha-
nism is shown to have an ability to accelerate the parallel
gearch.

Future work is to improve the heuristics used in the
pruning process. If we can find more effective global
pruning criterion which ean be computed with low time
complexity, it seems to be possible te perform super-
linearly.
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