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Abstract

To aceount for the diversity and partiality of informa-
tion processing in the cognitive process, we need a de-
sign method for cognitive system without explicit stip-
ilation of domain/task dependent information flow, to-
gether with a control scheme for partial information pro-
cessing which does not commit us to global and crisp
consistency or completeness.

A computational architecture is proposed which con-
sists of a first-order logic program with a dynamics. In-
formation flow is controlled not by any domain/task de-
pendent procedures but by a contrel scheme emergent
froimn the dynamics. The declarative semantics of the
bogic program ia defined by formulating the degree of vi-
olation in terms of potential energy, and a control scheme
for both analog and symbelic inferences is derived from
an energy minimization principle. This inborn integra
tion of the contrel scheme with the declarative sernantics
guarantees & natural reflection of semantic relevance in
inferences. ldeas underlying inference mechanisms de-
veloped so far, such as weighted abduction and marker
passing, are captured in terms of such a dynamics,

1 Introduction

It is practically impossible to delimit the information of
the world potentially relevant to the benefit (typically.
survival) of a cognitive agent. whereas the information-
processing capacity of the cognitive agent is severely re-
stricted. Here arises partialily of information: the in-
formation potentially relevant to the determination of a
cognitive agent’s action (including information process.
ing) is only partially veflected in its actual behavior,
Ounly very relevant information must hence be selec-
tively reflected in the behavior of the cognitive agent.
However, the distribution of relevant information. to-
gether with the degree of relevance. drastically changes
depending on the context. Since only a very small part
of the potentially relevant information is exploited at
each context, dramatically different parts of the infor-
mation must be exploited at different contexts, in or-
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der for the whole information the cognitive agent uses in
various contexts to encompass as much of the relevant
information as possible.

This canses very diverse patterns of information fow,
underlying the complex behavior of a cognitive agent. So
cognition is complex, not entirely because the design of
the cognitive agent itself is complex, but rather because
it is situated in a complex world, which provides the
diverse contexts of the cognitive agent’s behavior. The
cognitive agent is complex indeed, but still is far simpler
than the behavior of the agent reflecting also the vastness
of the warld,

To capture this situatedness and relative simplicity
of a cognitive apent, the design of the cognitive system
should largely abstract away the directions of informa-
tion flow (the temporal order of actions, among others),
The models which stipulate the directions of information
flow (that is. procedural programming) quickly become
untractably complex, attributing too much of the com-
plexity of cognitive process to the complexity of the cog-
nitive system itself. and thus {ailing to capture the situ-
atedness of cognition. For instance, production systems
{Anderson 1983) fail to serve as the functional archi-
Lecture of cognition. This is where constraint paradigm
comes in. Constraint abstracts the direction of infor-
mation flow away from the design of a cognitive model,
keeping the model within tractable complexity. attribut-
ing most of the camplexity to the world. and thus cap-
turing the situatedness of cognition.

S0 the domain-dependent aspects of coguilion {lan-
guage. vision. etc.) should be designed basically in terns
of declarative semantics rather than operational seman-
tics. Symbolic logic is & typical formalism for declarative
design. Some sort of logic at least as powerful as first-
order predicate caleulus is considered necessary to design
a cognitive system capable of combinatorial behaviors
such as language use.

However, such a powerful formalism commits us lo
untractable computation for maintaining global consis-
tency, exhaustive examipation of the possible hypothe
ses, and 50 on. This applies to whatever logics have ever
been fabricated. including nen-monotonic logic. proba-
bilistic logic, fuzzy logic, paraconsistent logic, and so
forth. There has been no formalism of logic which could
support useful inferences under arbitrary sort of vicla-
tion of the constraint in question. The problem here is
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essentially that symbolic logics provide no control over
inferences other than closure operation [exhaustive in-
ference). .

We need a declarative formalism which inherently
supports partial and hence tractable computation, while
approximately preserving the first-order expressive power
and supporting diverse Aow of information. To be useful
at all, that computation must be about only very rele-
vant information, which will lead o a diverse information
flow sensilive to the contesxt.

To implement all this. the present paper considers
a system of constraint represented as a first-order logic
program, and postulates a’ dynemics of this constraint.
The degree of viclation is captured in terms of potential
energy. which is a real-valued function of the state of
the constraint. The constraint is thus provided with a
fuzzy declarative semantics which is finer-grained than
the usual crisp sermantics. An operational semantics is
alzo derived from the dynamics. That is, control schemes
for analog and symbolic inferences are oblained on the
basis of energy minimization principle. Such an inborn
integration of declarative semantics and inference method
not snly supports concise degign but also guarantees nat-
ural reflection of semaantic relevance in inferences.

The rest of the paper proceeds as [Gllows, In the
next section we outline the combinatovial strocture of
the constraint. Section 3 provides a declarative seman-
tics for this constraint, The components of the declara-
tive semantics are each formulated in terms of potential
energy. Section 4 discusses the field of force induced from
the potential energy, and analog informalion processing
driven by this field of force. It will be shown that asso-
ciative inferences naturally emerge out of the dynanics.
Section 5 defines a methed of symbelic inference which is
a sort of program transformation, and derives a control
scheme for it on the basis of energy minimization princi-
ple. The proposed framework 1s peointed out to capture
the ideas underlying some inference mechanisms tailored
so far, such as weighted abduction (Hobbs et al. 1990,
Stickel 1989) and marker passing (Charniak 1986, Norvig
1989). Section 6 concludes the paper.

2 Constraint Network

A constraint consists of clauses. A clause is a set of
literals. and roughly means their disjunction, which is
inclusive or exclusive to various degrees depending of
their dynamical properties as discussed later. A fiteral
s an atomie constraint preceded by a sign. An atomic
constraint is an atomic formula such as p(X.Y.2) or an
equation such as X=Y. Signs are '+ and =" and stand for
affirmation and negation, respectively. '+ is omitied in
cases discussed below, Names beginning with capital let-
ters represent variables, and the other names predicates.

LA binding is alse regarded as an atomic formuia. For example.
X=f[¥) iz an atemic fermula with binary predicate =f.

A clause is written as a sequence of the included literals
followed by a period. The order among literals is not sig-
nificant. So (1) and (2] represent the same clanse, which
means (1) in a rough, crisp approximation.

(1) =p(U.Y) +q(Z) ~U=F(X) -X=LZ.
(2) +q(X) -p(f(X).¥).
(3) WO XY {~p(LL YV g(X)V U £F(X)]

A elagse containing a literal with empty sign is called
2 definitzon elouse of the predicate of that literal. The
meaning of such a predicate is defined in terms of com-
pletion based on its definition clanses. For instance, if
the definition clauses of predicate p are those in (4}, then
p is defined as in (3).

{4) p(X)-a(X.a). p(f(X))-r(X).
(5) VA[p(A} e Y (glAY)AY = a)V
AX(A = f1X) Ar(X))})

A definition clausge of a zero-ary predicate true is
called & top clause. A top clause corresponds to the query
in Pralog. That is. top clause [B) represents top-level hy-
pothests (7).%

16) true =p(X]) +q{X.Y).

(7 AN YY) A =gl XY}
We postulate clanse 4true. to give rise to such a top-
level hypothesis. The computation is to tailor the best
hvpothesis to explain a top-level one,

A constraint is regarded as a network. For instance,

the follaw’.né; constraint may be graphically shown as io
F'ig:]rr' l.

(i} +true —p(A) —q(B).
{il) +p(X) =r(X.¥) -p(¥).
i) +r{X.Y) —q(X).

Figure |: Constraint Network.

TTheoretically, Prolog uses false instead of true here so thatl the
negation of the top elause amounts to the top-level hypothests.
In cur formulation, a sop elause itself directly means a top-level
hypothesis.



In such & graphical representation, a clause is a closed
domaein containing the atomic constraints constitubing
that clause. Short thick arrows indicate references to the
atcmic constraints as positive literals in clauses. Atomic
constraints without such indication are negative literals,
An argument of an atomic formula is shown either as a
‘' or as an identifier, Bquations between arguments ae
links. Equations in clauses are called intreclausal egua-
tions, and those outside of clauses are called extraciousal
equations, '

We will write & o # to mean that atoemic formulas o
and # are unifiable. We regard each part of constraint
network as a set of instances, and o o # as meaning that
whether Ija) N I(3) = @ or not is unknown. T is an in
terpretation function which maps those instances to ob-
jects {state of affairs, in the case of atomic formulas) in
the world, So unifiability is net transitive. We assume
two atomic formulas are unifiable if and only if their
corresponding arguments are directly connected through
an extraclansal equation, and that every extiraclausal
equation connects two correspending arguments of Lwo
unifiable atomic formulas.® For each gero-ary predicate,
the constraint network containg only one atemic formula
with it.

3 Declarative Semantics

Mow we move on to dynamics to define a declarative
semantics for the constrainl network described above,

Each atomic conatraint o has an activation walue =,
which is a real number such that 0 < 7, < | and may be
regarded as the truth value (or 2 subjeclive probability
of the truth) of 0. The potenfial energy of a constraint
network ig a function of the activation values, and rep-
resents the degree of violation of the constraint. The
potential energy U of the entire constraint is the sum of
the potential energy of the parts of the constraint,

The declarative semantics of the entire constraint is
decomposed into several aspects, [ s a sum of terms
each representing one such aspect. so that {7 captures
the whole declarative semantics. Each term of {7 is the
degree of violation of the aspect of declavative semantics
in guestion. These aspects are enumerated below and
each farmulated by a term of potential energy.

Normalization of activation value. In order to
normalize the activation value of an atomic constraini
o 80 that 0 < 2o < 1, let us employ a standard sig-
moid function sg(z) = u-?Lﬂ;T and postulate r, =
sg|=F,/T) holds at equilibria of force, where £, stands
for the total force to o from outside of o, and T is a
posttive constant called the temperature. This amounts
to assuming the following energy inherent in o

IThere can hence be O A'?) extraclausal aquations, for & dif-
ferent. atomic formubas sharing the same predicate, So an efficient
encoding schema would be necessary 1o aveid that space complex-
ity. We akip further details of this issue,
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(8) I'{r,logwa + 72 log 72}

Let us call 1his the normalization energy of a. Far any
p. Tatands for | — e, Here and henceforth. mathematical
details are not very important; they are guite tentative
indeed. The formulas are mainly motivated by conve-
nience. In fact. the fancy outleok of (8) is for the com-
putational ease of analog inference, though we do not go
into details here.

Disjunction of literals in a clause. The disjunc-
tion energy of a clause implements the ordinary disjunc-
tive meaning of the clause. For instance. consider the
following clause.

(9} =p +a.

The ordinary disjunctive meaning of this clause is that
—p ot q is true, The disjunctien energy of this clanse as
follows captures this mea.m'ng.

(10) Diry¥;

£} 15 a positive constant associated with clause (9). (10]
is small iff either xp or Tg i small; keep in mind that the
activation values are between 0 and | due to the normal-
ization energy. The semantics of (9) may be depicted
like Figuve 2. I} in (10} represents how large the area b

Figare 2: Yenn Diagram for (9}

i= in comparson with e in this figure.

Mutual exclusion of literals in a clause. By mu-
tual exclusion” we mean that at most one literal nay be
teue in a clawse. In the case of (3], the mninal exclu-
gion will allow us to abductively assume p when given
g. and assune —g when given —=p. The following term.
called the erefusion energy ol 19), will take care of such
inferences.

(11) ETprq

E iz 2 constant associated with clause (9), In Figure 3
E represents how large the area b is in comparison with
. If q means that vou are in Japan. for instance, £ is
larger when p means that you are in Tokyo than when it
means that vou are in Imabari, a small city in the island
of Sikoku.

in the general form. the disjunction energy and the
exclusion energy of clanse ¢ consisting of literals £, -+ .
I ave [12) and (13). vespectively.
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E‘ Z J'.'y'r'l"j y;

]

(12)  DeJI7W (13
u; 15 the activation value of ;. For any atomic constraint
e, the activation value of literal +a is defined 1o be x,
and that of —a is defined Lo be 5. r; 18 a constant such
that 0 < r; < 1, and is called the relevance coefficient
of I;. In the digital approximation, {12) means that at
least one literal should be true, whereas (13) means that
at most one literal may be true. Incidentally, it is due to
exclusion energy that top clause (6) means (7). In (9],
{'-ﬂ] and [11}1 !I ==p, I‘T =+qs h = EF:: a2 = Lq, a-l'.l'd
rn=rs=L

Completion of an atomic formula. We some-
what extend the notion of completion so that to complete
atomic formula (not predicate) o positively (negatively)
means that o {(—a) sheuld be inferred either deductively
or abductively* on the basis other than the one on which
o {~o) was first postulated. For example, if we have
postulated q(X) (say, based on clause +p(X) —g(X).. ab-
ductively) and it is positively completed, then it must be
inferred from ancther reason: typically, another atomic
formula q(Y) could he closely related with q(X) {in the
sense of assimilation to be discussed later) and is inferred
on the basis of a clause such as +q{Y) =n(¥). deductively
or =q(¥} +s(Y). abductively. As discussed later, comple-
tion implements assumability cost [Hobbs et al. 1990).

The positive and negative compleiion energy of an
atomic formula o are defined by (14) and {15), respec-
tively.

(14} Caza [] 7eszs (s Co% ] 5%

ol oy

CF and 7 are positive constants, and are called Lhe
positive complefion cocfficient and the negative comple-
fion coefficient of o, respectively. 5,5 is a constant called
Lthe subsumpfion coefficient of o as to 3. 8,5 represents
how close o is related to J, as seen also in the formu-
lation of assimilation below., We say a subsumes 3 to
mean fla) 2 I{4). When oo 8, 545 = 1 if o subsumes
o, and otherwise £,5 = 55 for a small positive constant
sg. In the digital approximation, the positive {negative)
completion energy means that some d (= for some 3)
satisfving 3 o a should be true in order for a {-o) to be
true® Since a subsumption coefficient usually equals to
s, which is close to 0, completion energy and accordingly
other types of energy often decrease if subsumption coef-
ficients increase, which is caused by symbolic operation
discussed in the next section.

The dynamics for definition clauses may be defined
on the basis of exclusion energy and completion energy.
but we do not go further into details here.

Assimilation between atomic formulas. Two
unifiable atomic formulas are the same if they have the

“In this respect, anly deduction is considered in Prolog.
*The completion in Prolog corresponds to our positive comple-
tioa, In Prolog @ must be deduced ooly.

same arguments for the corresponding argument places,
By relaxing this, we obtain the notion of assimilation:
twa unifiable atomic formulas should have similar truth
values 1o the extent that they share the same assignment
of the argements. So for instance p(X) and p(Y) tend to
have similar activation values if X and ¥ are linked with
a strongly activated equation.

To capture this, we postulate sssimilabion ERErgy.
Suppose & o & for two atomic formulas o and 4, and
let & be the extraclausal equation connecting their i-th
arguments. Then the assimilation energy of & is defined
as follows,

{15} _'41'[{‘5‘&'3-" sﬂn]-ri [_In = %]l:_.'l!ﬁ _%]

Az 1% 2 positive constant called the assimifation coeffi-
cient of the i-th argument place of the predicate x shared
by & and J. The assimilation energy roughly means that
ty and xy should be similar {both close to 0 or 1) if 25
is close to 1, and vice versa.

Transitivity of equality, A fransitive cyele is a cv-
cle of equations A = 8oy -+ 8, where either fj;_; ) meas
oF $imadk 15 an intraciausal equation for every i, Note
that no cvele of extraclausal equations is a transitive
eyele. Transitivity of equality as to A is regarded as ex-
cluding the cases where just one equation in A is false.
To capture this. we define the transitivity energy {7a of
A as below,

P —fl'l:[':.- - H} (e < # for at most ane z.']
1) Ua = { 0 [otherwise)

e; 18 the activation value of &, and # is & constant such
that 0 < & < 1. { s & positive constant called the fran-
sitivity coefficient. Mole that the transitivity energy is
large when just one equation in A has a small activation
value,

Since detection of cyeles is a very costly computa-
tion, we will have to consider some approximate method
for efficient processing of transitivity energy instead of
guarantesing perfect detection of transitive cycles. We
do not go further into such implementation details.

4 Analog Inference

Potential energy gives rise to a field of force to change the
state of the system so as to decrease the total potential
energy. Suppose there are n distinct atomic constraints
in the given constraint, and hence n activation values,
xy through @,. Then the current analog state of the
svetem js regarded as a point (18) in the n-dimensional
Eunclidean space, and the global potential energy (7 de-
fines a ficld of force (19).

o
a0 ~ _E

(18) #= 19) F=|
*n .



i causes spreading activation: when F # 0. a change of
#; 50 as to reduce U influences the neighboring parts of
the canstraint netwerk, which causes further changes of
activation values there, and thus state transition propa-
gates across the network, In the long run, the assignment
of the activation values will settle upon a stable equilib-
rium satisfying & = {i, under an appropriate scheme ol
spreading activation. The resulting state gives a mini-
mal value of [/.5 That is, it satisfies the constraint best
in some neighborhood.

Let us look at some typical patterns of analog in-
ferences emerging from the dynamics through spreading
activation. Firat, the dynamics gives rise Lo associative
inference based on syntactic similarity. Suppose for in-
stance that, as in Figure 3, the extraclausal equation

Figure 3: Association due to Syntactic Similarity.

& connecting argument A of p(A,B) and argument C of
p(C.D} is included in a transitive cycle as shown in the
figure, and that the activation value of every equation
in this cycle is greater than #. Then § is excited due
to the transitivity energy. This rajses the tendency {due
to the assimilation energy of &) for p(A,B) and p(C,D}
to have similar activation values. Thus the assimilation
energy of the extraclausal equation o between B and D
makes o to have a high activation value, provided that
the equations in the transitive cycle involving o as shown
in the figure are all highly activated. So each equa-
tion in a transitive cycle including ¢ could be excited
even stronger due to the transitivity epergy. This might
make other pairs (such as the two g(e,e)s i Figure 3) of
atomic formula with corresponding arguments on that
transitive cycle have similar activation values, and so
on. In general, two gyntactically similar combinations
of atomic constraints thus tend to have similar activa-
tion patierns, corresponding parts exciting each other or
inhibiting each other.

Transitivity energy alse enhances semantic associa-
tion. Consider the following discourse.

(20) Tom took a telescope. He saw a man with it.

We assume that he and # in the second sentence are
anaphoric with Tom and the telescope, respectively, in

“When £ is not entirely attributed to potential energy, spread-
ing activation is not guaranteed to converge into a stable equi-
libginm but may exhibit chactic behaviors, Such » less restricted
systermn may be more powerful and useful, bul that i beyond the
seope of the present discusaion.
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the first sentence, There is an attachment ambiguity
in the second sentence. about whether the prepositional
phrase with it modifies sew or 2 man Let us assume
that the structure of the constraint generated by pro
cessing this discourse looks like Figure 4. Each region

Figure 4: Semantic Association Concerning (20].

in & dashed closed curve represents a cluster of clauses.
These clauses have been created by symbolic inference as
described in the next section, {a) is a set of clauses in-
cluding the top clause. (b) and (c) represent two alterna-
tive readings of the second sentence of (20), each derived
by backward (abductive) inferences. The take(s,e} in ()
is a part of the hypothesis obtained by interpreting the
first sentence. Its first argument stands for Tom and the
second argument the telescope, so that the whole thing
means that Tom takes the telescope at some time. Thus,
reading (b) means that Tom has the telescope when he
sees the man, and {c] that the man has it when Tom sees
him. Clanse {d) i an inference rule to the effect that if A
takes B then A will have B.” Due to this inference rule,
the take{s,#) in (a} can imply the have(s,s) in (b} but
not that in (¢}, so (b) is more plausible than {c].

Note that there are two transitive cycles both go-
ing through the take{ss)s in (a} and (d]. 5o these two
atomic formulas tend to strongly excite each other due to
assimilation energy, provided that every relevant equa-
tion is excited. These two cycles also both go through the
have{s,2)s in (b} and {d). making them tend to strongly
excite each other. too. On the other hand. there is
only one transitive cvele which goes through both the
have(s,s)s in (¢) and (d). Hence the associative infer-
ence based on the take{s,s) in (a) through (d] supports
the have(s,s) in (b} more strongly than it supports the
have(s,e) in [c}.

TWe ignore the temporal relation between the taking and the
having here.
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5 Symbolic Inference

We consider just one tvpe of symbolic operation called
subspmption. It is & sort of program transformation to
create a new subsumption relation. A subsumption op-
eration concerns a pair of unifiable atornic formulas. As
shown in Figure 5, subsumption operation from atomic

Figure it Subsumption Operation From Atoimic Formula
o to 4.

formula o to J divides # into @ and 3%, @ is the maxi-
miim subset of F subsumed by . and " is the rest of &
beta” = # — 3", Neither o nor #° is hence unifiable with
A", as indicaled in the figure, If it is soanelow known
that ¢ subsumes  from the beginning, then no copy
{division) need tc happen. When the division of J actu-
ally takes place, then it causes a duplication of the clause
containing 4, atomic formula £ accordingly dividing into
£ and £"% Unlike in the division of 3, & and £” are
unifiable both with each other and with all the atomic
formulas unifiable with £, because there is no reason to
believe () N I{¢") = §.and 50 on

We omit further details of combinatovial aspects of
symbolic inference, due to the space limitation, and Eo
on to the dynamical aspect. Subsumption generates pew
atomic constraints and thus redefines [, 2,4 is set to 1.
because o subsumes &' seew and senp 2re hoth set to s
because we are not sure about the subsumption relation
between these atomic formulas. The other coefficients
are simply inherited along with the copy of the part of
the constraint network.

Since subsumption is & local operation. it may take
place in parallel at many different places. Now we con-
sider how Lo guide such computation based on the dy-
namics, without recourse to any centralized control. As
the preference score for a subsumption, we could use the
expected contribution of that subsumption to reduction
of I7 at the equilibrinm of spreading activation. As men-
tioned above, a subsumption from atomic formula o to 3
divides 3 into 8" and 3", setting s, to . The expected
influence of this to reduction of the wtal energy could
be estimated by —Bﬂ—f;, where P is defined to be the

87 o and 4 belenged to the same clause, then o is also divided
into & and a”, I a' and @ belong to one clavse and hence o
and 2 beleng vo another. then o' and 3" subsume each other and
o' and 3 are not unifiable.

minimal £y ({'s under the condition F = {) in a neigh-
borhood of the curvent 7. [’y is a representative part
of energy whose definition is not changed due to svm-
bolic operations. For instance. it could be the disjunc-
tion energy of clause +true.. At any rate, the symbolic
computation is controlled so as to mininuze some part
of energy. whereas the analog computation to minimize
the whole energy. By employing generalized backprop-
agation (Pineda 1953), f& can be efficiently computed
for all &, 4. The space complexity of that computation is
linear with rega..l'd to the size of the constraint |:|r|.'l.wur1:.
and its parallel Lime complexity practically constant, See
APPENDIX for mathematical details,

Our method implements some important features of
other inference mechanisins proposed elsewhere. First,
welghted abeluction (Hobbs et al. 1990, Stickel 1939}
emerges from our methed. In weighted abduction. just
as in the current framwwork. one attempts to tailor a best
hypothesis to explain the observed fact. A hypothesis is
a copjunction of (negated) atomic formulas. Each con-
junct in & hypothesis 35 assigned an assumability cost,
which is a cost of assu.ming the c.unjuncl.. A h:.rpul.hu-
sis is better when the total assumability cost is smaller,
Apsumability cost may be reduced by unifying the con-
juncts. For instance, if the current hypothesis contains
p(A) and p{B) one of which has a large cost, then this
cost will be reduced by unifying them, Assamability cost
is inherited through abduction. For example, a cost of
p(A) in the current hypothesis is inherited down to q{A)
and r{A) when p(A) is resolved by clause +p{X) —q(X)
=r{X})..

Assumability cost is basically captured by our com-
pletion energy: the conjunct in guestion must be inferred
otherwise than the way it was first postulated. or it would
be inhibited due to its Cmnpietiuu Cnergy. So an iher-
ent cost s encoded by a completion coefficient of atomic
formula o. This gives rise to a high preference score
of subsumption from a. because if o comes to subsume
another atomic formula 3 then perhaps the completion
energy of o is reduced due to 5,2 = 1, which will he
indicated by & large value of —ﬁ‘::. An inherited cost is

captured along the same line, For example, when p(A)
with a large cost subsumes p{X) in clause +p(X) -q{X)
—r{X).. the completion energy of p(A) is probably still
large, but it will decrease if q(X) and r(X) get more ex-
cited. So the preference score of subsumptions from q(X)
and r{X) tend to be large, corresponding to the inherited
cost in weighted abduction.

Our framework is more flexible and dynamic than
'H'E'igllted abduetion. That 15, we allow inferences con-
cerning & hypothesis to influence the state of other hy-
potheses. whereas in weighted abduction assumability
costs change only due to unification invelving the atomic
formulas carrving those costs, Se our method is more
appropriate to account for such phenomena as belief re-
vision. In this conneclion. our dynamical semantics is
much more general than the probabilistic semantics of



Charniak and Shimony (1990), which is restricted to
propositional Horn logic,

Second, marker passing | Charniak 1586, Norvig 1988)
may be alse understood as an emergent property of the
dynamics, along the same line as above. Consider the
following discourse for example.

{21) Tarc got a book. He paid one thousand ven.

Figure 6 shows the network involved in the abductive in-

an P
Imatanna mnmul
e
5@\‘ payment
buy

Figure 6: Marker-Passing for {21).

ference to assume that Taro bought the book. In the lefl
is the marker-passing network encoded? by the constraint
network, which is 1t the right. A nede in marker passing
network corresponds to an argument or a predicate in
our constraint. An edge belween an arguinent node and
a predicate node represents that the argument satisfies
the predicate, and an edge between two predicate nodes
represent a clause referring to the two predicates. The
divections of the arrows are static. and irrelevant to the
direction of marker passing. get(Gl) and pay(P1} are cre-
ated upon reading/hearing (21), where Gl and P1 stand
for the event of Tarc's getting a book and that of his
paying money, respectively.

In marker passing, the abductive inference of Taro's
buving the book will be suggested by a collision of mark-
ers passed down from G1 and P1 along the path between
them. In our framework, the same abductive inference
consists of three subsumplion operations aleng the {copy
of ) extraclausal equations in the right of Figure 6. The
preference scores of these subsumptions are probably all
high, because of the path of clauses between get{Gl)
and pay(P1). If the activation value of get{Gl) is larger
than &, then it excites get(E) due to assimilation energy.
get(E) excites buy(E) due to exclusion energy, buy(E} ex-
cites buy(B) due to assimilation energy, and buy(B) ex-
cites pay(P) due to disjunction energy. get(E} is simi-
larly excited indirectly by pay(PLl). So get(E), buy(E},
buy(B) and pay(P) are excited stronger than when there
were no such path. The subsumptions along the extra-
clausal equations in the right of Figuve § ave therefore
very promising for reduction of positive completion en-
ergy, so thai the abductive inference mentioned above is
suggested,

A path of clauses between two very informative atomic
formulas (ones with activation values close to 0 or 1) thus
tends to raise the preference for subsumptions along it.

Charniak (1986) employs o similar encoding scheme.
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This is what marker passing is designed to capture in
general, Of course how much the preference for sub-
sumption increases depends on the dvnamical properties
of the path. For instance. the path in Figure 6 would
nol indicate the above ahductive inference if the exclu.
sion coefficients of the two clauses are small' Sugges-
tien of inference also depends on the length of the path.
Obviously. shorter paths more readily suggest inferences.

Subsumptions can alse be promoted by associative
inferences discussed in the previous section. because a
subsumption between two atomic formulas will strongly
affect P when some of the extraclausal equations between
them are strongly excited owing to transitive cycles in-
volving them, See Hasida (1991) for how generation of
natural language sentence is controlled by heuristics re-
garded as approximating our control scheme taking such
associations into account.

6 Concluﬂing Remarks

We have discussed a framework of constraint for design-
ing a cognitive svstem. To capture the partiality and the
corresponding situatedness of cognition, the constraing is
situated in & field of force derived from potential energy
representing the degree of violation. This field of force
gives rise to analog inference as spreading activation, and
also controls svmbolic computation to transform the con-
straint. Mot onlv nearly logical inferences and abductive
inferences but also associative inferences emerge out of
such a dvnamics.

A distinguished feature of our framework is that the
control scheme for inference is derived from a dynamics
which also provides the declarative semanties. In com-
parison, the other frameworks such as marker passing
stipulate the inference control apart from the declara-
tive semantics. The inborn integration of declarative se-
mantics and inference control as in our method will not
only provide a clear perspective of the design, but also
guarantes emergent reflection of semantic relevance in
information processing. In this connection, our method
is integrated also in another sense that it contiols ana-
log and symbolic inferences based on the same dynamics.
This is a strong advantage over the methods such as in
Waltz and Pollack {1985) which separate the two infer
ence schemes,

The eurrent framework should be extended with re-
spect to several points. First. some partial processing
method is necessary for dealing with transitive cycles.
although at any rate a massively parallel computational
system is essential to implement our theory. Second.
deletion should be incorporated in addition to subsump-
tion, in order to prevent the constraint network from
unlimited growth, Probably deletion is regarded as a re-
verse of subsumption, and hence the control of deletion

"WyWhat Charuiak [1986} calls isa-plateau can be undersiood
along the same hae,
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may be formulated along the same line as that of sub-
sumption. Third, the control method should take into
aceount consistency checking as well. Consistency check-
ing pertaining to binding is discussed in Hasida {1991),"
In order to handle consistency checking in general, we
will have to give preferences not only to subsumptions
which seem to decrease P but also o those which seem to
increase P. Finally, learning is vitally necessary for both
the coefficients (Sutiner and Frtel 1990) and the sym-
bolic structure of constraint. Further scrutiny is open
with regard to the role of the dynamics in learning,

APPENDIX

The equilibrium condition of the spreading activation
concerning ¥ is regarded in general as ¥ = §, where y
is & vector function of 7 and 5. Let s be a parameter

in §. When 7 is differentiable. we get (22) where 24 is

defined by (23). *”
fry
aF s 858% OF
22 —_—= H _— e — —
(22) s~ |, 35 ds | Bs
.
a i
oy _ (%
(23) - -
aF

1 m
124 ) follows from {22), where [ is the n-dimensional unit
matrix.

o _(,_oi\" 8§
Ll 7 (1 Eif) Bs

Let H be a scaler function of # and S, and P be a scalar
function of 5 such that P = H when £ = y. Where H
is differentiable, we get the following.

- =] o
C=TEtE RO ¥

= 707
“‘ﬂs+%§

(25)

Here # is defined by (26), from which we obtain (27).

. 8H a! _8§  8H
26) ;=22 (f_2¥ M 7= 7 o8
': J Z EE (JT ﬂ:i:') '[ ] B o= zai-l- 3';'

Thus, £ is computed via spreading activation based oo
(27). So as a whole we are Lo do double-layered spread-
ing activation, the first layer for £ and the next for .
We omit mathematical discussions on the convergence of
spreading aclivation. Finally, %E can be obtained from
{23). We have avoided caleulating %f, which would be a

very complex computation. Note that %‘;’L s not zero for
most z;, whereas '.?g and %f ATE Sparse.

" Treatment of binding could probably be aseribed to the general
case of consistency checking plus transitivity energy.

Y¥In the current formulation, y = H_ﬂlﬂﬂ' whare ¥; is a poly-
nomial not involving ;.
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