PROCEEDTNGS OF THE INTERMATIONAL COMFERENCE
OM FIFTH GENMERATION COMPUTER S5YSTEMS 1992,
edited by ICOT. © [COT, 1992

1125

Chart Parsers as Proof Procedures for
Fixed-Mode Logic Programs

David A. Rosenblueth

IIMAS, UNAM
Apdo. 20-726, 01000 Mexico D.F.
drosenbl@unamvml.bitnet

Abstract

Logic programs resemble context-fres grammars. More-
over, Prolog’s proof procedure can be viewed as a gener-
alization of a simple top-down parser with backtracking.
Just as there are parsers with advantages over that sim-
ple one, it may be desirable to develop other proof pro-
cedures for logic programs than the one used by Prolog.
The similarity between definite clauses and productions
sugpests looking at parsing to develop such procedures.
We show that for an important class of logic programs
(fixed-mode logic programs with ground dala structures)
the conversion of parsers into proof procedures can be
straightforward. This allows for proof procedures thai
eonstruct refutations that Prolog does not find and opens
up oppertunities for parallelism,

1 Introduction

A logic program consists of clauses that look like the pro-
ductions of a context-free grammar. This suggests con-
nections between proof procedures and parsers. In fact,
Prolog's proof procedure can be regarded as a generaliza-
tion of a simple parser with backtracking. Although this
language has found numerous applications, ils execulion
mechanism has several disadvantages. For instance, if
such a mechanism finds an infinite branch of the deriva-
tion iree, it enters a nonterminating loop. Thus, it may
be desirable to develop new proof procedures for logic
programs.

Simple parsers with backtracking also enter nontermi-
nating loops easily. This has motivated the design of
other more sophisticated parsing methods. In contrast
with proof procedures for logic programs, there already
exisls a great variely of parsers. The resemblance he-
tween definite clauses and productions suggests looking
at parsers to develop new proof procedurss,

Pereira and Warren [1983) have adapted Earley's
[1970] parsing algorithm, but the result is inefficient com-
pared with Prelog. [t uses subsumption, which iz NP-
complete [Garey and Johnson 1979). We show that by

considering a restricted class of logic programs, parsers
can be readily adapted to proof procedures. This class is
important: it consists of fixed-mode logic programs with
ground data structures. Moreover, our proof procedures
do not use subsumption and may be more efficient than
Pereira and Warren's.

Compeositional programs. By using difference lists
to represent strings, a logic program can be restricted to
coincide with the productions of a context-free grammar.
Hence, for this class of logic programs, parsers are proof
procedures. Such a class, however, only has the expres-
sive power of context-free grammars. Assuming that we
are interested in having a programming language, this
suggests generalizing such programs without losing the
close similarity with grammars. We do so by allowing the
body of clauses to denote the composition of arbitrary
binary relations; we call such programs “compositional.”
Prolog programs are not normally written in compaosi-
tional form. Thus, we consider programs in a larger class
(fixed-mode programs with ground data structures) and
transform [Rosenblueth 1591} them into compositional
form.

Fixed-mode programs. A "mode” for a subgoal is
the subsst of arguments that are variables at the time
the subgpal is selected. Thus, the mode depends on the
derivation tree for a program and a query. When we refer
to a *fixed-mode logic program,” we actually mean a pro-
gram and a query such that with Prolog's computation
rule all subgoals with the same predicate symbol have
the same mode. By further resiricting these programs
to have “ground data structures,” we require all argu-
ments in a subgoal that are not variables o be ground
terme when the subgoal is selected. This class of pro-
gram is important because it includes many programs
occurring in practice.

AL first glance, il seems that the presence of differ-
ence lists causes 2 program to have data structures with
variables. However, by separating both components of a
difference list it is possible to write some programs using

1126

difference lists as programs with ground data structures.
(The usual quicksort program is such an example; the
sorted list is then built backwards.)

Overview of the paper. The rest of this paper is or-
ganized as follows. Section 2 reviews chart parsers. Sec-
tion 3 shows that such parsers are also carrect for com-
positional programs. Section 4 deals with a method for
converting fixed-mode to eompositional programs, thus
making chart parsers proof procedures for the former
class of programs. Section 5 compares these procedures
with Pereira and Warren's. Section 6 concludes this pa-
per with some remarks,

2 Chart parsers

Charts. Chart parsers [Gazdar and Mellish 1989) are
methods for parsing strings of context-free languages
that can be regarded as a generalization of Earley's algo-
rithm. A chartis a set of “partially” applied productions,
usually called edges. Each edge contains, in addition to
the part of a production to be applied and the left-hand
side of that production, two pointers to symbols of the
string heing parsed. The substring between these point-
ers corresponds to the part of that production that has
already been applied.

it is useful to classify edges into Lthose that have not
been applied at all: empty active edges, those that have
already been applied completely: passive edges, and all
the others: nonemptly active edges.

The fundamental rule. New edges are created ac-
cording to the following rule, often called the fundamen-
tal rule,

If a chart confains:

1. an active edge (either empty or nonempty) from
point a to point b in which the next symbol lo be
applied is (), and

2. a passive edge with lefi-hand side Q, from poini b
to point c,

then ereale a new edge from a to ¢ in which the produc-
tion is the same as lhe one in the aclive edge, but with
@ applied. Figure 1 illustrates this rule. In figures
representing edges, we use the following notation. Each
edge is [abeled with an arrow, a symbol to the lefi of
the arrow, and a possibly empty string to the right. The
symbol is the left-hand side of the partially applied pro-
duction. The string is the part of that production that
remains fo be applied.

Top-down and bottom-up parsing. The fundamen-
tal rule takes only existing edges to create new cnes, and
does not use information from the set of productions.

P B 8

a b [

Figure 1@ The fundamental rule,

Therefore, a mechanism is needed for building edges from
productions. Two main mechanisms for this purpose
are used, commonly called “top-down™ and *bottom-up®
rules. The former builds parse trees from the root to-
wards the leaves, and the latter does so from the leaves
towards the root.

The top-down rule creates edges as follows. If an active
edge from a to b is added to the chart, in which the next
symbol {o be applied ts), then create one empty active
edge from b to b for every production having () as left-

hand side and labeled with that production. Figure 2
exemplifies this rule.
Q=—+85--.T
one new cdge
for every
production
0= §...T

a b
Figure 2: The top-doun rule.

GGiven a parse tree having a leaf (} and a node P as
parent of J, this rule allows for @ to be expanded by
creating an empty active edge with as left-hand side.
Hence, parse trees are built by expanding the leaves with
nonterminals, which is a construction of parse trees from
the root towards the leaves,

The bottom-up rule creates edges as follows. [f a pas-
sive edge from a to b is added to the chart, in which
the left-hand side symbol is Q, then create one empty ac-
tive edge from a to a for every production having Q as
first symbol on the right-hand side and lebeled with that
production. This rule is depicted in Figure 3.

The bottom-up rule takes a passive edge, representing
a parse subtree with () as root. By creating an empty
active edge with) as first symbel to be applied, and F
as left-hand side, @ becomes the child of a node F, which
is the root of a new subtree. Thus, this rule builds parse
irees from the leaves towards the root.

P~Q---R
one new edge
for every
production Q-
P=Q---R
a b

Figure 3: The bollom-up rule.

Base of the chart. The fundamental rule takes two
edges, One of them is active and the other one passive.
The next symbol to be applied in the former must be
the left-hand side of the latter. This means that the case
where the next symbol to be applied is a terminal is not
covered {all left-hand sides of productions are nontermi-
nals). We can remedy this situation by assuming that
the productions have been written in such a way that
each terminal occurs only in preductions with exactly
one symbol (that terminal) on the right-hand side. Now
we can create certain edges as follows. For each produc-
tion with a terminal ocourring in the string being parsed,
we create a passive edge from that terminal to the next
one, labeled with that production. We can do so, because
an edge represents a partially applied production (where
“partially” may mean “completely”) and all those pro-
ductions can be immediately applied. Now we can rely
only on the fundamental rule to operate existing edges.
We shall call the set of all edges created from terminals
the base of the chart.

Initialization. To initialize a parser using the bottom-
up rule, it suffices to create the base. The reason is that
the creation of edges in the bottom-up rule depends only
on the existence of a passive edge. In a parser using
the top-down rule, however, we must also create emply
active edges from the first symbol of the string being
parsed to itself labeled with productions having the start
symbol of the grammar as left-hand side. This is because
such a rule vses an aetive edge to create another one.

Agenda. The rules for producing edges that we have
described only create edges, but do not add them to the
chart, Normally, chart parsers store edges in two differ-
ent data structures: the chart and an agenda of the set
of edges to be added to it. The choice of the procedure
for selecting edges from the agenda to be added to the
chart is a degree of freedom relegated to the chart-parser
designers. When an edge is removed from the agenda,
it is added to the chart only if it has not been added
before.

1127

{[a]. [8])

{1 =, 20}

Figure 4: A chart construcled with the top-down rule.

Example. Figure 4 shows a chart created by a parser
using the top-down rule for the grammar with produc-
bions:

@ — ko i ky

@ — (la, [1, [0])
ko — {[], [a], [6]}
ky — {[al, (8]}

and the input steing {[], [a], (8} {[a], 0. (81} {[a], 8])
{ll: [e, #]). Terminals have been enclased in angled brack-
ets. The last symbol {“, [, 4]} is not part of the string
itself, but rather an end marker. This example will be
uged again to illustrate the chart ereated by a proof pro-
cedure when concatenating [a] to [§].

Phillips’ wariant of the bottom-up parser.
Plillips observed [Simpkins and Hancox 1990] that the
bottoin-up chart parser can be modified so that some
edges can be disposed of as the chart is built, The
agenda, then, only keeps passive edges, ordered with re-
spect to the position of the symbol on the string they stari
Jrom. The chart only keeps active edges. When the first
passive edge E is removed from the agenda and momen-
tarily added to the chart, then

1. the fundamental rule is applied as many times as
possible, and

2. the bottom-up rule is also applied if possible, fol-
lowed by applications of the fundamental rule.

In both cases, if the resulting edges arve active, they are
added to the chart; otherwise they are added to the
agenda. After this, F can be disposed of. The reason
is that E cannot contribute to the ereation of any more
new edges,

1128

3 Chart parsers as proof proce-
dures

In this section we will show that chart parsers can be re-
garded as proof procedures for compositional programs.

State-oriented computations. The differencelist
representation of strings associates a production

Prp—ﬁ .P]_"'P"_ I::l}
with a clause of the form

Pl Xg, Xp) = Flfxmxl.}r--:Pn{Xn—hxn:' (2}

and a production with a single terminal on its right-hand
side
FP—a (3)

with
pl[a}X]), X) — (4)

With a programming language having only those
clauses we cannot compute all computable functions.
But if we generalize (4) to

p(t,t') — (5)

where ¢ and t* are terms such that var{t’) C var(t), we
can. {Throughout, var(t) denoles the set of variables oc-
curring in term £.) This can be shown, for instance, by
associating a logic program with a flowchart in such a
way that both have the same set of computations [Clark
and van Emden 1981]. A refutation for such a program
and & query with a ground term in its first argument may
be said Lo define a sequence of ground termes, resembling
the sequence of states in a computation of & program.
ming language using destructive assignment. Thus we
shall say that such a logic program defines state-oriented
compulalions.

Strings vs. state-oriented computations. There
are two main differences between state-oriented compu-
tations and strings. One is that at a given point of a
state-oriented computation, there may be more than one
way to extend it. State-oriented computations are then
said to be nondeterministic. This phenomenon does not
occur in strings, which have a linear structure.

The other difference is that whereas we do know all
the symbols of the string befere it is parsed, we do not
know initially all the states in a computation. A proof
procedure could in principle compule some sequence of
states before trying to build a chart. However, it may
not be convenient to do so, because not all sequences of
states form Lhe base of a chart. A better idea is to extend
the compulations one step at a time, guided by the part
of the chart built so far,

Chart parsers as proof procedures. We shall gen-
eralize chart parsers to proofl procedures by establishing
a correspondence between chart parsing and resolution.

The difference-list representation of languages suggests
that clauses of the form (2) should play the role of pro-
ductions with no terminals on the right-hand side (1).
Clauses of the form (3) would then be the counterpart of
productions with exactly one terminal on the right-hand
side {3},

Given this correspondence, we now turn our attention
to edges. The fundamental rule of chart parsing takes
two edges and produees another one. Resolution, on the
other hand, takes two clauses and produces another one.
This suggests identifying edges with clauses and the fun-
damental rule with a resolulion step.

The fundamental rule. [f an edge from a to b labeled
with Py — F--- P, corresponds to a clause of the form

P{:":arxn} = Pi'[b1xi]1--'=Pn[xn—lrxn} {ﬁ]

then the fundamental rule corresponds to a resolution
step having (6) (which plays the role of the active edge)

E.I'.H.'I

pilb,c) —

(which plays the role of the passive edge] as input
clavses. The resolving clanse of this resolution step is

pﬂ{a! XII} - p1'+l{csxl'+l.'lt' e 1pﬂ{xﬂ—|1 Xﬂ}

which corresponds to an edge from a to ¢ labeled with
Fy — Py --- Py By correctness of resolution, the re-
solving clause iz a logical consequence of the two input
clauses. Thus, we have generalized the fundamental rule
Lo a correct operation.

The top-down and the bottom-up rules. Given
the above identification of clauses with edges, the top-
down rule for parsing corresponds to the following. Let
P be a program in compositional form. If a clause of the
'Fl'.l]'m

pola, X)) — ml(b, X3), . pa (Koo, Xa)
is added to the chart, then create a clause of the form
pilb, Xa) = qu(b, X0), - g (Xinay Xim)
for every clause in P of the form
Pil Koy Xm) = 1(Koy X1)s -« s G (Xim1y Xm)
The created clause is an instance of a clause in P, which

is a logical consequence of P. The bottom-up rule can
be peneralized in a similar way.

The base. The base can be extended one step at a
time as follows. For each clause

pola, Xa) — pilb, Xo)y oo Pa(X, X4)
that is created, create a clause
rib,1'8) —
for each clause in P of the form
rit,) —

such that b and ¢ unify with unifier # and there is a path
from p; to r. There is a path from p to v if

1. p'u;?'ur

2. there is a clause in P of the form
p(Xo, Xn) — g(Xo, X1), ..., 5(Xme1, Kim)

and there is a path from g to r.

4 Conversion of fixed-mode to
compositional programs

We have seen that chart parsers can be regarded as
proof procedures for compositional programs. However,
logic programs are not normally writlen in compositional
form. In this section we observe that it is pessible to con-
vert & fixed-mode logic program with ground data strue-
tures into compositional form. The resulting program is
logically implied by an extension of the original one.

First we define the class of programs transformable by
our method and the class produced by it. Then we prove,
for a particular example, the correctness of the resulting
program. We omit the proof for the general ease, which
can be found in [Rosenblueth 1991).

4.1 Directed and compositional pro-
grams

Directed form. The class of transformable programs

has fixed modes. Thus we assume, without loss of gen-

erality, that in each predicate, all input arguments have

been grouped into one argument, and all cutput argu-

ments into ancther one. We write the input argument

first, and the output argument second. A definite clanse
of the form

Pn{iu,!:‘} A {i:n h},p,[t;,h},. ‘e rPJl{E:.-iltu] (n=0)
where
L. ‘r“{ti} n ""”“_;'} =@, fori,j=0,...,nand iy

2. war(t!) C var{fp) U - U vas(t;), for i = 0,... ,m;

1129

3. each variable occurring in #f occurs only once in i,
fori=10,...,n

is a directed clause. A direcled program is a logic pro-
gram having only directed clauses, Condition 1 causes
the term constructed when a subgoal succeeds to have
an effect only on the input of other subgoals. Condition
2 causes the input argument of all selected subgoals to
be ground if the input of the initial query is also ground
and subgoals are selected in a left-to-right order. We in-
clude Condition 3 only for technical reasons. This is a
miner restriclion that considerably simplifies both stat-
ing our transformation and proving it correct. We call
these “directed programs" because we can visualize the
binding of & variable as flowing from one occurrence to
subsequent occurrences.

Compositional form. A compositional clouse is a def-
inite clause of the form

pit,t) =~ or
pn[Xn. Xﬂ.} = M EXH-X”:-' s :Pn[}‘rn—llxn} {n = D:I

where ¢ and {' are terms such that var{#') C var(t), and
the X; are distinct variables. A logic program with only
compositional clauses is a compositional program.

We shail need various axioms. As with program
clauses, we assume that each axiom is implicitly uni-
versally quantified with respect to its variables.

Mormally, an SLD-derivation is either successiul,
failed, or infinite. Sometimes, however, we shall use
derivations that end in a clause that could possibly be
resolved with a program clausse. We shall refer to these
derivations as partial derivations.

A partial derivation with a single-subgoal initial query
yields a conditional answer [Vasey 1986]. Such an an-
swer is a clause in which the head is the subgoal in the
initial query of thal derivation with the composition of
the substitutions applied to it, and the body is the set
of subgoals in the last query of that derivation.

4.2 Example

We illustrate our method with the following program for
concatenating two lists. It defines the usual append rela-
tion, but its arguments have been grouped in such a way
that its two inputs constitute the first argument, and its
output, the second. a({X,Y),{Z)) bolds if Z is the con-
catenation of the list ¥ al the end of the list X. The
angled brackets { } are an alternative notation for ordi-
nary brackets [], that we use to group input and cutput
arguments. We do this for clarity.

a{{[l,¥), (¥}) ~ (7)
a({WIX], Y}, {(WIZ])) « a((X,¥),(Z) (8)
ty £ # h

1130

We shall convert (8), which is directed, to cornpositional
form. This process can be motivated as follows.
Assume that we wish to construct an SLD-derivation
for (7) and (8) with & query having & ground input that
unifies with the head of {8). It is necessary, then, to
remember the term with which W unifies, to be able
te add it to the front of the result of appending the
lists that unify with X and ¥. This lack of informa-
tion in the arguments of the subgoal of (8) prevents us
from representing a computation by the composition of
the relation denoted by a{X,¥) with itsell. To be able
to use relational composition for representing computa-
tions, we must provide the missing information to the
arguments. A common technique in the implementation
of state-oriented languages for recording values needed in
subsequent steps of a computation is the use of a stack.
This suggests storing the term unifying with W in a list
that is treated as a stack. We thus define the predicate:

@((Sta)X), (St:]¥)) «+ Sty = Sty k a(X,Y) (9)

Although both Sty and 5#, represent the same stack, it
will be convenient fo keep two names for this term, so
that the input of this new predicate shaves ne varinbles
with the output. Later we will see why we wish clauses
in which the input and the output of their atoms share
no variables,)

We will also use of the standard equalily theory. This
theory consists of the following axioms:

A=X

AX=Y+¥Y=X

X=FX=¥VY¥Y=2

Ty X)) = f(h,. .)~
KH=h,. XK=

ALV = U=X,V =Y,pX.,Y)

which are called, respectively, reflexivity, symmetry,
transilivity, [unction substitutivity, and predicate sub-
stitutivily. Note that the last two axioms are actually
axiom schemas; an axiom is included for every function
and predicate symbol respectively.

MNext, we can derive another clause in which the in-
put and the output of the atoms have no variables in
COMIMon:

a({[WIX],Y), (W] 2])) = W = W', a((X,), N
1
This clause can be obtained as a conditional answer,
starting from the query + o{l7,1V) and using lunction
substilutivity to disassemble the term ([W|Z]), and re-
flexivity to assemble it with W' instead of 1.
Nexl we can proceed as follows. Unfolding! (10) on

I program-transformation terminclogy, the “unfold® cpera-
lion is & resolution step. The “fold” operation replaces the sub-
gonls that unify with a conjunciion of atoms by a single atom using
a delinition. '

the " part of the definition of & (9) we ebtain:

i((S, [Wol Xal, Yo}, (St1, [Wh]Z1]})
S'tﬂ - Stl: Wﬂ = Wh ﬂ[{xﬂz -‘!11}. {zl}:l
Next we fold the “iff" version [U|V] = [(F|V'] = U =
ULV = V' of the function substitutivity axiom for the
list-conatructor function symbal:
&{{Stﬂl [Wﬂlxﬂ]r]”"J.:I'r {Sh! {Wllzd.:l'} -
[WalSta] = [Wh|St], a({Xo, Yo}, (Z:})
and fold the definition of a:

a({Sto, [Wol Xo), Yob, (5t1, WA Z1])) —
a({[Wol Stol, Xo, Yo}, {[W1|5e.], Z:}) (11)
Now the head (Wy) of the first list in the original clause
can be thought of as being removed from that list, and
pushed onto the stack, then being removed from the
stack with another name (W) and finally added to the
front of the result of appending the tail of the first list
to the second.
The fact that in {11) the inputs share no variables with
the outputs allows us to fold the definitions of ky and k;:
kolU, V) v 388,3Wo 3 X0TY0.{(Sto, [Wol Xo), Yo) = U
& ([Ws|Ste], Xo, Yo) = V]
k(UL V) = 350,30, 32, [([W] 58], 2,) = U
& (54, [Wh]4,]) = V]
in the following clause:

&(Us, Us) «— (Sto, [Wol Xo), Yo} = Us,

HWﬁlSEﬂ]:XDrm} = Ul:
{{Wh18t], 2,) = U,
{5t [Wh|Z4]) = Us,
a(lh,)

which is a logical consequence of (11) and the standard

equality theory. The resulting clause is:

a(Uo, Us) = ko(Us, Uy), &(Uh, Uz), ks (U, Ua)

Using a result found, for instance, in [Shoenfield 1967
p. 57, 58] we can prove that the fold steps preserve all
models of the program.

[t may not be practical to transform a program with
fold and unfold operations. The compositional form of
a direcled program may be obtained in a more straight-
forward manner based on the theorem in the Appendix.

4.3 Example (continued)

The compositional form of the append program used to
concatenate lists is, then:
a(Us, Us) — ka(Us, Us), a(Us, Us), by (U, Uy)
&HSE,I], F}!{SLY}] =
ko({St, [W]X], YV}, {[W]5t], X, Y)) «
ki (((W]58), Z), (St, [W]2]))

The chart created by a proof procedure using the
top-down rule for this program and the query +~
a({[],[al,[B}, Z) was shown in Figure 4.

5 A comparison with Pereira
and Warren’s Earley deduc-
tion

Pereira and Warren [1983] have extended Earley's [1970]
algorithm to a proof procedure for logic programs that
they call “Earley deduction,” and we shall now compare
their work with ours. Their proof procedure has the
advantage that it can be applied to any logic program.

Two rules prgdum Thew daum; when none can be ap-
plied, the process terminates. Sinee chart parsers are a
generalization of Earley's algorithm, we can give such
rules using the chart-parsing terminology.

1. If the chart contains a clause & having a selected
literal that onifies with a unit clause either in the
chart or in the program, then create the resolvent of
' with that unit clause. {This rule is the counter-
part of the fundamental rule as well as the extension
of the base.)

2. If the chart contains a clause having a selected literal
that unifies with the head of & nonunit clause C in
the program with most general unifier #, then create
the clanse C8. (This rule parallels the top-down rule
of chart parsing.)

A new clause is added to the chart only if there is
no clause already in the chart that subsumes the new
one. Subsumption, however, is NP-complete [Garey and
Johnsen 1979].

Earley deduction terminates for some programs if sub-
sumption is replaced by & test for syntactic equality.
This change results in a prool procedure that can be
faster than the original Eatley deduction and our meth-
ads. Our proof procedures, however, are preferable than

this variant of Earley deduction in programs for which
our methods terminate but such a variant does not. We
now exhibit one such example. Given the directed pro-

gram
p({h, X) < p((), (X))

and a chart initialized with the clause ans(¥) «

p{{), ¥), Earley deduction with a syntactic equality test

instead of subsumption produces the infinite sequence

2({), Y}~ p({}, £(¥))
p((h F(¥)) = p({), F(FYD))

With subsumption, Earley deduction does h:,'rmina.te for
this exarnple. Our method, in contrast, does not require
subsumption and yet also terminates.

1131

We have implemented Earley deduction based on the
top-down chart parser of [Gazdar and Mellish 1989, p.
211, 212). and using Robinson's [19656] subsumption al-
gorithm as modified in [Gottlob and Leitsch 1985]). We
have also adapted both top-down and bottom-up parsers
[Gazdar and Mellish 1989, p. 208-212] to proof proce-
dures {or compositional programs; In addition, we have
madified Phillips’ variant of the bottom-up chart parser
as presented in [Simpkins and Hancox 1990]. The fol-
lowing table summarizes execution times for several pro-
grams and queries. The tests were performed on a SUN
SPARC station 1 using SICStus Prolog.

PWI1 | top-down | Phillips PW2
time | time | zu | time | su | time| su
perm 48 46 | 1.0 11 | 4.4 7| 6.9
{ hanoi 36 21 | 1.7 9 4.0 21 18.0
append 49 221 2.2 5| 98 6| 8.2
qsart 249 (83| 7356 17 | 14.6

"perm” computes all permutations (four elements),
"hanoi” solves the Towers of Hanoi problem using dif-
ference lists to store the sequence of steps of the so-
lution (five disks), “append” is the ordinary append
used to concatenate lists (80 elemeats), and “gsort” is
guicksort using difference lists (20 elements). “PW1" is
Pereira and Warren's proof procedure, “top-down” and
“Phillips” result from our method, and *PW2" is a vari-
ant of Pereira and Warren's proof procedure in which
subsumption has been replaced by a syntactic equality
test. “su" stands for “speedup.” Times are in seconds.

6 Concluding remarks

Chart parsers work for a generalization of the difference-
list representation of context-free grammars. This gen-
eralization replaces the clauses representing productions
with exactly one terminal by clauses having terms sub-
ject to only one syntactic restriction: all variables in the
second argument must appear in the first (compositional
programs).

It is possible to transform [Rosenblueth 1931] fixed-
mode logic programs into this generalization by adding
arguments that play the role of a stack. Consequently,
charl parsers can be used as proof procedures for
fixed-mode logic programs transformed by this method.
Strings correzpond to sequences of ground terms.

Experiments have shown that programs so trans-
formed can be executed several times faster than with
the previous adaptation of Earley’s parser to a proof pro-
cedure done by Pereira and Warren [1983].

Phillips has modified [Simpkins and Hancox 1990] the
bottom-up chart parser so that porlions of the chart be-
ing built can be disposed of. It is essential in the doctored
parser to keep edges ordered with respect to the string

1132

being parsed. In compositional programs, computations
form sequences and Phillips’ idea can also be applied.
It is not clear how to apply it to Persira and Warren's
method.

Proof procedures obtained from chart parsers termi-
nate for some programs for which Prolog does not. In
addition, it is pessible to build charts in parailel [Trehan
and Will 1988).

Acknowledgments

We are grateful to Felipe Bracho, Carlos Brody, War-
ren Greiff, Rafael Ramirez, Paul Strooper, and Carlos
Velarde, The anonymous referees also made valuable
suggestions. We acknowledge the facilities provided by
[IMAS, UNAM.

Bibliography

[Clark and van Emden 1981] Keith L. Clark and M.H.
van Emden. Consequence verification of flowcharts,
IEEE Transactions on Softwere Engineering, SE-
7(1):52-60, January 1981,

[Earley 1970] Jay Farley. An efficient context-free pars-
ing algorithm. Communications of the ACM, 14:453-
460, 1970,

|Garey and Johnson 1979]) Michael R. Garey and David
5. Johnson. Computers and Intractability. A Guide
to the Theory of NP-Completeness. W.H. Freeman
and Company, 1979,

[Gazdar and Mellish 1989] Gerald Gazdar and Chris
Mellish. Nalural Language Processing in Prolog. An
Iutroduction to Compulational Linguistics. Addison-
Wesley, 1989,

[Gottlob and Leitsch 1985] G. Gottlob and A. Leitsch.
On the efficiency of subsumption algorithms. Journal
of the ACM, 32(2):280-295, 1985,

[Pereira and Warren 1983] Fernande C.N. Pereira and
David H.D. Warren. Parsing as deduction. Technical
Report 205, SRI, June 1983,

[Robinson 1965) J.A. Robinson. A machine-oriented
logic based on the resclution principle. J. ACHM,
12:23-41, 1965,

[Rosenblueth 1991] David A. Rosenblueth. Fixed-mode
logic programs as state-oriented programs. Technical
Report Preimprese No. 2, [IMAS, UNAM, 1991.

[Shoenfield 1967] Joseph R. Shoenfield. Mathematical
Logic. Addison-Wesley, 1967,

[Simpkins and Hancox 1990] Neil K. Simpkins and Pe-
ter Hancox, Chart parsing in Prolog. New Generation
Compuling, 8:113-138, 1590,

{Trehan and Wilk 1988] R. Treban and P.F. Wilk, A
paralle]l chart parser for the committed choice non-
deterministic logie languages. In K.A. Bowen and
R.A. Kowalski, editors, Logic Programming: Proceed-
ings of the Fifth International Conference and Sym-
posium, pages 212-232. MIT Press, 1988,

[Vasey 1986] P. Vasey. Qualified answers and their appli-
cation te transformation. In Proceedings of the Third
International Logic Programming Conference, pages
125-432. Springer-Verlag Lecture Notes in Computer
Science 225, 1986,

Appendix

Cur method for converting fixed-mode programs to com-
positional form is based on the following theorem, which
is proved in [Resenblueth 1991],

Theorem 1 Let O be a directed clause
Pﬂ'[tmt:-} = H:h il:ls ,f.l‘g{ﬂ, ..., p“[f:l_[va)

and [t

H. = {mf{ln] Lh-ss) MT’{!.‘.;[}) I’-I{'I}ﬂl"{i:ll el WT{f;:I}

fori=1,...

BolXoy Xanpa) — kol Xo, X1), pr(Xa, X),

by (X2, X3), ol Xa, K)o,
Ba(Xan-1, Xan)y kn(Xzny Xongr)

is logically implied by C, the standard equality theory,
the “iff” version of the function substitutivity aziom for
the list-constructor function symbol, and the following
arioms;

A (54X, {§f|3f}} = 5t =S & pi(X, ¥)

0. Then the clavse

i= ., reay Tt
-ku[U, V) e HYLU CoL Hi’mn,[{ﬁtltg} =0
& (Th[tg) = V]

i.'j_{Ul V:l L d 3}3.1 LA 3}’m1.1.[{21|£|} = U
& (Lafty) = V]

ks EU: V)= HYL,-.,.-j rer aymn—l .n—-i'[{E -ililtw-l:J =U
& (Ealt,_,) = V]
knl:g! V:' b EIi‘llli-.ﬂ- e aymnm‘[{zﬂlgﬂ} =U
& (St = V]
where ¥i;,..., Yo i are the variables on the right-hand
side of the definition of k;, except for [/ and V, fori =
0,...,n; Z; is any list of the form [X,;,... Xy, 0|54, and
{Xi.im- 5 ,Xd.-..:} = II.', _fﬂ'l":' = 1, sy Tl

