PROCEEDIMGS OF THE INTERMATIONAL COMFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

115

HELIC-I1I:
A Legal Reasoning System on the Parallel Inference Machine

Katsumi Nitta (1)
Masayuki Ono (1)

Yoshihisa Ohtake (1)
Hiroshi Ohsald (2)

Shigern Maeda. (1)
Kiyokazu Sakane (3)

(1) Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
(2) Jdapan Information Processing Development Center

(3) Nippon Steel Corporation

nitta@icot.or.jp

Abstract

This paper presents HELIC-11, & legal reasoning system
on the parallel inference machine. HELIC-IT draws legal
conclusions for a given case by referring to a statutory
law (legal rules) and judical precedents (old cases). This
systemn consists of fwo inference engines. The rule-based
engine draws legal consequences logically by using legal
rules. The case-based engine generates legal concepts by
referencing similar old cases. These engines complemen-
tally draw all possible conclusions, and vutput them in
the form of inference trees, Users can use these trees as
malerial to construct arguments in a legal suit.

HELIC-1T is implemented on the parallel inference ma-
chine, and it can draw conclusions quickly by parallel
inference.

Az an example, a legal inference system for the Pe-
nal Code is infroduced, and the effectiveness of the legal
reasoning and parallel inference model is shown.

1 Introduction

The primary knowledge source of a legal inference system
is a statutory law. A statutory law is a set of legal rules,
As legal rules are given as logical sentences, they are
casily represented as logical formulae. Thensfore, if a
new case is described using the same predicates as those
appearing in legal rules, we can draw legal conclusions
by deductive reasoning,

However, legal rules often contain legal predicates (le-
gal concepts) such as “public welfare” and “in good
faith”. Some legal concepts are ambiguous and their
strict meanings are not fixed until the rules are applied
to actual facts. Predicates which are used to represent
actual facts do not contain such legal concepts. As there
are no rules to define sufficient conditions for legal pred-
icates, in order to apply legal rules to actual facts, inter-
preting rules and matching between legal concepts and

facts are needed. To realize this, precedents (old cases)
are aften referenced because they contain the arguments
of both sides (plaintiff vs. defendant or prosecutor vs.
defendant) and the judge’s opinions concerning interpre-
tation and matching.

Consequently, legal teasoning can be modeled as
a combination of logical inference using legal rules
and case-based reasoning using old cases. Based on
this model, several hybrid legal inference systems con-
sisting of two inference engines have been developed
[Rissland ef al. 1989] {Sanders 1991(a)]. However, as
practical legal systems contain many legal rules and old
cases, it tazkes a long time to draw conclusions. Mere-
over, controlling two engines oflen requires 2 complex
mechanism.

ICOT (Institute for New Generation Computer Tech-
nology) has developed parallel inference machines (Multi
P51 and PIMs) [Uchida et al. 1988],[Goto et al. 1988].
These are MIMD-type computers, and user's programs
written in parallel logic programming language KLIL
[Chikayama et al. 1988] are executed in parallel on
them.

The HELIC-II (Hypothetical Explanation construc-
tor by Legal Inference with Cases by 2 inference engines)
is a legal inference system based on the hybrid model. Tt
has been developed on the parallel inference machine,
and draws legal conclusions for a given case by guickly
referencing statutory law and old cases.

In Section Two, we introduce the function and archi-
tecture of HELIC-IT. in Section Three, we explain legal
knowledge representation. In Section Four, we explain
the reasoning mechanism of HELIC-1I. In Section Five,
a legal inference system of the Penal Code is explained,

2 Overview of HELIC-II

The function of HELIC-II is to generate all possible legal
conclusions for a given case by referting to legal rules

1116

and old cases. These conclusions are represented in the
form of inference trees which include final conclusions
and explanations of them.

HELIC-II consists of two inference engines - the rule
based engine and the case-based engine - and three
knowledge sources - a rule base, a case base and a dic-
tionary of concepts (see Fig.1). The rule-based engine
refers to legal rules and draws legal consequences log-
ically. The case-based engine generates abstract pred-
icates (legal concepts) from concrete predicates (given
facts) by referring to similar old cases.

HELIC-IT draws legal consequences using these two
engines. Since the reasoning of these engines is data-
driven, there are no special control mechanisms to man-
age this. A typical pattern of reasoning by HELIC-I
s as follows. When a new case (original facts) is given
to HELIC-II, the case-based engine initially searches far
similar old cases and generates legal concepts which may
hold in the new case. These concepls are passed to
the rule-based engine by way of working memory({WM).
Then, the rule-based engine draws legal consequences us-
ing original facts and legal concepts.

These results are gathered by an explanation construc-
tor, which then produces inference tress.

-
-

Figure 1: The architecture of HELIC-II

3 Knowledge Representation

In this section, we will explain the representation of legal
knowledge in HELIC-II. We will show how to represent
legal rules, old cases and legal concepts.

3.1 Representation of Legal Rules

A statutory law consists of legal rules. Each legal rule is
represented as follows,

Rule Name(Comment, Ruleln f o,
(41, Az, ... A) = [[By, -, B, [C, ., C1),]

In this clause, RuleName is the rule identification,
Cornment is a comment for users and Rulelnfo ia ad-
ditional information such as article number. The
LHS ([A3, A3,...,4;]) is the condition part, and the
RHS([[By, .., B, [Ch,...Ci],..]} is the consequence part.
{Bh,.., B| and [Cy,..,Cl] are eombined disjunctively.
Each literal of the LHS and RHS is an exfended pred-
tcafe or its negation (denoted by “~" ar “net*). An
extended predicafe consists of a predicate {concept), an
object identifier and a list of attribute = value pairs,
The following is an example of an extended predicate,
An object “drivel” is an instance of a concept “drive”.
Two altribute = value pairs (agent = torn and car =
toyotal) are defined.

drive(drivel, [agent = tom, car = toyotal]).

Internally, this extended predicate is treated as a set
of the triplet {object, attribute, value} as follows,

{drivel, agent, tom}
{drivel, car, toyotal }

In a clanse, we can use “not” (negation as failure)
in addition fo “~" (logical not). By mtroducing “not”,
nonmaonotonic reasoning is realized, and the representa-
tion of exceptional rules and presumed facts are casily
represented [Sartor 1991).

The following are examples of legal rules.

homicide0l(“example”, [article = 199),
[person(4), person(B),
action{ Action, [agent = A]),
intention(/ntention, [agent = A, action = Action,
goal = Result]},
death(Result, [agent = B,
caused(Caused, [event = Action, ef fect = Result2)),
death{ Resultl, [agent = B),
not(~ illegality(Illegal, [agent = A,

action = Action result = Result2]))]
[[{Timﬂfﬂamiu'dﬂl:ﬂﬁmq [agent = A,
aclion = Action,result = Resuli2])]]).

legalityDi(“ezample”, |article = 38],

|action(Action, [agent = A]),

intention|Intention, [agent = A, action = Aetion,
goal = Resull]),

self Defence Result, [object = Action]),

caused(Caused, [event = Action, ef feel = Result2])]
—

[~ iliegakity(Tllegal, [agent = A,

action = Action,result = Result])]]).

The first rule is a definition of the crime of homicide,
which is given by the Penal Code.

The meaning of *not(~ illegality(Illegal,[...]))" is
that illegality is presumed, in other words, if there
isn't proof that “~ illegality(Illegal,[..])" holds then
“not(~ illegality(Tlegal, [...]))" is true,

The second rule is an exception of the first
rule. If a person did some action in defense,
“illegality(Illegal, |...])" is refuted.

3.2 Representation of Cases

A judicial precedent consists of the arguments of both
sides, the opinion of the judges and a final conclusion.
We represent a precedent (an old case) as a situation and
sarne case rules, and represent a new case as a sifuaiion,

{1} Situation

A situation consists of a set of events fobjects and their
iemporal relations. An event and an object are repre-
sented as an extended predicate as introduced in the pre-
vious section. The temporal relations are represented as
follows,

problem(Casel IV, Comment, Temporal Relations).

ClaselD is the case identification, Comment is 2 com-
meat for users and TemporalRelations is a list of relations
between events. To represent temporal relations between
events/objects, we use Allen's interval notation such as
“hefore™, “meets”, “starts”, and so on [Allen 1984].

The following is an example of a situation.

problem{traf ficAccidentl12, “example”,

{be fore(dinnerl, drivel), during{accidentl, drivel)]).

dinner(dinnerl, [agent = john, place = mazim's|).

1117

drive(drivel, [agent = john, car = toyotal]).
accident(accident], [agent = john]).
personijohn, [sez-= male]).
persen(mary, [sex = female]).
restaurant{mazim’s, [rank = Sstars|).
car(teyotal, [type = sportsCar)).

The meaning of this example is that the case
“traf fic accident 112" consists of three events such as
Udinnerl”, "drivel” and “accdentl”. “Dinnerl” oc-
curred before “drivel”, and “accident]l” happened dur-
ing “drivel”. The event “dinnerl” is a lower concept of
“dinner”, and it is acted by “jobn™ in “mazim's”, ete..

{2) Case Rules

Arguments by both sides are represented as a set of
case rules. The following is the syntax of 2 case rule,

Rule N ame(Comment, RulelIn fo,
[A].! A:h wany -"'1-1'] -+ IBI § Eh ey BJ:]}-

RuleName is the rule identification, Comment s 2
comment for users and Rulefnfois additional information
such as a related article, index for the opposing side's
case rules, relation to judge’s decision and so on. The
LHS {[Ay, A2, ..., 4i]) is the context of the opinion, and
the RHS ([B,, B, .., By]) is the conclusion insisted on by
one side.

The following is an example of a case rule.

ruleQll(“ezample”,
[erticle = 218, insisted = prosecutor,
result = Ipﬂ],
[drive(drivel, [agent = john /important,
ebject = toyotal [trivial]),
person(john, [sex = male/trivial]),
person(mary, [sex = female/trivial]),
accident{occident], [agent = john/important]),
cavsed| caused], [event = accidentl fimporiant,
ef fect = injuryl fimportant]),
injury(injuryl, [agent = mary/trivial])]
| responsibility(respl, [agent = john,
object = ken,reason = accidentl])]).

The meaning of this case rule is:“In the case that a
traffic accident caused by John injured Mary, John had
a responsibility of care to Mary." This rule concerns ar-
ticle 218 of the Penal Code and was insisted on by the
prosecutor, but the judge didn't employ this rule. On
the LIS, “ef fect = injuryl” is an important fact from

1118

the legal point of view. Therefore, this fact is marked
as “important”. We can use "exact”, “important” and
“trivial” to represeni levels of importance. This infor-
mation is used to calevlate the similarity between two
situations,

Arguments in a case are sequences of case rules, As
both sides try to draw contradictory conclusions, an ald
case confains case rules whose conclusions are inconsis-
tent,

3.3 Representation of Concepts

All concepts in legal rules and cases must be contained
in the dictionary. In other words, each event and object
in a situation are instances of these concepts.

In the dictionary, a super concept, a concept and a list
of attributes are defined as follows,

objecl{ creature, []).

creature(person, [age, sexz]).
person|person, []).

personlin fant, []}.

ereature(lion, []).

action(drive, [agent, car, destination)).

Lhe similarity betwesn coneepts is defined by the dis-
tance in the hierarchy (see Fig.2). For example, “baby”
is closer to “infant” than to *lion™ because it requires
two steps for “baby™ to reach “infant” but three steps
to reach “lion” in this hierarchy.

creatura\
/F'E’SG"\ lion
infant baby

Figure 2: Hierarchy of concepts

4 Reasoning by HELIC-II

In this section, we will explain the reasoming mecha-
nisms of the rule-based engine and the case-based en-
gine. These engines are implemented in the parallel logic
programining language KL1 and run on the parallel in-
ference machine.

4.1 A Rule-based Engine

The function of the rule-based enging is to draw all le-
gal consequences by the forward reasoning of legal rules,
using original data (a new case) and results from a case-
based engine.

The rule-based engine is based on the parallel
theorem prover MGTF (Model Generation Theorem
Prover)[Fujita e? al. 1901] developed by ICOT.

"MGTP solves range restricied non-Horn problems by
generating models. For example, let’s take the following
claugses,

CL: true - pla);q(d).
C2: p(X) — o(X)ir(X).
C3: r(X) — #(X).

C4: gl X) — false.

Mo={ }

N

M1={p(a)) M2={q(b)}

N o4

M3=({p{a).q(a)} Md={p(a),r(a)} X
C4 c3
X M5={p(a),r(a),s(a)}

Figure 3: MGTP proof tree

MGTP caleulates models which satisfy these clauses
as follows (see Fig.3). The proof starts with null model
M0 = {4}. By applying C1, M0 is extended into M1 =
{p(a)} and M2 = {g(8)}. Then, by applying C2, M1 is
extended into M3 = {p(a),q(a)} and M4 = {p(a),r(a)}.
Using C4, M3 and M2 are discarded. By 03, M4 is
extended to M5 = {p(a),r(a),s(a)}. M5 iz a model
which satisfies all clauses.

In MGTP, each clause is compiled into a KL1 clause,
and each KL1 clause is applied in parallel on the parallel
inference machine. In the problem in which the proof
tree has many branches, parallel inference performance
becomes high.

To use MGTP as a rule-based engine of HELIC-II, we
extended the original MGTP as follows.

1. Realization of “not (negation as failure)”: We
made MGTP able to treat “negation as failure”
based on [Inoue ef al. 1991). For example, the fol-
lowing C is treated as C', and the model is extended
in two ways (see Fig.4). Here, “k” is a modal opera-
tor, and "k(r(X)}" means that the model is believed
to contain a datum which will satisfy (X} in the
future.

C: not(r(X)) — s(X]}.
o Jmn()f} =+ k{r{ X))~ kl:r{}f:l}.,ﬂ[.}f].

After MGTP generates models which satisfy all
clauses, the rule-based engine examines each of
them. For example, if 2 model contains beth ~
k{r(a)) and r{a), or if a model contains k(r(a)) and
doesn’t contain r(a), the model is discarded.

Coteptan >

c

M’ =(pla).k{ra))} M ={p(a),~k(r(a)).sa)}

Figure 4: Negation as failure of MGTP

2. Realization of the multiple context: The rule-

based engine uses both criginal facts (a new case)
and resolts from the case-based engine as the ini-
tial model. The case-based engine may generate
data which conflicts with each ather such as “g()"
and “~ g{b)®. Therefore, before reasoning, the rule-
based engine has to split the initial model into sev-
eral ones so that each model doesn’t contain any
conflicts (see Fig. 5).
However, the case-based engine has not generated
all results when the rule-based engine begins to rea-
son because the reasoning of both engines is data
driven. To obtain the pipeline effect, we developed a
function to register predicates which may cause con-
flicks, and to split the model when such predicates
reach the rule-based engine. For example, in Fig.5,
if ~ g(b) reaches the rule-based engine, the model
is split before g{b) is reached. We implemented this
mechanism by using a similar modal operator as the
“k-operator™.

3. Keeping justification: To construct inference
trees, the rule-based engine must keep the justifica-
tions for each consequence. A justification consists

1119

anew case
{p(a)}

The Case-based Enging]
plaintiffs defendant's
opinion opinion
{~a(o)) {a(bi}
|«

{pla),~qlb).qlbl}

The Rule-based Enging

imitial modals

Figure 5: Splitting a model

of a rule name and data which matches the LHS of
the rule.

4. Temporal reasoning: We prepared a small rzle
set of temporal reasoning [Allen 1984] to help in de-
scribing the temporal relation. The following are
example rules.

before(A, B),before(B,C) — before(A,).
meets(A, B), overlaps(C, B) —
overlaps(A, C); during(A, C); starts(A, C).

With these extensions, the rule-based engine has many
proof tree branches even if clauses don't have the dis-
junction such as C1 and C2 in Fig.3. Therefore, the
rule-based engine has a lot of parallelisms in its reasen-
ing.

4.2 A Case-based Engine

The function of the case-based engine is to generate legal
concepts by using similar old cases, The reasoning of the
case-based engine consists of two stages (see Fig.6).

1120

[srtuaulnn | ”"E—-}

[Tom his muqml-- ;Ihilq Mijury

&' stage:)

Searching similar cases Caszei
situation Time

CABR Mg =======c-comrrmmr=aa

| T S &S
2nd staga: — .
Applying case rules .

—

-

*w Casal ™| +

' Matching Matching
AHS LHE san | LHS ara

k J

legal concepts
{causality, Imension, ate}

Fignre 6: Reasoning by the case-based engine

1. Bearching similar cases:

The role of the first stage is to search for similar
cases from the case base. At first, the case-based
engine constructs a sequence of events for each case.
As the situations of the new ecase and old cases are
described as & set of events/objects and their tem-
poral relations, it is easy to construct a sequence of
events for each situation.

Then, the case-based engine tries to extract com-
mon subsequences from event sequences of the new
case and each old case. For example, let’s take the
following two sequences. '

51: [..., meets(strikel, injuryl),
during(runAwayl, injuryl),.]
52: [.., before(kick2, sneak2),.]

In this example, the temporal relation between
“strikel” and “runAwayl™ is the same as that of
“kick2" and *sneak2". Furthermore, “strikel” and
“kick2" have a common upper concept “viclence”,
and “runAwayl” and “sneak?" have a common up-
per concepl “escape” in the dictionary, Therefore,

we regard [strikel, runAwayl) and [kick?2, sneak2] as
mapped subsequences of 51 and 52 (see Fig.7).

viclence escape
istn‘ke 1 injury 1
S1 | }
runAway 1
kick 2 sneak 2

S0 |__| |__|

Figure T: Subsequence of events

The similarity between two cases is evaluated by the
length of the longest mapped subsequence. Several
cases whose similarities are beyond a threshold are
selected in the first stage.

. Applying case rules:

The role of the second stage is to apply the case
rules of selected cases as follows [Branting 1989)].

At first, the similarity between the LHS of a case
rule and a new case is evaluated, For example, let's
take “rulel01” in section 3.2 and the following new
case.

person Bl []).

baby(jane, []).

cycle(eycle2, [agent = bill,object = honda2]).
collision{collision2, [agent = bill]).
sprainsprain, [agent = jane]).
intention(intention2, [goal = injury2]).
injury(injury2, lagent = jane]).

The engine iries to map the LHS of “rule001” to
a new case. As the following pairs of event fobject
have common upper concepts in the dictionary, we
map these pairs (see Fig.8),

john = hill
ALY + jane
drivel = cycle2
toyotal ++ hondal

LHS of rule001

:
2 2 W
E

<>

Figure 8: Mapping networks

accidentl + collision2
mjuryl +~ sprain?
causedl =+ caused?

The similarity is evaluated by counting the number
of mapped links in Fig.8. As we explained in sec-
tion 3.2, an annctation (exact, important, trivial) is
attached to each link in the network, These annota-
tions and the distances between conecepts are used as
weights to evaluate similarities. Even if some condi-
tions of & case rule are not satisfied, but the impor-
tant conditions are satisfied, then the LHS may be
judged as similar to the new case. For example, in
Fig.8, though there is no node which can be mapped
to “negligencel™, "rule001™ may be selected as sim-
ilar.

Mext, the case-based engine selects case rules whose
LHBSes are similar to the new case, and executes their
RHSes.

The matching and executing case rules are repeated
until there are no case rules left to be fired.

On the parallel inference machine, each stage is ex-
ecuted in parallel. In the first stage, before searching,
cases are distributed to processors (PEs) of the parallel
inference machine, and then a new case is sent to each
PE. Each PE evaluates similarities hetween the new case
and old cases, and selects similar ones.

1121

new case
{eyeled agant billl,.....

one -input mode

{drive] agent,tom] | I{dﬂvahcm.howtu} |

Figure 9: Rete-like networks of KL1 processes

In the second stage, case rules are distributed to PEs,
and the LHSes of each case rule are compiled into a Hete-
like network of K11 processes (see Fig.9). Then, triplets
({object, attribute, value}) which are facts of the new
cage are distributed to each PE as tokens. To realize
matching based on similarity, each one-input node refers
to the dictionary of concepts, and each two-input node
not only examines the consistency of pairs of tokens but
evaluates their similarities with the LHS.

5 A legal reasoning system for
the Penal Code

We developed an experimental legal reasoning system for
the Penal Code.

In the Penal Code, general provisions and definitions
of crimes are given as legal rules. Though they seem to be
strictly defined, the existence of criminal intention and
ceusality between one's action and its result often be-
comes the most difficult issue in the court. The concept
of causality in the legal domain is similar to the concept
of responsibility and ja different from physical causality.
Therefore, to judge the existence of causality, we have to
take into account various things such as social, political
and medical aspect.

We show the fupction of the reasoning system of the
Penal Code using Mary's case. We selected this case

1122

from the qualification examination for lawyers in Japan.

Mary's Case:

On a cold winter's day, Mary abandoned her
son Tom on the street because she was very
poor. Tom was just 4 months old. Jim found
Tom crying on the street and started to drive
Tom by car to the police station. However, Jim
caused an accident on the way to the police.
Tom was injured. Jim thought that Tem had
died of the accident and left Tom an the street,
Tom froze to death.

The problem is to decide the crimes of Mary and Jim.

The hard issues of this case are the following.

1. Causality between Mary’s action and Tom's
death:

If Mary hadn’t abandoned Tom, Tom wouldn't have
died. Moreover, the reasan for his death wasn't in-
Jjury but freezing, Therefore, some lawyers will judae
the existence of causality and insist she should be
punished for the crime of “abandonment by person
responsible resulting in death”. On the other hand,
other lawyers will deny any cansality because causal-
ity was interrupted by Jim's action.

2. Causality between Jim's action and Tom's
death:

Jim did several actions such as “pick up”, “drive”,
“canse accident” and “leave Tom®. Among them,
“cause accident” will be punished by the crime of
“injury by negligence in the performance of work",
and “leave Torn” will be punished by the crime of
“death by negligence”. Moreover, if there is causality
between “cause accident” and Tom's death, Jim will
be punished by the crime of “death by megligence
in the performance of work® which is very grave.
As the main reason of Tom’s death is freezing, it is
difficult to judge the causality.

Though the Penal Code has no definite rule for the
causality, lawyers can get hints from old cases. For ex-
ample, let’s take Jane's case which was handled by the
Supreme Court in Japan,

Jane's Case:

Jane strangled Dick to kill him. Though Dick
only lost consciousness, Jane thought he was

dead. Then, she took him to the seashore, and
left him there. He inhaled sand and suffocated
to death.

In the court, there were arguments between the prose-
cutor and Jane. The prosecutor insisted Jane should be
punished by the crime of homicide because of the follow-
ing TeRsOME.

P1:

P2

“Strangling” and “taking to the seashore” should be
considered the one action of performing the homi-
cide. Therefore, it is evident that there was an in-
tention to kill Dick and causality between her action
and Diek’s death.

There is causality between “strangling” and “Dick's
death” even though “strangling” wasn't the main
reason for his death.

On the contrary, Jane insisted her actions didn't sat-
isfy the condition of the crime of homicide because of the
following reason,

J1

: "Sirangling” should be punished be the crime of

“attempted homicide, and “taking to the seachore”
should be punished by the crime of “manslough-
ter caused by negligence” because there isn't causal-
ity between strangling and Dick’s death, and there
wasn't an intention to kill him when taking him to
the seashore.

We represent Mary’s situation and Jane's case rule as
follows.

Mary’s situation

problem(“mary's case”, “example”,).
abandon{abal, [agent = mary, object = tom]).
pickup(pic2, [agent = jim, object = tom]).

traf ficAccident(accl, [agent = jim)).

Jane's opinion

rulel02{*Jane's case”,
[article = 218, insisted = de fendant,
result = lost],
[suffocate(sufl,[agent = jane/trivial,
object = dick /trivial]),
intention(intl, [agent = jane/trivial,
object = actl [imporiant,
goal = deathl /important]),
death(deathl, [agent = dick/trivial]),

caused(causedl, [event = aetl/important,
ef feet = lostl fimportant]),

[~ caused|causedl, [event = actl,
ef fect = deathd]}]).

The case-based engine of HELIC-II generated
U~ caused(1D, [event = accl,ef fect = death9])" by ap-
plying rulef02

In Mary's case, HELIC-11 generated 12 inference trees.
Same of them are bazed on the prosecutor’s opinion and
others are based on the defendant’s opinion. The root
af each tree 5 a possible crime such as ebandonment
by o persen responsible resulling in death, manslaugh-
ter coused by negligence, etc.. The leaves are the initial
data of the new case, and intermediate nodes are conse-
quences by case rules or legal rules (ses Fig.10).

Figure 10: An Inference Tree

We measured the calcolation time to draw a conclusion
for Mary's case on the experimental parallel inference
machine Multi-P5SL. The number of rules used was about
20 and the number of cases used was about 30,

Fig.s 1L and 12 show the performance of the case-based
engine, and Fig,13 shows the performance of the rule-
based engine. These graphs show the effectiveness of the
parallel inference.

6 Conclusion

We introduced the parallel legal ressoning svstem
HELIC-II. The advantages of HELIC-II are as follows.

1123

30 40 50 &80 0
MWumber of processors

Figure 11: Performance of stage 1 of the case-based en-
gine

& 1o 20 30 40 S0 sa 7o0

Munbar of procesenes.

Figure 12: Performance of stage 2 of the case-based en-

E].'LIU

Tima(see,) Spoadup
1600 12
600 4 i
£
&004
&
400 4
4
200
2
o 0
1] 10 20

MNumieer of procassors

Figure 13: Performance of the rule-based engine

1124

1. The hybrid architecture of HELIC-II is appropriate
to realize legal reasoning. As the reasoning of both
engines is data-driven, controlling these engines is
easier,

2. The knowledge representation and inference mech-
anisms of HELIC-II are simple but convenient to
represent legal rules and old cases,

3. By parallel inference, HELIC-1I draws conclusion
quickly. As the rule base and the case base of the
legal domain are very large, quick searching and
quick reasoning are important to develop practical
systems.

4. Though it is troublesome to represent cases in de-
tail, the rules of temporal reasoning help to describe
CRBES.

There are many tasks for extending HELIC-I1. The
following are examples.

* Though the case-based engine is focusing on
the similarity between two cases, we have to
develop & mechanism to contrast iwo cases
[Rissland et al. 1987),[Riseland et al. 1080]. By
comparing twe inference trees, it is possible to con-
struct a debate system.

* To describe legal rules in detail, we have to integrate
an extended logic system such as the logic of belief
and knowledge with temporal logic on MGTP.

s To improve the power of the similarity based match-
ing of the case-based engine, we have to introduce a
derivational analogy mechanism.

* As inference trees are not suitable for allowing
lawyers to understand the inference steps, they are
represented in natural language.

References

[Uchida et al. 1988] Shunichi Uchida et al. . Research
and Development of the Parallel Inference System
in the Intermediate Stage of the FGCS Project. In
FProc. Int. Conf. on Fifth Generation Computer Sys-
tems, ICOT, Tokyo, 1988. pp.16-36.

|Goto et al. 1988] Atsuhiro Goto et al. . Overview of the
Parallel Inference Machine Architecture. In Proe.
Int. Conf. on Fifth Generation Compuier Systems,
ICOT, Tokyo, 1988, pp.208-229,

[Chikayama et al. 1988] Takashi Chikayama et al,
Overview of the Parallel Inference Machine Operat-
ing System (PIMOS). In Proc. Int. Conf. on Fifth
Generation Computer Systems, ICOT, Tokyo, 1988,
pp.230-251.

[Nitta et ol 1991] K. Nitta et al. , Experimental Legal
Reasoning System on Parallel Inference Machine. In
Froc. FPAI Workshop of 12th IJCAI Sydney, Aus-
tralia, 1991, pp.139-145.

[Rissland et al. 1987] E.L. Rissland et al. . A Case-Based
System for Trade Secrets Law. In Proc. fni, Conf. on
Artificial Intelligence and Low, Boston, USA, 1987.
pp.60-66.

[Rissland ef al. 1989] E.L. Rissland et al. . Interpreting
Statutory Predicates. In Proc. Ini. Conf on Arti-
ficial Intelligence and Law, Vancouver, CANADA,
1989, pp.46-53.

[Sartor 1991] G. Sartor. The structure of Norm Condi-
tions and Nonmonotonic Reasoning in Law. In Proc.
Int. Conf. Artificial Intelligence and Law, Oxford,
UK, 1991. pp.155-164.

{Branting 1989] L.K.Branting. Representing
and Reusing Explanations of Legal Precedents. In
Proc. Int. Conf. on Artificial Intelligence and Law,
Vancouver, CANADA, 1989, pp.103-110.

[Sanders 1991(a)] K.Sanders. Representing and reason-
ing about open-textured predicates. In Proe. [Int.
Conf. on Artificial Intelligence and Law, Oxford,
UK, 1991. pp.137-144.

[Sanders 1991(b)] K.Sanders. Planning in an Open-
Textured Domain. A Thesis Proposal. Technical Re-
port C5-01-08, Brown University, 1901,

[Fujita ef al. 1991] H.Fujita et al. . A Model Generation
Theorem Prover in KL1 Using a Ramified-Stack Al-
gorithm, ICOT TR-606. 1991,

[Inoue et al. 1991] K.Inoue et al. . Embedding negation
as failure into a model generation theorem prover,

ICOT TR-T22. 1991,

[Allen 1984] J.F.Allen. Towards a general theory of ac-
tion and time. Artificial Intelligence, Vol. 23, No.2
{1984} pp.123-154,

