PROCEEDINGS OF THE INTERNATIONA L CONFERENCE
OM FIFTH GEMERATION COMPUTER $YSTEMS 1992,
edited by ICOT. © ICOT, 1992

1044

Morphe: A Constraint-Based Object-Oriented Language
Supporting Situated Knowledge

Shigern Watari, Yasuaki Honda, and Mario Tokoro*
e-mail: {watari, honda, mario}@csl.sony.co.jp
Sony Computer Science Laboratory Inc.
3-14-13 Higashi-Gotanda, Shinagawa-ku, Tokyo 141, Japan

Abstract

This article introduces Morphe, & programming language
aimed to support construction of open systems. In open
systems, the programmer cannct completely anticipate
the foture use of his programs as components of new
environments. When independently developed systems
are integrated into an open system, we eventually have
inconsistent representations of the same object. This is
because knowledge about the world is partial and relative
to a perspective. We show how Morphe treats relative
(and eventually inconsistent} knowledge by incorporat-
ing the notions of situations and perspectives.

1 Introduction

In modeling complex systems, one is often required to
work with multiple representations of some aspects of
reality. The notion of situation has been studied in com-
puter science [Barwise 83|Barwise 89JiCooper 90] as an
important cotcept in capturing the relative representa-
tion of knowledge about the world. The importance of
sich a notion stems from the epistemological assump-
tion that any representation of the world is partial and
relative to some perspective—that of the observer. In
the cognitive process, the observer absimcts from reality
only those aspects that he finds relevant; irrelevant por-
tions are discarded. Sometimes this limited, absiracted
represcutation is sufficient to allow one to perform cer-
tain tasks. In such cases we do not need to think about
relative perspectives, and we can work as though our
knowledge were an absolute and unigue mapping of the
real world. However, there are plenty of examples that
show this is not true, In order to understand what is
happening in the target world, we are forced 4o assume

Ao will: Keio U]I'iﬁ"m:i'l.-‘_l’. 3-14-1 Hiyoshi. Koloka-kn, Yako-
hama, 223 JAPAN c-mail: maie@keio,ac,jp

that the representation we are working with is relative,
and furthermore, that we must eventually change per-
spectives in order to capture the real properties of the
system we are representing. This is often the case when
we have ambiguons representations and we are not able
to resolve this ambigoity until we have some further in-
formation at hand.

Typically ambiguity arises when we try to combine
information from different sources. For example, in di-
alogue understanding the knowledge of the one must
be combined with the knowledge of the other to cap-
ture the exact meaning of an utterance [Numaoka 90].
Whenever there is some inconsistent information, ihe
speakers must exchange further information in ocrder
to resolve ihe inconsistency. Other examples can be
seen in multi-agent systems [Bond 88|[Osawa 91]—where
we have different agents with different knowledge bases
that must be partially shared—and versioning systems
as used in software development tools and engineering
databases [Katz 90]—where we have different versions of
the same object. A ground for extensive use of the no-
tion of situation is in open systems [Hewitt 84), because
in open systems the desipner of a program cannot know
a priori the nature of the environments in which their
pieces of knowledge (called objects henceforth) will be
used in the future. Along with its continuous evolution,
an open system must be capable of integrating pieces of
knowledge from different sources, and eventually these
new pieces will conflict with exdsting ones.

In this paper we formalize the notion of situation as
embedded in Morphe, a knowledge base and program-
ming system which supporis construction of open sys-
tems. Situation in Morphe is associated with a general
notion of environment of interpretation. It represants a
consistent set of properties (described by formulas) in a
multi-version knowledge base. Rather than being a mere
name for a part of the absalute real world, a situation
has its own representation in Morphe, namely a routed,

directed, acyclic, and colored graph.

The notion of situation provides for two novel con-
cepta: compositional adaptation and situated polymor-
phic objects. With compositional adaptation component
ohjects are grouped within composite objects so that a
component abject is made to adapt to the requirements
of the environment represented by the composite object.
Situated polymorphic objects are objects that have mul-
tiple representations which depend on the sitvation they
are used in. Situation is used to disambiguate the am-
bivalent interpretation of situated polymorphic objects.

The remainder of this paper is organized as follows:
Section 2 gives an overview of Morphe's features through
gome examples. Morphe's formal syntax and semantics
are sketched in Section 3 and Section 4, respectively.
In thiz work we concentrate on the data modeling as-
pect of Morphe. Some important features (such as set-
valued attributes, distinction belween local and sharable
attributes, user-defined constraints, and dynamic gener-
ation of new situations at wpdate transactions) were not
treated in the presentation for the sake of brevity and
clarity. In Section 4 we glve emphasis in showing how
the domain of colored dags fits well to representing dif-
ferent perspectives to a shared object. In the last section
we conclude this work.

2 Overview of Morphe

Morphe is a programming language which integrates
object-oriented programming, constraint-based logic
programming, and situated programming. It features:

s Querying capability for knowledge bases,

¢ Incremental construction of systems with inheri-
tance and adaptive reuse of existent software,

+ Muliiple representations,

o Treatment of inconsistent knowledge through the
notinn of situation.

The basic aim of Morphe is to provide a system that
supports easy construction of open information systems.
There are two areas of support that are essential:

1. Easy integration of new pieces of knowledge, and
2. Treatment of shared inconsistent knowledge.

The Morphe system is a multi-version knowledge base
with multi-versioned objects. We use the term multi-
version knowledge base following the notion of mudli-
version databases as introduced by Cellary and Jomier in
[Cellary 90]. Our approach differs from Cellary-Jomier’s

1043

in that in Morphe even in a single knowledge base ver-
sion we can have different object versions. The pro-
grammer can chose a particular version of the knowl-
edge base throngh sifuation descriptors—formulas that
index terms—which can be used within programs or in
queries. In the development phase of a system, Morphe
keeps track of transaction updates and creates consistent
versions of the knowledge base !

2.1 Example: Mario Joins Sony CSL

We will represent Sony CSL, a computer science labo-
ratory, where Mario works as a director. We know that
a representation of Mario already exists in the system
and we want to share that representation. The existing
representation is of Mario as a professor at an nniversity.

1. person : |
name ; string;
age @ integer;
sex : {male, female};
age = 0;
2. laboratory : |
name : string;
director : person;
rescarcher :: persenl;
3. mario : person * |
name : “Mario™;
age @ 44];
4. zesl : laboratory ¥ |
name : "Sony CSL";
director : person * |
machine : *NEWS"]);
5. scal.director = mario.

The first two expressions define the types for person
and laboratory, and expressions 3 and 4 define mario
and scsl as “instances” of person and laboratory, re-
spectively. Expression 5 makes mario join scsl as its
diresctor.

Objects in Morphe are typed. For example, the ex-
pressions name : string and age : integer specify that
the name of o person has iype string and the age of
a person has {ype integer. String and integer are
primitive types provided in Morphe. The colon in those
expressions represents a built-in predicate that specifies
the type of the term on its left-hand side. Another built-
in predicate is the one represented by the equal sign,
as in directer = mario, which specifies that director

Ve operational aspects of manipnlating situations are ot em-
phasized in this work. Instead we will emphasize the declarative
{or modeling) aspects of objects and situations.

1046

and marie should have the same type. Expressions com-
prising these built-in predicates are called formulas or
constraints.?

We can also construct complex iypes from primitive
ones through object descriptors. An object descriptor
is a set of formulas enclosed in brackets (“[]"). In the
example, the expression person: [...] introduces a new
type named person defined by the object descriptor on
the right hand side of the colon.

As in unification grammar formalisms [Shieber BE]
and some logic based programming languages [Kifer 85]
[Yokota 92], Morphe does not make a distinction between
classes and instances. Strictly speaking, every expres-
sion in Morphe is a type expression, and the execution
of a Morphe program consists of finding the appropriate
types for ihe variables, or in other words, solving the
set of type constraints, Morphe provides domain spe-
cific constraint solvers and allows users to define predi-
cates for new domains, as the predicate > in the expres-
sion age > 0. In this article we concentrate on showing
how Morphe treats the notions of sifuations and polymor-
phic objects, leaving the discussion of other forms of con-
straints for another paper. Expressions using the colon
predicate resemble attribute-value pairz of feature struc-
ture grammars and hence we sometimes refer, though
improperly, to terms on the left-hand side of the colon
operator as attributes and these on the right-hand side
as values.

Besides object descriptors, there is another type of
constructor: braces ("{}"). While object descriptors
construct types intensionally, from formulas, braces con-
struct types extensionally, from ferms For example,
the expression sex : {male,female} specifies that the
atiribute sex of a person has type male or female.
Stated in another way, the same expression defines a
new type person.sex as a set of two constant types
{male, female}.

A type can be made more and more specific as we
add more restrictive constraints (formulas) into the as-
sociated object descriptor, and it becomes an "“instance™
when all the attributes are assipned constant types. In
the code above, scsl is an inatance of laboratery be-
cause the formulas in the object descriptor of the for-
mer are more restrictive than those in the object de-
scriptor of the latter. Because all terms are types, even
scsl, which is an “instance”, can be made more spe-
cific by adding more formulas into its object descrip-
tor. The way to do so is by composing object descrip-

*The term “comstraint” nsed here follows the terminology of
constraint logic programming framework as formalized by Jaffar
and Lasses in [Jaffar 87).

tors through “f#+° ¢ the composilion operator. The code
which defines marie composes the type persen with the
abject descriptor [name :mario;age:44). The result-
ing object descriptor contains all the formulas of both
operand types. The constraint solver then evaluates the
most specific set of formulas in the resulting object de-
scriptor, yielding [name : *Mario”; age : 44] as the type
of mario. Determining the most specific sets of formu-
las iz the same as determining the greatest lower bound
of a set of terms. The assoclated procedure for deter-
mining the greatest lower bound is called unification,
following the terminology of feature-structure grammar
formalisms [Shieber 86).

2.2 Compositional Adaptation

With composition we can refine a type by giving more
specific “values” for the attributes—as in mario above—
or we can add new properiies to an existing type. The
type laboratory.director in the example is defined as
a persen plus an additional attribute: machine. Morphe
allows for creating new types in a very pariicular way.
The type director is defined in a specific context: sesl,
This is an essential aspect of what we call compositional
adaptation[Honda 93],

With compositional adaptation we make an object
“adapt” to a new environment by transforming the ob-
ject so that it obeys the type constraints specified in the
environment. This process takes place when the predi-
cate *°='" is evaluated. When the expression director
= mario is evaluated, it either succeeds or fails, If it suc-
ceeds, the object dencted by scsl.director is unified
with the object denoted by mario, and the result of the
unification can be accessed from both scel.director
and marie.® The object enters a new environment “ac-
quiring” new properties and constraints. In the exam-
ple, mario acquires the additional attribuie machine as
specified in the environment scsl, and scsl.director
acquires all the original propertics of marie.

2.3 Situated Polymorphic Objects

In programming langunages, the term polymorphism has
been traditionally associaled with the capability of giv-
ing different things the same name. Morphe's notion of
polymorphism follows in the same vein. In Morphe the

The full version of Morphe allews programmers to specify
wiich components of the type are private (ie., local) and which
are public (L.e., sharable). The public part of two objects must e
compatible for the unification to succeed, while the private part ia
not affected in the unification.

same object can have different versions, eventually in-
compatible with each other. Incompatible versions of an
object are called morphes, and objects that have multiple
morphes are called polymorphic objects.

By incompatibility of morphes we mean incompatibil-
ity of their types.! Different morphes of the same (poly-
morphic) object may fundamentally mean two things: 1)
different states due to updates, or 2) different represen-
tations due to different perspectives. Each morphe of
a polymorphic object is situated. The evaluation of a
polymorphic object is the evaluation of & morphe, the
selection of which is subordinated to the selection of a
sttuation where the ohject participates.

Each morphe is a consistent set of constraints that de-
seribe the behavior of the object in a given sifuation
For instance, a person may exhibit different and eventu-
ally contradictory behavior depending on the situation
in which he acts. Inconsistent sets of constraints yield
different values to be assigned to the same attribute. For
example, suppose that the definition of mazie, instead of
that given in expression 3, had been: mario : person *
[name : *‘Marie’?’; birthyeer : 1947; sex : male;
machine : ‘‘Mac’’']; Afier marie joins scsl, the at-
tribute machine of mario is assigned the value * ‘Kews*?
when he plays his role a3 scsl.director and a different
value—* ‘Mac’ '— in other sifuations.

2.4 Specifying a Situation

Morphe's notion of situation Is tied to the notiom of
environment of interpretation. In the domain of inter-
pretation, a situation is a graph representing the pro-
gram being interpreted. Sifuations are used to disam-
bignate inconsistencies in the knowledge base, When an
object participates in different environments {eventually
created by independent programs) and is subject to in-
dependent transformations, it is often the case that the
object must behave differently in each of them. Once
the programmer wants a different view {or representa-
tion) for the object, the system creafes a new version
of the object in such a way that the situation is kept
consistent.

When evalualing an expression within a situation, the
system keeps track of the path through which the object
containing that expression s being accessed. Access to
an object froan different perspectives is realived as differ-
ent paths to the object. A path is & sequence of labels
that allows one to navigate through the entire system,

*Informally, incompatible types means that the values of a type
cannot be the values of the other, We give a formal definition of
type incompatibility in the next section.

1047

along the arcs in the graph. For example, if we want
to refer to Mario when he plays his role of a director
al S05L we use the path scsl.director. Fallis can
be combined with formulas which filters the morphes
of an object referred from the same path. For exam-
ple, if we had several versions of Mario distinguished
according to his age, we could access the representa-
tion of Mario at Sony CSL when he was at the age
of 40 by using the cxpression: scsl.director@[age =
40]. We can also change the perspective by switch-
ing the path in the navigation. For example, we can
gwitch the wiew from marieo to scsl.director with
the path mario | scsldirector, which gives us the
representation of marie from sesl.directer’s perspec-
tive.

3 Syntax

The alphabet of Morphe consists of: 1) A: aset of atoms,
2) L: a set of labels, 3) X: an infinite set of variables, 4)
the distinguished predicate symbols: " [colon) and “="
{equal), 5) the composition operator “*", 6) the logical
connective %", 7) the path constructors: “.", 1", and
“@"; 8) the auxiliary symbols “{ ", *[]", “{ }", *", and

Atoms denote primitive indivisible objects. Example
atoms are: integer, string, 3, and ‘' ‘Mary’’. Labels
are the names of the objects. The distinguished label
Home denotes the topmost object in a particular situa-
tion.® In the semantic domain, the label names an arc
which allows access to the objects down the (directed)
graph.

3.1 Terms (7)
Objects are denoted by ferms. Terms are defined by:

ro=x|a|p|[f]|TeT

where ¢ are variables, a are atoms, p are paths, f are
formulas, and 7 # 7 are compositions,

The terms of the form [f] are called object descriptors.
Object descriptors construet complex objects through
formulas, which are defined by:

fu=pir|r=r|fif

A colon predicate is a typing constraint, An expression
€ : t, where e is a path and ¢ is & Lerin, specifies that the

*Typically, the ohject denoted by Home represents the user's
“home object™, which is the user's entry-point into the Morphe
sy ELem.

1048

type of the cbject denoted by e has af least the properties
defined by {. For example, the formula marie : persen
specifies that the mario has at least the properties spec-
ified by person.

The egual predicate specifles object sharing. Given e ;
t; and ey : i3, where €; and e; are paths, the expression
£; = ep states that e, and ey denote the same object,
and hence they have equal types. The shared object is
“viewed" from different perspectives: any change to the
ohject performed from a perspective must be reflected
into other perspectives.

Because the atomlc predicates colon (") and equal
{“=") impose a structure on the objects in the domain
of interpretation (Le., grapha), they are called strucfural
predicates, in contrast to other domain predicates and
user defined predicates. In this article we discuss only
the structural predicates and hence we call them simply
predicates.

A poth names an object through a sequence of labels.
Faths are defined by:

pu=l|lplptp|polf]

where { are labels. When an object is polvmorphic due
to different access paths, we select a morphe by the as-
sociated path. For example, in the subsystem:

aifb:feixlyd:[c:y];ab= ad

ihe polymorphic value of ¢ can be disambignated through
the appropriate path: ab.c:x, and ad.c:y.

A path of the form py T ps 18 & path switch. It allows
one to view the same object from a different perspective.
For example, the value of a.b T d.c is y, instead of x.

A path of the form p@(f] is called a conditional path.
The formula enclosed in brackets on the right hand side
of the @ sign is called a situation descriptor, because it
specifies a family of situations which entail f. A condi-
tional path has a meaning only in the sitvations where
the formula enclosed in the brackets is entailed. For no-
tational convenience we write 1 : {t,@(f,], t,@([f4]} in-
stead of 1@([f,] : t1; 18[fz] : t7. Conditional paths are
used to select version morphes of polymorphic objects.
For example, given

a:[b:{x,y}c: {wlb:), v@[b: y]}

where a, b, and c are labels and x, y, w, and v are
atoms, there are two possible values of a. ¢, which depend
on the possible values of b, The formulas b:xe: w)
and b:y;e:v determine two distinct situations of a
The value of a.c can be disambiguated by providing
an appropriate conditional path: ab.c®[b: x| :w, and
ab.clb:y:v

Composition is a binary operation T =T — T which
composes two terms to produce a new term. Given
two terms & and ts, their composition £, * £z is the
union of the formulas contained in both terms. For ex-
ample, [name : "John”; age : “integer”] * [age: 23] =
[name : “John"; age : integer; age : 23|

3.2 Ordering on Terms

We have seen that terms denote objects in the intended
domain, and formulas associate terms in order to rep-
resent complex structures in that demain. The colon
operator specifies the structure of the object denoted by
a given path. We can now amplify its use as a binary
predicate over two terms to construct a pariial ordering
in the set of terms. We start with atoms. We assume
that the atoms in A are partially ordered according to
a binary relation represemted by “<,". For example:
“Mary" <4 string, and 3 <, integer.

ifz <4yandy <, x wesay that = and y are congru-
ent, and write x =, 3. The greatest lower bound of a set
of elements B C A, dencted by | B is defined as usual:
1 B =inf e Asuch that ¥z € B. inf <4 z.

For notational convenience, we will denote the greatest
lower bound of two atoms = and y by = | y. The greatest
lower bound does not always exist. The elements ¢ of 4
such that £ : ¢ implies £ =, ¢ are called the constants of
A

We extend the partial ordering to the sel of lerms
with the binary relation *:", defined by the rules below.
In these rules, I' is a set of formulas which defines a
silualion.

Thke:y (fo,yedandz<s1)

ThHE:]

Tezt)best

T'Fedifd] : &
Fagke:t
I'kFep:ly Thex:tp _
T o= F o is (ta=tiUty)
Thketdy ThRes:t
£ty ez iy (ta =t Uts)

I'yiey=es)beaciy

Pt 8] T iyt
Th{l sty s tagonilm s tm] 2 [l 0 85 iln i 8]

I'ki:-t

Thify:ta Lty
Tyt

The congruence relation on the set of terms Is defined
by: ¢ 2y iff z: 9 and y: 2 The operation | that gives
the greatest lower bound of a set of atoms is also ex-
tended to terms. The rules below describe U, the great-
est lower bound of two terms, defined so that & Uis @ §;
and fy Uig - L.

utes

sUySzly

[:gut:)| tue)]

[fy ctq] L [bo ¢ do] 2 [y @ £1:0p 1o

(YR TR R Y QS T NS N 1Oy TRe t‘,';,l'{ :
Giwalf sl sy U et Ut i By
thily st it il il)

1y Lty &t Ly

fU(tzUts) = (Ut} U1

iUt

Two terms £y and £y are incompatible iff ;1 L) ¢ does not
exiat.

4 Semantics

The formal semantics of Morphe is based on the algebraic
approach to graph grammars as described in [Ehrig 86)
and [Ehrig 90). The domain of interpretation of Morphe
is a set of colored, rooted, directed, and acyclic graphs.
Following [ParisiPresicce 86]%, we impose a structure in
the coloring alphabet in order to represent unification in
that domain.

4.1 Definition: Colored Graphs

Let X be an infinite set of variables, A the st of atoms, L
the set of labels (as introduced in Section 3), and O a set
of identifiers. Let € = (Cy,C4) be a pair of alphabets
where Oy = OUAUX and Cu = L. The partial-order in
A, g, is extended on Cy (and denoted <y) such that
g <y yifz €qyory e X. A Ccolored graph (or
C-dag, for short) is a graph g over C defined as a tuple

< Ny, Ay, eolory , color?, srey, toty, root, >

where: N, is the set of nodes; A, is the set of arcs
colory : N, — Cy assoclates a color to each node;

*F. Parsi-Presicce, H. Ehrig, and 1. Montanari allowed vari-
ables in graphs (and productions) so thet they could represent
composition of graphs using relative unification. A, Coreadini, UL
Montanari, F. Rossi, H. Ehrig, and M. Liwe [Corradini 9] far-
ther extended that work to represent general logic programs with
bhypergraphs and graph productions,

1049

color) : A, — C, associates a color to each arc;
sreg : Ag — N associates with each are a unigue source
node; tgf, : A, — N, associates with each arc a unique
target node; rooty is a distinguished node called the root
of the graph. It satisfies: tgi~'{root,) = 0.

In what follows we refer to C-dags as graphs. A graph
g is a subgraph of ¢’ (written g Cg ¢') ff N; € N,
Ay C Ay, and the functions color), eolord, sre,, and
fgty are the restrictions of the corresponding mappings
of g'.

4,2 Definition: Graph Morphism

A graph morphism f : g = ¢' is a pair of functions
fw:N; = Ny and fa: Ay — Ay such that:

1. fo and f4 preserve the incidence relations:
sre{fafa)) = fw(srcle)) and tgt(fala)) =
Tu(tgt(a)),

2. [fa preserve the arc colors:

Va € Aj. colorj}(fa(a)) = eolor}{a), and

3. ¥z & N,. colorl(fu(z)) C color] ().

A graph morphism indicates the occurrence of a graph
within another graph. A graph morphism f = {fi, fa) is
called injective if both fy and f4 are injective mappings,
and it is called surjective if both fiy and f, are surjective.
If f: g — ¢ is injective and surjective it is called an
isomerphism, and there is also an inverse isomorphism
f': ¢ — g. In this case we say that g and g’ are
congruent and write g =g ¢

4.3 Subsumption

Subsurption is an ordering on graphs which corresponds
to the relative specifity of their structures. A graph g
subsumes h (h Cg g) iff there exists a graph-moerphism
J : g — h such that f(roat,) = rooty.

The semantic counterpart of the greatest upper bound
of a set of terms (ref. Section 3.2) is the join of two
graphs, which is their “most general unifier”. The join
of graphs g, and ga (notated g Lg g2} is a graph A such
that h Cg g and h Cg ga.

4.4 Semantic Structure

The semantic structure of Morphe s a tuple
A=< G Cp,Ug, T =

where:

1. G*, the domain of interpretation, iz the set of all
variable-free (i.e., ground) C-dags.

Q50

2. The relation Cg and the operation Lg are as defined
above.

3. Top (T) is the distinguished element of §* defined
by Ve eG*.gCg T.

4.5 Interpretation

A consistent set of formulas is represented with a C-
dag with variables. The C-dag represeniation of a set
of formulas is called a situation. A Morphe program is
mapped by the interpreter into a set of situations which
are grdered according to the subsumption relation. The
evaluation of a query is & mapping from the C-dag repre-
senting the query to the set of situations in the hierarchy.
If no situation is specified, the interpreter evaluates in a
defanit situation. While parsing its input, the interpreter
keeps track of this situation in order to resolve eventnal
ambiguities.

Let T, : A — Cx be a function that maps each atom
in A to & node color in Oy, and I, : L — Oy another
function that maps each label to an arc color in .

Variable Assignment

A variable assignment in a situation s is a mapping p :
A = G" which maps variables to ground C-dags. We
extend the variable assignment to other terms with the
following clauses: ’

e If o is an atom, pfs,a) = g s.t. N, = {z}, A, =
B, and color¥(z) = T.(a).

If I is a label, uwisl) = g Cg & &t
Ja € A, color*{a) = I(l) and svefa) =
root, and tgt(a) = reot,.

s Iflis alabel, and eis a path, u(s, l.e) = plu(s,1),€).

o Ifeisapath and ¢ is a formula, p(s, e@[d]) = uis,)
if & = g

o plsfdll=gCosst. g=¢.

Formulas

The “truthness” of a formuls is relative to a specifie sit-
uation. We say that a situation s models & formula ¢
under a variable assignment p (written s =, @) iff there
is a subgraph of s with the properties specified by the
formula.

sy e tiff pls,e) Cg pls,t).
3 Fuer = 2 iff (s, &) - s, e2).
sEudviffsl, gand s, o

5 Conclusion

This paper has shown how the notions of situwation
and polyrnorphic objects in Morphe can handle situated
knowledge in open systems. We claim that the Morphe
features shown here are suited to support incremental
development of a complex system. When a set of con-
straints is added fo a situation, the now formulas may
conflict with the old ones. Morphe helps the developer
to find the locus of inconsistency, and in the cases where
the programmer wants a new version of the system, Mor-
phe splits the inconsistent situation info new subsitua-
tions whenever it i3 possible. Some meta-rules based on
domain-dependent heuristics may help the system to de-
cide on which actions to take in the presence of conflict.

Syntactically, a sitnation was defined as a set of formu-
las which define a hierarchy of versions of the knowledge
base. Situation descriptors can be used in programs in
order to specify a priort the family of situations in which
the program is expected to work. Once the system is pro-
vided with a way to determine the right situation, the
associated morphe can be selected and then passed to the
constraint solver in order to procesed with the evaluation
of the program or the guery.

Most existing typed programming languages impose a
distinction between types and values syntactically, and
types are nsually associated with the variables in order
to check whether the value assigned to a variable is com-
patible with the associated type. Morphe does not im-
pose such a distinction at the syntactic level, though it
bears both the notions of “types” and “values”. An equal
treatment of types and values was achieved in Morphe by
imposing a partial order on the set of terms. This partial
ordering was identified as the subsumption relation over
directed acyclic graphs in the domain of interpretation.

In this work we have shown only those features that
we find most interesting to capture the infuitive notion
of relative knowledge, perspective, and situations. Prob-
lems concerning changes of situations in the presence of
transaction updates, locality of information and sharing
{i.e., unification), database querying facilities, and the
operational semantics were not treated here. We hope
however that the contents of this article have given the
readers an insight on the problems and solutions concern-
ing relative representations of cbjects in open systems.

Acknowledgments

Somy Computer Science Laboratory has been a privileged
environment for discussing the problems and reguire-
ments of open distributed systems. Discussions with the

other members of this laboratory have provided the un-
derlying motivations for developing Morphe. In particu-
lar, we wish to thank Ei-Ichi Osawa, for his collaboration
at the initial phase of Morphe, and Akikazu Takeuchi
and Chisato Numaoka for their helpful comments on the
formalisms presented i this work, Watasi thanks the
members of Next-Generation Database Working Group
promoted by ICOT. Discussions in the group promoted
a better understanding of the requirements for advanced
data base programming languages.

References

[Barwise 83] Jon Barwise and John Perry. Situations
and Attitudes. The MIT Press, 1083,

[Barwise 89] Jon Barwise. The Situation in Logic. Cen-
ter for the Study of Language and Information, 1989,

[Bond 58] Alan H. Bond and Les Gasser, editors. Read-
ings in Distributed Artificial Intelligence. Morgan
Kaufmann, 1985,

[Cellary 80] Wojciech Cellary and Genevigve
Jomier. Consistency of Versions in Object-Oriented
Databases. In Dennis McLeod, Ron Sacks-Davis, and
Hans Schek, editors, Proceedings of 16&h nternational
Conference on Very Large Dotaboges, August 1990,

[Cooper 90] Robin Cooper, Kuniaki Mukai, and John
Perry, editors. Situation Theory end its Applications
— Volume I Center for the Study of Language and
Information, 1990,

[Corradini 90) Andrea Corradini, Ugo Montanari,
Francesca Hossi, Hartmut Ehrig, and Michael Léwe.
Graph Grammars and Logic Programming. In Proc. of
the Jth International Workshop on Graph-Grammars
and Their Application to Computer Seience, Springer-
Verlag, March 1990.

[Ehrig 86] Hartmut Ehrig. Tutorial Introduction to the
Algebraic Approach of Graph Grammars. In Proc. of
the Srd fnternational Workshop on Graph-Grammars
and Their Application to Compufer Science, Springer-
Verlag, December 1986.

[Ehrig 90] Hartmut Ehrig and Michael Léwe Martin Ko-
rii. Tutorial Introduction to the Algebraic Approach
of Graph Grammars Based on Double and Single
Pushouts. In Proe. of the Jth International Workshop
on Graph-Grammars and Their Application to Com-
puter Science, Springer-Verlag, March 1990.

1051

[Hewitt 84] Carl Hewitt and Peter de Jong. Open
Systems. In J. Mylopoulos and J. W. Schmidt
M. L. Brodie, editors, On Conceplual Modeling,
Springer-Verlag, 1984,

[Honda 92) Yasoaki Honda, Shigeru Watari, and Mario
Tokoro. Compositional Adaptation: A New Method
for Constructing Software for Open-ended Systems.
JS58T Computer Sgftware, Vol 9, No.2, March 1992,

[Jaffar 87) Joxan Jaffar and Jean-Louis Lassez. Con-
straint Logic Programming. In Proceedings of the
Fourteenth ACM Symposium of the Principles af Pro-
gramming Languages {POPL’87), January 1587,

[Katz 90] Randy H. Kats. Toward a Unified Framework
for Version Modeling in Engineering Databases. ACM
Computing Surveys, Vol.22, No.4, December 1990,

[Kifer 89) Michael Kifer and Georg Lassen. F-Logic: A
Higher-Order Language for Reasoning about Objects,
Inheritance, and Scheme. In Procesdings of the ACM
SIGMOD Conference on Management of Data, ACM,
1988,

[Numaoka 90] Chisato Numacka and Mario Tokoro,
Conversation Among Situated Agents. In Proceedings
of the Tenth Fnternational Workshop on Distributed
Artificial ntelligence, October 1990,

[Osawa 91 Ei-Ichi Osawa and Mario Tokore. Collabo-
rative Plan Construction for Multisgent Mutual Plan-
ning. Technical Report SCSL-TR-91-008, Sony Com-
puter Science Laboratory, August 1991,

|ParisiPresicee 86] Francesco Parisi-Presicce, Hartmut
Ehrig, and Ugo Montanarl. Graph Rewriting with
Unification and Composition. In Proe. of the 3rd In-
ternational Workshop on Graph-Grammars and Their
Application fo Computer Science, Springer-Verlag,
December 1986.

[Shieber 86] Stuart M. Shieber. An Introduction to
Unification-Based Approaches to Grammar. Center for
the Study of Language and Information, 1986,

[Yokota 92] Kazumasa Yokota and Hideki Yasukawa.
Towards an Integrated Knowledge Base Management
System. In Proceedings of the FGCS'92, ICOT, June
1092,

