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Abstract

CLASSIC is a recently developed knowledge representa-
tion (KR) system, based on a view of frames as strue-
tured descriptions, with several important inferable re-
lationships, including description classification. While
much about CLASSIC is novel and important in ils own
right, it is especially interesting to consider the system
in light of its unusual (for Artificial Intelligence) intellee-
tual history: it is the result of over a decade of research
and evolution in representation systems that trace their
origing back to work on KL-ONE, arguably one of the
most long-lived and influential approaches to KR in the
history of AL We outline some of the novel contributions
of cLAssie, but pay special atlention to its roots, illus-
trating the maturation of some of the original features
of KL-OKE, and the decline and fall of others. A num-
ber of key ideas are analyzed —including the interpreta-
tion of frames as descriptions, the classification inference,
and the role of a knowledge representation system in a
knowledge-based application. The rare traceable rela-
tionship between CLASSIC and its ancestor gives us an
opportuniiy io assess progress in a generation of knowl-
edge representation research,

1 Introduction

An unfortunately large fraction of work in Artificial In-
teiligence is ephemeral, accompanied by much sound and
fury, but, in the end, signifying virlually nothing. Work
on systems with significant longevity to the basic ideas,
such as STRIPS, appears to be the exception rather than
the rule in AL

In the area of knowledge representation (KR), there
are ideas that have lived on for years, but very few
sysiems or approaches have seen more than a minimal
number of users for & minimal number of years.! The
KL-ONE system [T, 11] is different: it was "born” over a
dozen years ago, and has had continuous evolution and
influence ever sines. Its offspring now number at least
twenty significant projects worldwide, all based directly
om its key ideas of classification and structured inheri-
tance. With well more than a decade behind us, this rich
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history bears closer examination, especially with the ad-
vent of the cLassic Knowledge Representation System,
a recent development that clarifies and amplifies many of
the central ideas that were more crudely approximated
in the KL-ONE of 1978. CLASSIC goes substantially be-
yond KL-ONE in its treatment of mdividuals and rules, its
clarification of subsumption and classification, its inte.
gration with its host language, and its concrete stand on
the role of a KR system as a limited deductive database
management system.

While a description of the CLASSIC system would be
interesting in its own might, iis motivation and contri-
bution are more easily understood by placing it in the
proper comtexi. Thus, rather than describe the system
in isolation, we here briefly explore some of its key prop-
erties in light of their intellectual debt to KL-ONE and its
children. Besides making the case for cLassic, this will
also provide us an opportunity to assess in retrospect the
impacet of some of the original ideas introduced by KL-
ONE. This is a chance io ses how far we have come in a
“generation” of knowledge representation research.

2. KL-ONE: The First Generation

KL-ONE was the first implementation {ca. 1978) of a rep-
regentation system developed in Brachman's thesis[7).
It was influenced in part by the contemporary Zeitgeist
of “frames” (e.g., see [20]), with emphasis on structured
objects and complex inheritance relationships. But KL-
ONE's roots were really in semantic networks, and it had
a network notation of labeled nodes and links.

Despite its appearance, in some key respects KL-
onE was quite different from both the semantic net-
work systems that preceded it, and the frame systems
that grew up as its contemporanes. Following papers
by Woods[33] and Brachman [6], KL-ONE rejected the
prevailing idea of an open-ended variety of {domain-
specific) link- and node-names, and instead embraced a
small, fixed set of (non-domain-specific) “epistemolog-
ical primitives” (8] for constructing complex structured
objects. These constructs—which represented basic gen-
eral relationships ike “defines-an-attribute-of” and “js-a-
specialization-of,” rather than demain-specific relation-
ships like “owns” or "has-employes"—were considered
to be at a higher level of representation than the data-
structuring primitives used to implement them. They
could be used as a foundation for building application-
dependent conceptual models in a semantically mean.
imgful way {rather than in the ad hoc fashion typical of
semantic nets),



Figure 1: A KL-ONE Concept,

In addition to its clear stand on the semantics of se-
mantic networks, the original KL-ONE introduced a num-
ber of important ideas, including these:

o rather than manipulating “slots”"—which are in real-
ity low-level data structures—KL-ONE locked at rela-
tionships as reles to be played; roles get their mean-
ings from their interrelations—just like the roles in
a drama—and they are not just meaningless labeled
fields of records or indistinguishable emply bins inte
which values are dropped,;

# a role tazonomy, which allowed roles to be subdivided
into more specific roles; e.g., if childis a more specific
role than relative, then being a child entails some-
thing more constrained than being a relative, but in-
cludes everything that being » relative in general does;

» structural descriptions, which served to define the re-
laticnships between role players; eg., the difference
between a buyer and a seller in a PURCHASE event
would be specified by reference fo other concepts that
specified in which direction money and goods would
flow, These concepts would give substance to the roles,
rather than leaving their meanings open and subject
only to human interpretation of strings ke “buyer.”

o struclured inkerifance, which reflected the fact that
concepts (KL-ONE's name for frames/classes) were
complex structured constructs and their parts were not
independent items to be manipulated arbitrarily.

The KL-ONE langnage showed its semantic-network
heritage rather directly, in that KL-ONE structures
were drawn in diagrams, with different link-types be-
ing indicated with different pictorial realizations. For
example, Figure 1 illustrates a typical KL-ONE con-
cept: the “STARFLEET-MESSAGE" concept uses its parent,
"MESSAGE," Lo create the description corresponding to “a
MESSAGE whose Sender is a STARFLEET-COMMANDER." In
general, a user buill & KL-ONE net like this by calling
rather low-level LIS functions, whose actions might be
to “create a rele node” or “add a superconcept link.”

After a number of years of use and reimplementation,
it gradually became clear that KL-ONE's approach to
structured objects was substantially different than that
of virtually all of its contemporary systems. The pri-
mary realization was that those ohjects had previously
been used for (at least) two purposes [6, 9): (1) to repre-
sent statements, usually of some typical properties {e.g.,
“elephants are gray"), and {2) to act as siructured de-
seriptions, somewhat like complex mathematical types
(e.g., "a black telephone” rather than “all telephones
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are black”). In the KL-ONE community, the strectured-
description aspect came to be emphasized over the as-
serfional one.

Viewing frames as descriptional, rather than asser-
tional, emphasized the intensional aspects of knowledge
representation. This had one primary benefit: it vielded
the ides that the central inference to be drawn was
subsumption—whether or not one description is neces-
sarily more general than another. Subsumption m turn
led to the idea of description classification—taking a de-
scription and finding its proper place in a partial or-
der of other descriptions, by finding all subsuming (more
general) descriptions and all subsumed (more specific)
descriptions, KL-ONE-based classification systems wers
subsequently wsed in a number of interesting applica-
tions, including natural language understanding[11], in-
formation retrieval [27], expert systems[22], and more.
Becanse of this view of frames, the research foci in the
KL-0ONE family gradually diverged somewhat from those
of other frame projects, which continued to emphasize
typicality and defaults.

Another key issue in the KL-ONE community has
been the tension between the need for expressivensse
in the langnage and the desice to keep implementa-
tions computationally reasonable. Two somewhat dif-
ferent approaches can be seen: NIKL[L7], and subse-
quently LooM [19], added expressive power to the orig-
nal KL-08E languege, and admitted the possibility of in-
complete classification. KRYPTON [12], and subsequently
KANDOR [26], on the other hand, emphasized computa-
tional tractability and completeness. While neither of
these approaches is right for every situation, they pro-
vide an interesting contrast and highlight a significant
current issus in knowledge representation. This topic is
stitl under active exploration (see Sections 4.5-4.6).

Over the last decade, systems based on Lthe ideas in K1L-
ONE have proliferated in the United States and Europe
(with significant ESPRIT funding), with at least twenty
related efforts currently underway (see [34]). The work
has also inspired seven workshops, two recently being
held in Germany {in 1991 and ane coming soon in the US
(1992). These warkshops have attracted both theoretical
and practical scientists from several countries, and made
il clear that the class of "KL-0¥E-like" representalion
systems has both important theoretical substance and
practical iImpact.

3 The CLASSIC System

The crLassic Knowledge Representation System® repre-
sents a new generation of KL-ONE-like systems, empha-
gizing simplicity of the deseription language, a formal
approach, and tractability of its inference algorithms, In
this regard, it is most like KANDOR (and also BACK [32]),
which, while setting important directions for limited
subsumption-based reasoning, had a number of inade-
quacies. However, the CLASSIC syslem goes significantly

*erassic stands for “CLASSiRcation of Individuals and
Coneapts.” It has & complete, fully documented implemen-
tation in Commaen Lisp, and runs cn SUN workstations, Ap-
ple Macintoshes, Symbolics Machines, ete. It has been dis-
tributed to numercus (> 40) universities for research use,
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beyond previous description-based KR systems in many
important respects, including its language, integration
with the host aystem, treatment of individuals, and clar-
ity on the role of 2 KR system.

In CLASSIC's language, there are thres types of objects;

» concepls, which are descriptions with potentially com-
plex structure, formed by composing a limited set of
deseriplion-forming constructors; concepts correspond
to one-place predicates;

roles, which are simple formal terms for properties;
roles correspond to two-place predicates: within this
class, CLASSIC distinguishes atiributes, which are fune-
tional, from multi-roles, which can have multiple fillers;

individuals, which are simple formal constructs in-
tended to directly represent objects in the domain of
interest; individuals are given properties by asserting
that they are described by concepts (e.g., “Chardonnay
is & GRAPE") and thal their roles are filled by other indi.
vidnals (e.g., “Bell-Labs’ parent—company is ATRT").

The CLASSIC description language is uniform and
compositional—the meaning of a complex description is
n simple combination of the meanings of its parts.® The
complete description language grammar in Figure 2 il-
lustrates its simplicity. Besides the description language,
the interface to CLASS1C has a small number of operators
on knowledge bases for the creation of new concepts (and
the assignment of names to them), which include defined
corecepés, with full necessary and sufficient conditions;
primifive concepts, which have only necessary conditions
(see [3]); and disjoint (primitive) concepts, which cannat
share instances (e.g., MALE and FEMALE), There is also
an operator to explicitly “cloge” a role; this makes the
assertion that there can be no more fillers for the role
(see below).

It is important to emphasize that the description con-
struclors and knowledge base operators were chosen only
after careful study and extensive experience with numer-
ous KR systems. For example, virtually every object-
centered representation system has a way to restrict the
type of an attribute; this vields our ALL constractor. All
KR languages need to assert that a role is filled by an
object; this corresponds te FILLS. cLASSIC's set cip-
tures the central core of virtually all KL-oNE-like sys-
tems in an elegant way: the constructors are minimal,
in that one can not be reduced to a combination of ath-
ers; and they have a uniform, prefix notation syntax,
which allows them to be composed in a simple and pow-
erful way. Rules (see Sec. 4.4), procedural tests, numeric
ranges (MAX, MIN) and host language values expand
the scope of KL-ONE-like concepts; these were included
after clear vser need was demonstrated. Certain more
complex operators were excluded because they would
have clearly made inference intractable or undecidahble.
Thus, CLASSIC's language is arguably the cleanest struc-
tured description language that tempers expressiveness
of descriptions with tractability of inference {but see
Section 4.5), elegantly balancing representational needs
and inferential constraints in a uniform, simple, compo-
sitional framework,

fcragsic has a formal semantics, bt we will nat be able
to elaborate on it here. See [4].

CLASSIC has many novel features, and improves on
its predecessors in & number of ways, one of the most
telling of which is its treatment of individuals, Any-
thing that ean be said abont a concept ean be said about
an individual; thus, partial knowledge about individu-
als 15 maintained and used for inference. For example,
we can astert that a person has at least three children
((AT-LEAST 3 child)) without identifying them, or
that all of the children—whoever they are—are female
((ALL child FEMALE)}). Individuals from the host lan-
guage (e.g., LISP), such as strings and numbers, can
be freely used where CLASSIC-supported individuals can,
with consistent treatment. When any individual is added
or augmented, or when a new concept is defined, com-
plete propagation of properties is carried ont, so that
all individuals are continuously classified properly, and
monotonic updates are treated completely, The role-
fillers of an individual are not considered under the usual
closed-world assumplion; this better supporls the accu-
mulation of partial knowledge about individuals. Holes
can be “closed” explicitly when all of their fillers are
known, Moest crucially, an individual cannot be proven
to satisfy an ALL resiriction or an AT-MOST restric-
tion by looking at its fillers for the role unless all of those
fillers are known. Previous systems either treated this
aspect of assertions incompletely or incorrectly.

Hather than delve further into CcLassIC's individual
features, we will attempt to better articulate its more
general contributions by examining its relation to the
issues that started this whole line of thinking over a
decade ago. In that respect we can not oaly appreciate
gains made in CLASSIC, but understand the strengths
and weaknesses of the original KL-ONE proposals.

4 Key Intellectual Developments

CLASSIC is innovative in a number of ways, and bears
little surface resemblance to KL-ONE. Bui it is also very
much a descendant of that system, which introduced a
number of key ideas to the knowledge representation
scene, While we will not have an opportunity here to
delve into all of these ideas, we will examine a few of the
more important issues raised by the original system and
it successors,

4.1 Subsumption as a Central Inference

In KL-ONE, as in all semantic networks that preceded
it (and most systems to follow), the backbone of a do-
main representation was an *I1S-A" hierarchy. The 15-4
(“superc” in KL-ONE) link served to establish that one
ecncept was a subconcept of another, and thus deserved
to inherit all of the features of the superconcept. Virtu-
ally all of these systems forced the user to state directly
that such a link should be placed between two explicitly
named concepts. This type of user responsibility is still
common in virtually all frame-based systems and expert
syslem shells,

In the early 1980s we discovered that in a
classification-based system this was the wrong way
around. In the KL-ONE-descendant langnages of KRYP-
TON and KANDOR, where the meaning of a concept could
be determined simply and directly from its structure (be-



< concept-expression> o=

THING | CLASSIC-THING | ROST-THING | <concepi-names |
(AND <concept-expression=") |

[ALL <role-expression’ <econcept-expression) |
AT-LEAST <posilive-integer> <role-expression=) |
AT-MOST <non-negative-integer> <role-expression>) |
(FILLS <role-expression> <individual-name>=*) |
{SAME-AS <attribute-path><attribute-path>) |

(TEST-C <in><argument>"} |

(TEST-H <fn><argument>") |
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buili-in names

conjunclion

universal value resiriciion

minimum cordinalily

marimin cerdinalily

rolde-filling

role-filler equality

test (CLASSIC mm:epg
test (HOST concep

(ONE-OF <individual-name>*} |
(MIN <number>) | (MAX <number>)

set af individeals

numeric range limits

<individual-expression> 1= <concept-expression> | <individual-names

<concepl-name> =
<individual-names 1=
<role-expression> 1=

< symbol=

{{altﬁbute-nm}"'}

<symbol> | <string> | <number> | "< CoMmonLISP-expression>
<multi-role-name> | <atfribute-name>

<fn> ;= a function in the host language (CcoMMoN LISP} with three-valued logical return type

Figure 2; The cLAss1C Description Language (comments in italics).

cause the logie had a compositional semantics and neces-
sary and sufficient d{:ﬁniﬁnns:l: it became clear that 13-4
relations were purely derivaiive from the siructure of the
concepts. In other words, the subsumption relation? be-
tween two descriptions was determined without any need
for a complete explicit hierarchy of 15-A connections,

(M course, it might make a difference to the efficiency
of the system if all subsumplion relationships that had
been caleulated were cached in some kind of structure
that obviated the need to compule them a second time,
and this is now common prm:ti:c. But in a system like
CLASSIC, it is clear that this is strictly an efficiency issne.

In essence, systems that force a user to think only
in terms of direct 13-4 links place the entire burden of
knowledge structuring on that user. Sinee every 15-A
assertion is taken at its word, the system can provide
no feedback that the correei relationship has been rep-
resenied; all responsibility is the user’s. On the other
hand, the CLASSIC system (and others like it) can reli-
ably decide under which concepts a new concept or indi-
vidual must fit, since it has 2 compositional interpreta-
tion of the parts of any concept. This provides valuable
help to the user in structuring large knowledge bases,
because it iz all oo easy for us to assume that just be-
cause we know something that a term (e.g., & complex
concept, like RED-WINE) implies, the system will know
it as well. This adventage has been documented in the
LASSIE system [14], which uses claseification te support
a software information system. Systems that do not do
classification do not have defined concepts, and therefore
treat everything as primitive [8]. Thus we can be falsely
Inlled into assuming that when we assert thal a partic-
ular WINE has color = Red, the system will know that
it is a RED=-WINE; but a non-classification system will not
make that inference.

*Subsumption is defined formally in [18] and [4]. Concept

@ subsumes concept b iff instances of b are instances of a in
all possible interpretations.

"Note that cLassic and its cousing all do normal inheri-

tance of properties. Most of these systems are strictly mono-

tonie for simplicity, but Loos [19] has a defanlt component.

4.2 From LISP Functions to Languages

The realization that the structure of a conecapt is the
only source of its meaning, and that any 15-A hierarchy
is induced by such structures, leads to ancther significant
point of departure for the CLASSIC system. CLASSIC has
a true knowledge representation language—a grammar
of expressioms. KL-ONE and even many of its succes-
sors freated a knowledpe base as a set of data structures
to be more or less directly manipulated by a user, and
thus the user interface was strictly in terms of node- and
link-managing functions. Instead (following KRYPTON)
CLASSIC is really based on a formal logic, with a formal
syntax, rules of inference, and a formal interpretation of
the syntax (see [4]).

Of all of the KL-OWE-like systems, the CLASSIC system
has the cleanest language. As shown in Figure 2, the
langnage is simple, uniform, and compesitional. Fig-
ure 3 illustrates the difference in style between KL-
ONE structures and the lexical language of the CLAS-
s1¢ system.® The advantages of a true logic over a set
of deta-structure-manipulating programs should be ab-
vious: one can write parsers and syntax checkers for the
language, formal semantics can be specified, inference
mechanisms can be verified to adhere to the semantics,
etc,

4.3 Attached Procedures

One of the more popular features of the early frame
systems was the ability to “attach” programs to pieces
of the data structures. The ultimate incarnation of
this jden was probably KRL[3], which had an elabo.
rate process framework, including “servanis," “demons,”
“traps,” and “triggers.” The program fragments could
be invoked at various times, and eause arhitrary com-
putations to occur. KL-ONE had its own elaborate pro-
cedure attachment and invocation framework. However,
arbitrary access to LISP meant that KR systems with
this feature ceded control completely to the user—an at-

SThe symbols C and = indicate a primitive concept speci-
fication and a defined concept specification, respectivaly. The
KL-ONE community has developed an algebraic notation that
includes operators like these for all construets in cLassic and

related langnages.



1040

ALL sender PERSON)

{AT-LEAST | recipient)

ALL recipient PERSON)

AT-LEAST 1 body)

AT-MOST 1 bady]

ALL body TEXT))
PRIVATE-MESSAGE = (AND MESSAGE

[AT-MOST 1 recipient))

MESSAGE L {AND {.hT—LEJ\ST 1 sender)

Figure 3: cLAs51C Expressions and ¥L-0NE Diagrams {adapted from [11]).

tached procedure could alter any data structure in any
way at any time. The semaniics of KL-ONE networks
and other frame systems thus became very hazy once
attached procedures were untilized.

In cLASSIC, we have invented an important way to
control the use of such “escape hatches.” Through the
notion of the TEST-C and TEST-H conslructors, we
have isolated the use of Fra-:l:durcs in the host ]anguagc
to testing predicates. As one can see from the gram-
mar, such coneepts are treated synlactically untformly
with other concepts. The procedure simply provides &
primitive sufficiency condition for the concept—it will
be invoked uni_v when t.r;.ring to recognize an instance.
These test functions are particularly useful when try-
ing to relate individuals from the host language, such as
when two roles are filled with numbers, and one should
be a multiple of another. In their use, the user agrees to
avold side-effects and to use only monotonic procedures
{i.e., those whose value never changes from true Lo false
or vice versa in the presence of purely monctonic up-
dates). While under arbitrary circumstances, resorling
to program code for tests renders the semantics of the
language useless, in cLASSIC, if the user abides by this
“centracl,” the semantics of concepts with tests is man-
ageable, and the inferences that the system draws are
still gnaranteed to be sound. Indeed, tests work just Like
other restrictions on concepts as far as classification of
individuals goes, bul since the procedures are inscrutable
they have the flavor of primitive concepts. While primi-
tive concepts allow primilive necessary conditions, tests
give us primitive sufficient conditions.

Another innovation in CLASSIC is the requirement that
the test functions musi be J-valued. [f a sysiem like
CLASSIC says that an individual does not satisfy a con-
cept, then that means only that it cannot be currently
proven to do so. A complementary question can still
he asked—whether it can be proven that the individual
could never satisly the deseription (i.e., that it is disjoint
from the concept). For example, if Fred has exactly one
child (i.e., (AWND (AT-LEAST 1 child) (AT-MOST
i child)})), but nothing is known about it yet, then he
cannot be proven to satisfy the description (ALL child
FEMALE}. But it is possible that at a later time he could
be, if he were stated to have a known female child. On
the other hand, if it were asserted that his child was
Barney, who was known to be a MALE, and MALE and
FEMALE were disjudnt concepts, then it would be provable
that Fred could never satisfy the deseription. Thus, in
order to fit into the classification framework, procedural
tests must provide the same facility—to differentiate be-
tween a guarantes never to satisly a descriplion and lack
of ability to prove it given the current knowledge base.

4.4 Definitions, Assertions, Individuals

As mentioned, KL-oNE ullimately distinguished itself
from other frame languages by its emphasis on struc-
tured descriptions and their relationships, rather than on
cantingent and typical facts. At one point in its develop-
ment, the system was in a strange state: there were facil-
ities for building complex concepts, but none for actually
using them to describe individual objects in the domain.
“Individual concepts” were K1-0NE's initial atiempt to,
distinguish befween generic class deseriptions and de-
geriptions that could apply only to single individuals. As
it turned out, these were typically misused: an individual
coneept with twe parend concepts could only really mean
a conjunctive description. One example that was used of-
ten was the conjunction of DRIVING- IN-MASSACHUSETTS
and HAZARDOUS-ACTIVITY, intended to express the fact
that driving in Massachusetts is hazardous. However, in
truth the concept including them both was just a com-
pound concept with no assertional fores at all.

While KL-OKE initially correctly distmguished between
the import of different links between concepts, it failed to
distinguish between those and a hink that would make a
contingent assertion about some individual. Eventually
an alternative mechanism was proposed—ihe “nexus”
to stand for an individual—but this was never really
nsed. In the end, it took the work on KRYPTON to
gei this right. In KRYPTON, it was proposed that ter-
minaological knowledge (knowledge about the structure
of deseriptions) and assertional knowledge (facts) -are
two complementary aspects of knowledge representation
competence, and that they should be maintained by dis-
tinct components, with an appropriate logical conneetion
between them. From this distinction arcse the terms
“THox" and “ABox,” which are used extensively in the
EL-ONE eommmunity to refer to the twe components.

But KEYPTON went too far in another direction, inte-
grating an entire first-order logic theorem-prover as its
assertional component. The CLASSIC system makes what
we think is a belter compromise: it has a limited object-
centered logic that properly relates descriptions and in-
dividuals. As is apparent from the grammar, cLassIC
treats assertions about individuals in a parallel and uni-
form manner with its treatment of the formation of sub-
concepts; but it also carefully distinguishes the logical
meaning of the different relationships. Thus, for ex-
ample, while individuals can be used in concept .value
restrictions (i.e., in a ONE-OF expression, e.g., (ALL
wine=-caler (ONE-OF Red White Eluah}}}r no con-
tingent properiy of an individual can be used in deter-
mining subsumption between two concepls (e.g., if White
just happens to be my favorite color for & wine, that fact
cannot be used in any subsumption inference).



As mentioned, CLASSIC also supports the propaga-
tion of information between individuals, If we assert
that some individual is described by a complex deserip-
tion {e.g., that Rebecca is a PERSON whose mother is
a DOCTOR), then that may imply some new properties
about other related individuals (e.g., we should assert
that Rebecea’s mother, if known, is a DOCTOR). Such
propagated properties can in torn cause other propesties
to propagate (eg., that Rebecca's mother's office is
& DOCTOR'S-OFFICE)." This type of inference was never
handled in KL-0ONE, and only partially handled in some
of its successors. Note that as soon as a properiy propa-
gates from one individual to another, the latter individ-
ual might now fall under some new descriptions., CLAS-
s1¢ takes care of this re-classification inference as well
{as well as any further propagaiions that result, etc.).

The ¢LASSIC system has two other features along these
lines that distinguish it from its predecessors. First,
the previously mentioned apparatus does not allow the
expression of general contingent rules about individa-
als. Thus, given only what is in the CLASSIC concept
grammar, while we could form the concept of, for exam-
ple, a LATE-HARVEST=-WINE, we could not assert that all
LATE-HARVEST-WINEs are SWEET-WINEs, The sweetness
is a derivative property—it is nol part of the meaning
of LATE-HARVEST-WINE, but rather a simple contingent
property of such wines. In CLASSIC, one can also express
general rules of a simple form. A rule has a named con-
cept as the left-hand side, with an applicability condition
(filter) that limits the rule's firing to the desited subeases
(ie., il £ is & <eoncepl,> with property <filfer>, then
x is & <concepl,>). These rules are used only in rea-
soning about individuals, and de not affect subsumption
relationships ®

Most KL-0NE-like systems were unclear about the sta-
tus of individuals that could easily be expressed in the
host implementation language (1.e., numbers and strings
in LISP). CLASSIC integrates such individuals in a sim-
ple and uniform way, and makes it virtually transparent
whether an iindividual is implemented directly in the host
language, or in the normal complex structuee for cLASSIC
individuals. This aspect of cLASSIC has proven critical in
applications that deal with real data (for example, from
a database), as in [29].

4.5 KR and Computational
Complexity

OUnce it was apparent that the elearly defined logieal re-
lationship of subsumplion was central to the KL-ONE
family, a new factor could be introduced to the analy-
sis of frame-based knowl::lg: representation systems. In
1984, Brachman and Levesque gave a formal analysis of
the complexity of computing subsumption in some frame
languages [10]. That analysis showed that the apparent

TIn order to keep the complexity down, cLassic anly
propagates properties to known individuals,  Thus, if
Rebecca’s mother were unknown, the system would not at-
tempt to create an individual about which to assert the
DOCTOR description. If it did, it would then have to do very
complex reasoning about existentials.

B2ome of the newer Ki-onEB-derivatives, such as LooM,
have developed similar rule mechanisms.
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simplicity of some frame languages could be deceptive,
and that the crucial subsumption inference was co-NP-
hard. The original paper initiated a sequence of results
om the complexity of computing in the KL-0NE family,
culminating most recently in two that show that the orig-
inal langnage is in fact undecidable [24, 28).

This line of analysis has cansed some major rethinking
of the knowledge representation enterprise. No longer
can we view language fentures as simply providing more
expressiveness {which was the common view in the early
years of knowledge representation). Hather, as in other
areas of computer science, we must consider how expen-
sive it will be to add a featurs to a langnage. The ad-
dition of new features may demand the excision of some
others in order to maintain computational manageabil-
ity, or the system must be clear on where it is incomplete.
In GLASSIC, subsumption is complete and tractable, but
with respeet to a slightly non-standard semantics; that
is, it is clear what CLASSIC computes, and how fast it can
compute it, but it does nol compute all the standard log-
ical consequences of a knowledge base. In this regard, we
have apted for a less conservalive approach than in KAN-
DOR, but a more limited and disciplined approach than
in L00M, The consequences of this are explored briefly
in the next seelion. We should point out that the viabil-
ity of our approach has been proven in praciice: CLASSIO
is the first KL-ONE-derived system to be deployed in a
fielded [ATET proprictary} product, used every day in
critical business operations. It was expressive enough to
do the job.

4.6 The Role of a KR System

The above developments in the KL-ONE saga give se to
an important general question that wsually goes unasked
in Al: what role is a knowledge representation system
expected to play? There are clearly different approaches
here. On one extreme we have the large commercial sys-
tems, or cxpert system shells, which include substantial
knowledge representation apparatus, The philosophy of
those systems scems to be that & KR system should pro-
vide whatever apparatus is necessary lo support virtu-
ally any Al application. In that regard, such systems are
like very pewerful programming languages, with complex
data-strueturing facilities.

But this iz definitely not the only approsch, and in
many respects its requirements are overly demanding.
Given the kind of complexity results mentioned above,
users of such powerful systems must be very careful in
“programming” their KR tools: predicting when a com-
putatien will return 15 difficult or impossible in a very
expressive logic.

In many contexts (but not all, of course), it may be ap-
propriate for a knnwlcdge representation system to aet
in a more constrained fashion, rather like the database
component of an application system. This is the point
of view explicitly espoused in ¢Lass1c. Users cannot ex-
pect to program arbitrary computations in CLASSIC, but
in retarn they get predictable response time and clear
semantics. The burden of programming an application,
such as a medieal diagnostician, must be placed on some
other component of the overall system. Sinee most KT
systems attempi to be application-independent, it is ap-
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propriate for them not to be asked to provide general di-
agnosiic, planning, or natural language-specific support.
What is gained in return for certain limitations (and this
in part accounts for the appeal of databases) is a system
that is both complete with respect to an intuitive and
simple semanfic model and efficient to use.

Failure to acknowledge thiz general issue has been a
source of difficulty with knowledge representation sys-
tems in Al. KL-ONE, uniformly with its contemporary
KR systems (and subsequently ¥IKL), never really took
a stand as to the role it should play., This has resulted,
for example, in a pair of recent eritiques of NIKL |15, 30],
for failing to live up to a promise it perhaps was never
intended {o make. With crassic, on the other hand,
we expect to provide a powerful database service, but
with limited deductive and programming support. This
is a unique kind of database service, as it is both de-
ductive and object-oriented (see [5]). But nevertheless
it is firmly hmited, To use the CLASSIC system in the
context of an expert system, for example, it would be
appropriate fo use it as a substitute for working memory
in 2 rule-based programming system like OPS5, not for
all computation to be done by the overall system. Sev-
eral recent applications ([14], [29], [23], and others) have
shown convincingly that this approach, while not satis-
fying all needs for all applications, is quite successful in
important cases.

5 Perspective

While CLASSIC is a “KL-ONE-like" system, it differs in
so many ways from the original that it must be treated
in its own right. While ¥L-0NE began the thinking on
numercus key issues, it has taken us until CLASSIC fo
begin to truly understand many of them. Among its
virtues, the CLASSIC Knowledge Representation System

# isolates an important set of language constructs, dis-
tilled from many years of use of frame representations,
and knits them togather in an elegant, straightforward
language with a compositional interpretation; novel
language features include enumerated sets of individ-
uals treated in a uniform manner with other concepts
(ONE-OF), and limited generic equalities between role
fillers (SAME-AS);

¢ treats individuals in & more complete way than its
predecessors, supporting propagation of facts and re-
classification of individuals:

* zllows contingent universal rules that are automati-
cally applied, with the affected individuals being re-
ciassified and any derived facts being propagated;

offers tight, uniform integration of individuals from
the hest language, including numeric range concepts
(MAX, MIN);

offers a facility for writing procedural 3-valued tests
as primitive sufficiency conditions, and integrates such
tests into the language and semantics in a clean way.®

foLassio also ailows retraction of any asserted fact, with
full dependency maintenance, but we have not had room to
diseuss this here,

CLASSIC offers these facilities in the context of complete
compatation of subsumption, while remaming computa-
tionally tractable. The cLASSIC system can be thought
of as a limited, dedoctive, object-orienied database man-
agement system as well as a knewledge representation
system, and has been used to support several real-world
a.pp]inatinnﬁ.m

In this discussion, we have limited ourselves to consid-
ering the KL-ONE family and its contiributions. Related
work involving manipulation of types and their relations
can be found in programming language research, in some
semantic date modeling work, and in feature logics in
support of {among other things) natural language pre-
cessing. We do not have room to draw comparisons with
thiz olher work, but in general it is clear that the bulk of
that work does not include classification and deseription-
processing of the sort found so prevalently in KL-oWE-like
systems. Recent work in some of these areas does bear
a strong relationship to ours, but not by accident: work
on KL-ONE and its descendants has had direct influence,
for example, on LOGIN [1] (a programming language),
CANDIDE (2] {a DBMS), and featurs logies [21].

There are still, of course, many open questions yet
to challenge cLASSIC and its relatives. Technically, the
notion of & “structural description,” imtroduced by KL-
ONE, has still not been treated adequately (although the
SAME-AS construct provides a limited form of relation-
ehip between roles). And there are important compu-
tafional questions to be answered so that CLASSIC can
handle significant-sized databases, involving persistence
of KB's, automatic loading of data from conventional
DBMS's, and complex query processing.

But perhaps chief among the remaining research ques-
tions is how exactly to cope with the tradeoff we are
forced to make between expressive power and compu-
tatiomal tractability. Is it even possible to provide the
kind of knowledge representation and inference services
demanded by Al applications in a computationally man-
ageable way? The CLASSIC Knowledge Representation
System has provided convincing evidence that this is pos-
sible at least for a limited set of applications, but it is
but one point in & large space of possibilities that we
are still mapping out, after more than a dozen years of
research inspired by KL-ONME.
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