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Abstract

Advances in Interconnection network performance and in-
terprocessor interaction mechanisms enable the construction
of fine-grain parallel computers in which the nodes are phys-
ically small and have 2 small amount of memery, This class
af machines has a much higher ratlo of processor to mem-
ary area and hence provides greater processor throughput
and memory bandwidth per unit cost relative to conven-
tional memory-dominated machines. This paper describes
the technology and architecture trends motivating fine-grain
architecture and the enabling technologies of high-perfor-
manece interconnection networks and low-overhead interac-
tion mechanisms. We conclude with a discussion of our ex-
periences with the J-Machine, a prototype fine-grain con-
eurrent computer.

1 Introduction

Computer architecture involves balancing the capabili-
ties of components (processors, memories, and commu-
nication facilities), organizing the connections between
the components, and choosing the mechanisms that con-
frol how components interact. The top-level organiza-
tion of most computer systems is similar. As shown in
Figure 1, all parallel computers consist of a set of pro-
cessing nodes each of which contains a processor, some
memory, and a communication interface. The nodes are
interconnected by a communication facility [typically
a network). A sequential processor is the special case
where there is only a single node and the network is
used only to connect to [/ devices,

At present, the organization of processors and memo-
ries is well understood and network technolagy is rapidly
maturing. While these components continue to evolve
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ration and IBM Corporation, snd in part by assistance from Intel
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Figure 1: The structure of a parallel computer or mul-
ticompuler. All multicomputers consist of 2 collection
of nodes connected by a network. Each node contains a
processor (P), a memory (M), and a communication in-
terface {C). Machines differ in Lhe balance of component
performance and in the mechaniems used for communi-
cation and synchronization between the nodes.

with improving technology and incremental architecture
improvemnents, they do not provide significant differenti-
ation between machines. With a convergence in machine
organization, balance and mechanisms become central
architectural issues and serve as the major points of dif-
ferentiation.

This paper explores two ideas related to balance and
mechanisms. First, we propose balancing machines by
cost, rather than by capacity to speed ratios. Such cost-
balanced machines have a much higher ratio of proces-
sor to memory area and hence much greater proces-
gor throughput and memory bandwidth per unit cost
compared to conventional machines. Cost-balanced ma-
chines are have a fine-grained physical structure. Each
node is physically small and has a small amount of mem-
ory. Efficient operation with this fine-grained structure
depends on high-performance communication between
nodes and low overhead interaction mechanisms.

The mechanisms that control the interaction betwesn
the nodes of a parallel computer determine both the



grain-size and the programming models that can be effi-
ciently supported. By choosing a simple, yet complete,
set of primitive mechanisms, a parallel computer can
support a broad range of programming models and op-
erate at a fine grain size.

A fine-grain parallel computer with fast networks and
efficient mechaniams has the potential to become a uni-
versal computer architecture in two respects. First, this
class of machine has the poten tial to universally displa.c.e
conventional (sequential and parallel) coarse-grained com-
puters. Secondly, a simple yet efficient set of interaction
mechanisms serves as the basis for a parallel computer
that i universal in the sense that it runs any parallel
programming system.

The remainder of this paper explores the issues of bal-
ance and mechanisms in more detail. The next section
identifies trends in conventional sequential processor ar-
chitecture that have led to a cost-imbalance between
processors and memory. Section 3 discusses how an op-
portunity exists to greatly improve the perfarmance fcost
of computer systems by correcting this imbalanee. The
next two sections deal with the two enabling technolo-
gies: Metworks {Section 4) and Mechanisms {Section 5).
Topether these enable fine-grain machines to give se-
quential performance competitive with conventional ma-
chines while greatly outperforming them on parallel ap-
plications. Our experience in building and operating &
prototype fine-grain computer is described in Section 6.

2 Trends in Sequential Architec-
ture

Two trends are present in the architecture of conven-
tional computers:

1. The size of a processor relative to the size of its
memory eystem is decreasing exponentially.

2. The time required for a processor to interact with
an external device connected to its memory bus is
increasing,.

The first trend is due to an attempt to balance com-
puter systems by ratio of processor performance (ifs)
to memory capacity (bits). In 1967, Amdahl [22] sug-
gested that a system should have 8Mbits of memory
for each Mifs of processor performance. The processor
performance/size ratio (ifs » em®) benefits from tech-
nolegy improvements in both density and spesd while
the memory capacity,/size ratio (bits/cm®) benefits only
from density improvements, Thus the processor to mem-
ory coat ratio for an Amdahl-balanced system scales in-
versely with speed improvements.
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Let K{67) denote ihe ratio of processor cost to mem-
ary cost for such an Amdabl-balanced system in 1967,
Every ¥ vyears, the line width of the underlying semi-
conductor technology has halved. As a resull, the area
of both the processer and the memory was reduced by
a factor of four [23). At the same time, the processor
speed inecreased by a factor of &, To keep such a system
Amdahl-balanced, the capacity (and hence the size) of
the memory must also be increased by @. Thus, the
processor to memeory ratio during year > 67 is given
by Kiz) = K(6T)a'® ==Y, For typical values of & = 3
and ¥ = 5 [23], K(92) = 004K (67).

The cost of a conventional machine has become largely
insensitive to processor size as a result of this expo-
nential trend in the ratio of processor to memeory size.

Thus, processer designers have become lavish in their
use of area'. Costly features such as large caches, com-

plex data paths, and complex instruction-lssue logic are
added even though their marginal affect on processor
performance (compared to a small cache and a simple
organization ) is minor. As long as the size of the ma-
chine is dominated by memory, adding area to the pro-
cessor has a small effect on overall size and cost.

The second trend, the increase in external interac-
tion latency, is due to the first trend, to the increas-
ing difference in on-chip to off-chip signal energies, and
to to deepening memeory hierarchies. As processors get
faster and memory size increases the number of proces-
sor cycles required to access memory increases, Modern
microprocessor-based computers have a latency of 3-20
cyeles for 2 main memeory access and this number is -
creasing. At the same time, decreasing on-chip signal
energies require greater amplification to drive off-chip
signals. Also, as more levels of caching are introduced,
the number of cycles expended before initiating an exter-
nal memory reference increases and the memory inter-
face becomes specialized for the transfer of cache lines.

If 2 conventional processor is used in a parallel com-
puter, its high external interaction latency limits its
communication performance as the network must typ-
ically be accessed via the external memory interface.
Whether this interface uses DMA to transfer data stored
in memory (and possibly cached) or uses writes to a
memory-mapped network port, each word of the mes-
sage must traverse the external memory bus and the cost
of initiating an external memory operation is incurred
al least once. The slow external memory interface also
contributes to the lack of agility in modern processors
(that is, their slowness in responding to external events
and switching tasks) because a great deal of processor
state must be transferred to and from memory during
these operations.

These trends in conventional processor architecture

'As a result of thiz lavish use of area, processor sizes have
scaled slightly slower than predicted by the formula above.
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make conventional processors ill-suited for use in a par-

allel computer, Current cost-insensitive processors are
nol cost effective in a machine with higher processor

to memory ratio where the cost of the processor is an
important factor. Their high external interaction la-
tency severely limits their communication performance
and their poor agility limits their ability to handle syn-
chronization.

This does not mean, however, that conventional in-
struction set architectures (ISAs) are unsuitable for par-
allel computing. Rather it is the cost-insensilive design
style, deep memory hierarchies, and poor agility that are
the problem. As we will see in Section 3, a conventional
I5A can be extended with a few instructions to provide
an efficient set of parallel mechanisms.

Most importantly, the trend toward ever higher mem-
ory to processor size ratios has created an enormous
opportunity for parallel computing to improve the per-
fermance/cost of computers. By adding more proces-
sors while keeping the amount of memory constant, the
performance of the machine is dramatically increased
with little impact on cost. The current trend, how-
ever, of building parallel computers by simnply replicat-
ing workstation-sized units {increasing processors and
memory proportionally] does not exploit this advantage.
The processor to memory ratio must be decreased to -
prove efficiency. This theme is explored in more detail
in the next section.

3 DBalance

Balance, in the context of computer architecture, refers
to the ratios of throughput, latency, and capacity of
different elements of a computer. In this section we
will uxplurr: the balance between processor thruughput.,
memory capacity, and network throughput in a parallel
computer. A case will be made for balancing machines
based on cost®,

Traditionally, machines have been balanced by rules
of thumb such as the one due to Amdahl discuzsed above.
However, a more economical design results if a machine
is balanced based on cost. A machine is cosi-balanced
when the incremental peformance increase due to an
incremental increase in the cost of each component is
equal. Let each component k; in a machine with perfor-
mance P have cost ¢;, then the machine is cost-balanced
if 8P/ de; = 8P/ de;; i, [T).

It is difficult to solve these balance equations because
(1) no analytic function exists that relates system per-
formance to component cost and (2) this relationship
varies greatly depending on the application being run.
Also, analyzing existing applications can be misleading

*Much of the material in this section is based on a joint work
in progress with Prof. Anant Agarwal of MIT.

as E]'m;.r have been tuned to run on part.ir.u]ar machines

and hence reflect the balance of those machines,
A workable approach is to start from the present

nhcmur_',r—durnina.t.ed syslern and increase the processor
and network costs until they reach some fraction of to-
tal cost, for example 10%. At this point the system
costs a small fraction more than a conventional system.
If designed with an appropriate communication network
{Section 4) and mechanisms [Jection 5}, it should pro-
vide sequential performance comparable to that of 2 con-
venlional machine. g\pplica,_tio‘ns thal are parallt:liz.cd Lo
take advantage of the machine can potentially speed up
by the entire increase in processing cost.

To make reasonable balancing decisions, it 15 impor-
tant to use manufacturing cost, not component price, as
our measure of cost. This avoids distorting our analysis
due to the widely varying pricing policies of semiconduc-
tor vendors. To simplify our analysis of cost, we will use
silicon area normalized to half & minimum line width, A,
as our measure of cost [27].

First consider the issue of processor to memory bal-
ance. There are two issues: (1) how large a processor to
use on each node and (2) how much memory per proces-
sor. A G4-bit processor with floating point but no cache
and simple issue logic currently costs about 100MAY,
about the same as S00Kbits of DRAM, and has a per-
formance of 50Mifs. Making 2 processor larger than
this gives diminizhing returns in performance as heroic
efforts are made to exploit instruction-level parallelism
[20]. A smaller processor may improve efficiency slightly.
If we are allocating 10% of our cost to processors, we
will build one processor for every SMbits of memory -
rounding up this gives one processar per MByte, In to-
day’s technology a processor of this type with 1MByte
of memory can easily be integrated on a single chip. In
comparison, an Amdahl-balanced machine would pro-
vide 64MBytes of memory for each processor and be
packaped 1n 30-50 chips.

Providing a small cache memory for the processor is
cost effective; however a large cache andfor a secondary
cache are not. Adding a small 4KByte I-cache and D-
cache requires about 16MA* of area and greatly boosts
processor performance achieving hit rates greater than
90% on many codes [35]. Making the cache much larger
or deepening the memory hierarchy would greatly in-
crease processor area with a very small return in perfor-
mance. Also, using a small co-located memory reduces
precessor access time to DEAM memory.

The network to memory balance is achieved in a sim-
ilar manner, by adding network capability until cost is
increased by a small fraction. A great deal of network
performance comes at very liltle cost. The PC (printed-
circuit) boards on which the processor-memeory chips are
mounted have a certain wiring capacity and the periph-
ery of the chips can support a certain number of I/0O



pads®. The network can make use of most of these pin
and wire resources at a very small cost. The cost of the
network router itself is small; a competant router can be
built in less than 10MA? [16]. For example, & router on
an integrated processor-memory chip could easily sup-
port 6 16-bit wide channels from which & 3-D network
can be constructed {Section 4). Conventional PO boards
and connectors can easily handle these signals.

Attempting te increase network bandwidth beyond
this level becomes very expensive. To add move channel
pins, the router must be moved to a separate chip or even
split across several chips incurring additional overhead
for communication between the chips. These chips are
pad-limited and most of their area iz squandered. If the
amount of memory per node is increased proportionally
to the cost of the network router to hold the memery to
network cost ratio constant, the network bandwidth per
bit of memory decreases (and the processor to memory
ratio is diatnried:l,

A computer design can be approximately cost-balanced
by using technology constraints to determine the proces-
sor/memory /network ratios, A simple three step method
gives a well cost-balanced system:

L. Size the processor to the knee of its performance/ cost
curve Lo get a cost effective processor.

2. Set the processor to memory ratio to allocate a
fixed fraction = (in the example above 0.1) of cost
to the processor to get a machine that is within
1/1 =+ of the optimium cost.

3. Holding processor and memory sizes constant, size
the network to the knee of its performance/cost
curve Lo get a cost effective networl.

Machines that are cost-balanced using this method
offer aggregate processor performance and local memeory
bandwidih that is 50 times that of an Amdahl-balanced
machine per unit cost. This performance advantage will
expand by a factor of o every ¥ years.

Why are coarse-grained Amdahl-balanced machines
widespread both in uniprocessors and parallel comput-
ers? In uniprocessors, the number of processors is not
a free variable. Thus the designer is driven to increase
the size and cost of a single processor far pasi the knee
of its performance/cost curve.

Existing parallel computers are driven to a coarse
grain-sige because (1) they are built using processors
that lack appropriate mechanisms for communication
and synchronization, (2) their networks are too slow
to provide fast access to all memory in the machine[2],

ITypical PC boards support 2wires /om on each of 4-8 wiring
layers. Typical 1Cs support 1W0pads/cm along their periphery
with 20-50% of these pads reserved for power,
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and (3) converting software to run in parallel on these
machines requires considerable effort [21]. Much of the
difficultly associated with (3) is due to the partitioning
requied to get good performance because of 1 and 2.

For cost-balanced machines to be compelitive, in-
creasing the number of processors must (1) not substan-
tially reduce single-processor performance and (2) must
provide the potential for near-linear speedup on certain
problems. To retain single-processor performance on
a machine with a small amount of memory per node,
the network and processor communication mechanisms
must provide & single processor aceess to any mem-
ory location in the machine in time competitive with a
mMain memory access in a conventional machine, Single-
processor performance depends on network latency. To
provide speedup on parallel applications, the processor’s
communication and synchronization mechanisms must
pmil"lde for low-overhead interaction and the network
throughput must be sufficient to suppert the parallel
communication demands. Parallel speedup depends an
throughput and agility.

The two key technologies for building cost-balanced
machines are efficient networks, and processor mecha-
nisms for communication and synchronization. The next
two sections explore these technologies in more detail,

4 Network Architecture and De-
sign

The interconnection network is the key component of a
parallel computer. The network accepts messages from
each proceszsing node of a parallel comnputer and delivers
each message to any other processing node. Latency, T,
and throwghput, A,, characterize the performance of a
network. Latency ia the time (s) from when the first
bit of the message leaves the sending node to when the
last bit of the message arrives at the receiving node.
Aggregate throughput Ay is rale of message delivery
(bits/s) when the network is fully loaded.

T must be kept low to achieve good performance for
sequential codes and for the portions of parallel codes
where the parallelism is insufficient to keep the ma-
chine busy. During these periods performance is latency-
limited and execution time iz proportional to T. Dur
ing periods where there is abundant parallelism, perfor-
mance is throughput limited, Recent developments in
network technology give throughputs and latencies that
approach physical and information theoretic bounds given
pin and wire constraints. A detailed discussion of this
technology is beyond the scope of this paper. This sec-
tion briefly summarizes the major results,

An interconnection network is characterized by its
topology, routing, and flow control [11]. The topology of
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Figure 2: Insertion of express channels into a k-ary 3-
cube gives performance within a small facter of physical
limits : {A) One dimension of a regular k-ary 3-cube
network, (B) Inserting one-level of express channels op-
timizes the ratio of wire to node delay for messages trav-
elling long distances, (C) Hierarchical express channels
also reduce the number of switching decisions to the
minimum, log, V. (D) Adding multiple channels at each
level adjusts network bisection bandwidth to maximize
throughput,

a nelwork is the arrangement of nodes and channels into
a graph, Routing specifies how a packet chooses & path
in this graph. Flow control deals with the allocation of
channel and buffer resources to a packet as it traverses
this path.

The topology strongly affects T since it determines
(1) how many hops H a message must make, (2} the to-
tal wire distance £ {em) that must be traversed, and (3}
the channel width T [bits) which is limited by the bi-
section width of the wiring media divided by the channel
bisection of the network®. The latency seen by a single
message in a petwork with no other traffic (zero-load
latency or Ty) ie directly determined by these three fac-
tors:

D L
Ty = HTp + = + 7= o
Ta = HT, T 7 (1)

Where T, is the propagation delay of a node (s}, v
is the signal propagation velocity® {cm/s), and [ is the
wire bandwidth (s77).

The three-dimensional express cube topology [12], a
k-ary 3-cube with express channels added to skip in-
termediate hops (Figure 2B) when travelling large dis-
tances, can simultanecusly optimize H, I, and A.n to

In some small petworks, W is constramed by component or
module pinout and not by bisection width,
“Typically v is a fraction of the speed of light 3 < v < o

Latency e Distance for Express Cubes

Figure 3: Latency as a function of distance for a hierar-
chical express channel cube with i = 4, ! = 3, a = 64,
and a flat express channel cube with ¢ = 16, a = 64,
In & hierarchical express channel cube latency is loga-
rithmic for shert distanees and linear for long distances.
The crossover oceurs between I = o and D = e log; a.
The flat cube has linear delay dominated by T, for short
distances and by T, for long distances.

achieve performance that iz within a small fraction of
physical and informatien-thesretic limits. The number
of hops H is bounded by log, & if a g way decision is
made at each step. The express cube network achieves
this bound by inserting a hierarchy of interchanges into
a k-ary n-cube network (Figure 2C). The wire distance,
1 ie kept to within 2=/ of the physical minimum by al-
ways following a manhattan shortest path. Finally, the
number of network channels can be adjusted to use all
available wiring capacity (Figure 2D}

Figure 3 compares the performance of flat and hier-
archical express cubes with a regular k-ary n-cube and a
wire with no switching. The ratio of the delay of 2 node,
T —n, to the delay of & wire between two adjacent nodes,
D{1})/v, is denoted a = T,u/{1). The figure assumes
o = G4, The figure shows that a flat express cube de-
creases delay to a multiple of wire delay determined by
the ratio o to interchange spacing, {. Interchange spac-
ing is set to the square-root of the distance to balance
the delay due to local channels with the delay due to
express channels. The hierarchical cube with three lev-
els |:f = 3) permils small interchange spacing and allows
loeal and global delays to be aptimized simultaneausly.

The advantages of minimum A and maximum Ay
achieved by the express cube topology are important
for very large networks. For smaller netwaorks I:lms than
4K nodes), however, a simpler three-dimensional torus
or mesh network, k-ary 3-cube, is usually more cost ef-



fective. The 3-D mesh also provides manhattan shortest
paths in physical space to keep I near minimum, has
a very regular structure, and uses uniformly short wires
simplifying the electrical design of the network.

Three-dimensional networks are required to obtainin
adequate throughput for machines larger than 256 nodes,
As machines grow, the throughput per node varies in-
versely with the number of nodes in a row, as NY? for
a 2-D network and as N*® for a 3-D network. 3-D net-
works provide adequate throughput up to 4K nodes (16
nodes per row ). Beyond this point express cubes and for
careful management of locality is reguired. For ma-
chines of 256 K or larger, express cubes become bizection-
limited and locality must be expleoited. No cost-effective
network can scale throughput linearly with the size of
the machine. Above a certain size, all networks hecome
bisection-width fimited and hence have a throughput
that grows as N3/,

Routing, the assignment of a path to 2 message, de-
termines the static load balance of a network. Most
routers built to date have used deterministic routing —
where the path depends only on the source and destina-
tion nodes. Deterministic routers can be made simple
and fast, and deadlock avoidance becomes much easier.
In particular, deterministic routing in dimension order
permits the switch to be cleanly partitioned [17]. For
some traflic patterns, deterministic routing results in a
degradation in performance due to channel load imbal-
ance, However, for most cases deterministic routing has
proved adequate.

Several adaptive routing algorithms have been pro-
paosed [14, 4, 25] that are capable of dynamically detect-
ing and correcting channel load imbalance. Adaptive
routers also are able to route around a number of faulty
nodes and channels. Most adaptive routers require much
more complex logic than deterministic routers. The pla-
nar adaptive routing algorithm [4] is particularly attrac-
tive in that it retaing much of the simplicity of dimension-
order routing.

Flow control involves dynamically ailocating buffer
and channel resources to messages in the network. Most
parallel computer networks use wormhole routing [8] in
which buffers are allocated to messages while channels
are allocated to flow-control digits or flils. To keep
routers small and fast, channel buffers are often shorter
than messages. Thus it is possible for a message to be
blocked on the receiving side of a channel while part
of the message remains on the transmitting side. With
only a single buffer per channel, blocking a message on
the transmitting side would idle the channel wasting net-
wark resources.

Virtual-channel flow control permits messages to pass
blocked messages and make use of what would other-
wise be idle channels [13]. By associating several buffers
(virtual channels) with each physical channel and multi-
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Figure 4: Latency as a funetion of offered traffic for a 2-
ary 8-fly network with 1, 2, 4, 8, and 16 virtual channels
per physical channel.

plexing them on demand, a network loaded with uniform
traffic can operate at 90% of its peak channel capac-
ity. In comparison, the theoughput of a network with
only a single buffer per node saturates at 20% to 50% of
capacity depending on the topology and routing, Vir-
tnal channel flow control uses several small, indepen-
dent buffers in place of a single large queue to more
efficiently use valuable router storage. Figures 4 and 5
show the effect of adding virtual channels to the latency
and throughput of 2-ary n-fly networks.

The network technology described abeove is able to
meet the goal of providing global memory access with
& latency comparable to that of a uniprocessor. Com-
pare for example a 64-node 3-D torus with 1MByte per
node with a comparably sized single processor machine
with 64Mbytes. Both of these machines will fit comfort-
ably on a desktop. Since network channels are uniformly
short it iz customary to operate them at twice the pro-
cessor rate [10] (or more [3]). For our comparison we
will use & processor rate of 30MHz and a network clock
of 100MHz.

The 64-node torus requires an average of 6 hops to
reach any node in the machine ({71, =60ns). A message
of six 16-bit flits (L/W f=60ne) is sent in each direc-
tion for a read operation. The composition time of the
message and the initiation of the memory access can be
overlapped with this L/W f, Thus the one-way commu-
nication time is 120ns. The memory access iiself takes
100ns. Adding the reply communication time (again ter-
minal operations are overlapped with the L/W [ time)
gives a total access time of 340ns. The uniprocessor re-
quires 1 cycle to get off chip, 2 cvcles to get across a
bus, and 1 cycle to initiate the memory operation {80ns
total}. Again the memory read itself is 100ns and the
reply across the bus requires another 80ns for a total of
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Figure 5: Throughput of 2-ary n-fly networks with vir-
tual channels as a function of the number of virtual chan-
nels.

260ns. Thus the uniprocessor is only 80ns or 24% faster.
Much of the additional delay can be attributed to the
fact that the parallel computer network has more deci-
sions to make during routing and is able to handle many
messages simultaneously. While these capabilities have
aslight negative affect on latency, they give a significant
throughput advantage.

To see the throughput advantage, consider the prob-
lem of rotating a matrix about its center row. To per-
form one 64-bit move, the conventional machine requires
two memoary cycles or 52ns for a rate of 123Mbits/s.
With an interleaved memory and a lockup-free memory
interface (which few processors have) it could overlap
operations to complete one every 160ns for a rate of
400Mbits,/s. The parallel computer on the other hand
can apply its entire bidirectional hisection bandwidth of
256 16-bit channels to the problem for a total bandwidth
of 409.6GBits/s.

In summary, modern interconnection netwerk tech-
nology gives latency comparable to conventional mem-
ory access times with throughput orders of magnitude
higher. Raw network performance solves only half of the
communication problem, however. To use such a net-
work effectively requires efficient communication mech-
ATISMS.

5 Mechanisms

Mechanisms are the primitive operations provided by
a compuler's hardware and systems software. The ab-
stractions that make up a programming system are built
from these mechanisms [18, 9). For example, most se-
guential machines provide some mechanism for a push-
down stack to support the last-in-first-out (LIFO) stor-
age allocation required by many sequential models of

computation. Most machines also provide some form of
memory relocation and protection to allow several pro-
cesses to coexist in memory at a single time without
interference. The proper set of mechanisms can provide
a significant, improvement in performance over a brute-
force interpretation of a computational model.

Ohver the past 40 years, sequential von Neumann pro-
cessors have evolved a set of mechanisms appropriate for
supporting most sequential models of computation. It
iz clear, however, from efforts to build concurrent ma-
chines by wiring together many sequential processors,
that these highly-evolved sequential mechanisms are not
adequate to support most parallel models of computa-
tion. These mechanisms do not support synchronization
of events, communication of data, or global naming of
objects. As a result, these functions, inherent to any
parallel medel of computation, must be implemented
largely in software with prohibitive overhead.

For example, most sequential machines require hun-
dreds of instructions to create a new process or to send
a message. This cost prohibits the use of fine-grain pro-
gramming models where processes typically last only a
few tens of instructions and messages contain only a
few words. It is not hard to construct mechanisms that
permit tasks to be created and messages sent in a few
instruction iimes; however, these mechanisms are not to
be found on conventional processors.

Some parallel computers have been built with mech-
anisms specialized for a particular model of program-
ming, for example dataflow or parallel logic program-
ming. However, our studies have shown that most pro-
gramming models require the same basic mechanisms
for communication, synchronization, and naming. Maore
complex model-specific mechanisms can be built from
the basic mechanisms with little loss in efficiency. Spe-
cializing a machine for a particular programming model
limits its flexibility and range of application without any
significant gain in performance. In the remainder of this
section, we will examine mechanisms for communica-
tion, synchronization, and naming in turn.

Communication between two processing nodes in-
volves the following steps:

1. Formatting: gathers the message contents together.

2. Addressing: selects the physical destination for the
message,

3. Delivery: transports the message to the destina-
tion.

4. Allocation: assigns space to hold the arriving mes-
sage.

5. Buffering: stores the message into the allocated
gpace.



6. Aetion: carries out a sequence of operations to
handle the message.

All programming models use a subset of these hasic
steps. A shared memory read operation, for example,
uses all six steps. A read message is formatted, the
address is translated, the message is delivered by the
network, the message is buffered until the receiving node
can process it, and finally a read is performed and reply
message is sent as the action. Some models, such as
synchronous meassage passing always send messages to
prezllocated storage and thus omit allocation (step 4).
In some cases, no action is required to respond to a
message and step 6 can be omitted.

The SEND instruction, first used in the message-driven
processor [15, 16], with translation of destination ad-
dresszes [19] efficiently handles the first two steps: for-
matling and addressing. A message is sent with a se-
guence of SEND instructions followed by a SENDE instruc-
tion. A SEND instruction takes a number of arguments
equal to the number of read register ports (typically two)
and appends its arguments to a message, A SENDE in-
struction is identical to the SEND except that it also sig-
nals the end of the meszsage. The first SEND after a SENDE
starts a new message. By making full use of the regis-
ter bandwidth the SEND instruction reduces formatting
everhead to a minimum, The alternative approaches of
formatting a message (1) in memory or [2:] by writing
to a memory m,a.pp::d network port have much lower
bandwidth and higher latency.

Translation is achicved hy interpreting the first word
of the message stream (the first argument of the first
SEND} as a virtual destination address and translating
it to a physical address when a message is sent. A
simple translation-lookaside buffer (TLB) efficiently per-
forms this translation. Thiz approach of translating vir-
tual network addresses to physical addresses during the
SEND operation permits message sends from user code
to be fully protected without incurring the overhead of
a sytem call (as is done on many machines today). User
code is only permitted to send messages to addresses
that are entered in TLB. Sending a message to any other
address raises an exception.

Communication operations that do net require allo-
cation and or remote action can use a subsel of the basic
mechanism. A remote write operation, for example, re-
quires neither of these functions. Avoiding allocation
and action in this case eliminates the overhead of copy-
ing the message from newly allocated storage to its final
destination. The fiest SEND instruction of a message can
specifly whether allocation (.4 suffix) and/or spawning
a task (.5 suffix) are required [19]. A SEND with no suf-
fix would simply perform a remote write, SEND. 4 would
allocate but not initiate & remote action, and SEND.S4
would do beth. The sending node treats these three
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SEND operaticns identically and simply sends along the
twe option bits with the message. The receiving node
examines the option bits to determine whether alloca-
tion andfor action is required. If an action is required,
the routine to be invoked is specified by the second word
of the message.

Storage allocation and message buffering must be per-
formed in hardware to achieve adequate performance,
While approaches using stack (LIFO) or quene (FIFQ)
based storage are simple to implement [10], they may
require copying if messages are not deallocated in order.
An alternative is to allocate message buffers off a free
list of fixed-sized segments [40]. Management of such
a free list is simple {only a single pointer is required)
and it does not restricl message lifetimes. Messages too
long for the fixed-sized segments can be handled in an
overflow area.

With any allocation scheme, a method for handling
message buffer overflow is required. Because handling
an overflow may require access to other nodes, the net-
work must be usable even when a full buffer is causing
messages to back up inte the network., This is accom-
plished on the J-Machine by using two virtual networks
[10]. The actual overflow handling may be performed
in software as it is a rare evenl. While many strategies
may be used to handle everflow, a simple one is to re-
turn overflowing messages to their senders. With this
acheme each node must guarantes that it has storage to
held each message it originates until it is acknowledged.

The final step of a communication eperation is to ini-
tiate & remote action by creating and dispatching a task.
A task or process consists of a thread of control and an
addressing environment, A thread can be created in a
few clock cycles by loading & processor's IP to set the
thread of control and initializing its memory manage-
ment registers to alter the addressing environment. On
the J-Machine, each message in the message queue is
treated as a thread that is ready to run and threads are
dispatched when they reach the head of the queue This
dispatching on message arrival also serves as the basis
of a synchronization mechanism.

Synchronization enforces an ordering of events in a
program. It is used, for example, to ensure that one
process wriles a memory location before another reads
it, to provide mutval exclusion during critical sections
of code, and to require all processes to arrive at a barrier
before ANy Processes leave.

Any synchronization mechanism requires a names-
pace that processes use to refer to events, a method for
signalling that an event is enabled, and & method for
forcing a processor to wait on an event. Using tags for
synchronization, as with the presence bits on the HEP
[36], uses the memory address space as the synchroniza-
tion namespace. This provides a large synchronization
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namespace with very little cost as the memory manange-
ment hardware is reused for this function. I also has the
bhenefit that when aignaﬁn.g the availability of data, the
data can be written and the event signaled in a single
memory operation. Since it naturally signals the pres-
ence of data, we refer to this synchronization using tags
on memory words as dale synchronization[40].

With synchronizalion tags, an event iz signaled by
setting the tag to a particular state. A process can
wait on an event by performing a synchronizing access
of the location which raises an exception if the tag is
not in the expected state. A synchronizing access may
opticnally leave the tag in a different state. Simple pro-
ducer/consumer synchronization can be performed using
a single state bit. In this case, the producer executes a
synchronizing write which expects the tag to be empty
and leaves it full. A synchronizing read which expecis
the location to be full and leaves it emply is performed
by the consumer. If the eperations proceed in order,
no exceptions are raised. An attempt to read before a
write or to write twice before a single read raises a syn-
chronization exception. More invelved synchronization
protocels require additional states (for example to signal
that a process is waiting on a jocation) [19].

The communication mechanism deseribed above com-
plements data synchronization by providing a means for
a process on one node to signal an event on a remote
node. In the simplest case, a message handler can per-
form a synchronizing read or write operation, However,
it is often more efficient to move some computation lo
the node on which the daia is resident. Consider for
example the problem of adding a value to a remote
location®. One could perform & remote synchronizing
read that marks the location empty to gain exclusive
access, perform the add, and then perform a remote syn-
chronizing write. Sending a single message to invoke a
handler that performs the read, add, and write on the
remote node, however, reduces the time to perform the
operation, the number of messages required, and the
amount of lime the location is locked.

Many machines have implemented some form of global
barrier synchronization. For example, the Caltech Cos-
mic Cube [32] had four program accessible wire-or lines
for this purpose. While global barrier synchronization
is useful for some models, it can be emulated rapidly us-
ing communication and data synchronization. If there
is sufficient slack time from when a process signals that
it has reached the barrier to when it waits on the bar-
rier, this emulation will not affect program performance.
The required amount of slack time varies logarithmically
with the number of processors performing the barrier.
Also, the major use of barrier synchronization (insert-
ing a barrier between code that produces a structure

*This occurs for example when performing LU decompesition
of & matrix.

(e.g., array) and code thal consumes the structure) is
eliminated by data synchronization. By synchronizing
in the data space on each individual elernent of the data
structure, control space synchronization on the program
eounter between the producer and consumer is neither
required nor desirved. It is more efficient to allow the
producer and consumer to overlap their execution sub-
ject to data dependency constraints. Barrier synchro-
nization mechanisms also have the disadvantage that
they require a separale namespace which tends to be
small because of the prohibitive cost of providing many
simultanesus barriers, and they consume pin and wire
resources that could otherwise be used to speed up the
general communication network.

The mechanism that enforces event ordering solves
only half of the synchronization problem. Efficient syn-
chronization also requires an agile processor that can
rapidly switch processes and handle events and messages
to reduce the exception handling and context switching
overhead when switching processes while waiting on an
event. Hapid task switching can be provided by pro-
viding multiple register sets or a named-state register
set [20], Exception handling is accelerated by specifi-
cally vectoring exceptions, providing separate registers
for exception handling, and explicitlly passing arguments
to exception handlers [19).

6 Experience

In the Concurrent VLSI Architecture Group at MIT, we
have built the J-Machine [10), a prototype fine-grain par-
allel computer with a high-speed network and efficient
yel general eommunication and synchronization mech-
apigms. The J-Machine was built to test and evaluate
our ideas on mechanisms and networks, as a proof of
concept for this class of machine, and as a testbed for
parallel software research. Smell prototoypes have been
operational since June of 1991, We expect to have a
1024-processor J-Machine on-line during the summer of
1992,

The J-Machine communication mechanism permits a
node to send a message to any other node in the ma-
chine in < 1.5ps. On message arrival, a task is created
and dispatched in 200ns, A translation mechaniam sup-
ports & global virtual address space. These mechanisms
efficiently support most proposed models of concurrent
computation and allow parallelism to be exploited at a
grain size of 10 operatiens. The hardware is an ensemble
of up to 65,536 nodes each containing a2 36-bit proces-
sor, 4K 36-bit words of on chip memory, 266K words
of DRAM, and a router. The nodes are connected by a
high-speed 3-D mesh network with deterministic dimen-
gion order routing. The J-Machine has about the grain
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Figure &i: Floorplan and Photograph of a Message-

Driven Processor chip.

size of the cost-balanced machine described in Section 3,
one processor per nwegabyte of memory.

A photograph of the message-driven processor chip
used in the J-Machine is shown in Figure 6. One of these
chips eombined with three external DRAM parts forms
a J-Machine node. An array of 64 nodes is packaged on
a single board (Figure 7). These boards are stacked and
connected side-lo-side to form ]argl:r J-Machines.

Three soltware systems are currently operational on
the J-Machine. It runs Concurrent Smalltalk [CST)
|24], a version of Id based on the Berkeley TAM system
1371 ﬁ]1 and a dialect of *C". Execulion af these diverse
programming systems has demonstrated the efficiency
and flexibilty of the J-Machine mechanisms.

Table 1 shows the advantage of efficient mechanisms.
The left column of the table lists the operations in-
volved in performing a remote memory reference on a
1024-node parallel computer. The next two columns list
the approximate number of instruction times required
to perform each operation on the Intel Paragon [5] and

Operation Paragon | J-Machine | Ideal
Send 4-Ward Message GO0 d 2
Metwork Delay 32 10 14
Buffer Allocation 20 ] 0
Switch To Handle Msg 1000 10 1
Presence Test - 5 ] 0
Send 3-Word Return Msg GO0 3 2
Netwark Delay a2 10 10
Buffer Allocation 20 0 0
Switch To Handle Msg 1000 R 1
Switch To Restart Task 1000 10 1
TOTAL 4304 49 27

Table 1: The time to perform a remote memory eef-
erepce on Lhe Intel Paragon, a conventional message.
passing multicamputer, the J-Machine, a fine-grain par-
allel eomputer, and the time that could be achieved
with current technology (Ideal). Switch refers to a task
switch.
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Figure T: Photograph of a 64-uode J-Machine board.

the J-Machine. Many of these times were derived from
the study reported in [38]. The final column of the table
shows the times that could be achieved with techniques
that are currently understood.

The table shows that while both machines have fast
networks the time teo carry out & simple remote action is
many times greater on the conventional machine, The
single largest contributor is the task switching time”,
The overhead of task switching in a conventional operat-
ing system is unaceeptable in this environment. Even if
the task switch time were reduced to zero, the overhead
of sending a message® in a system where this function is
handled in software is still prohibitive. End-to-end hard-
ware support for communication is required to achieve
acceplable latency.

The rightmost column represents times that could be
achieved by making some minor medifications to the
J-Machine. In particular, task switeh time could be re-
duced from 10 cycles (when registers need to be saved)

"or 3 cycles (w/o register save) to a single eyele by pro-
viding more suppert for multithreading [29, 39). The
J-Machine would also benefit from more user registers,
automatic destination translation on message send, be-
ing able to subset the communication operation, and a

) "The estimate of 1000 instruetion times ar 25us for the 880
i5 extrapolated from other micreprocessors and hence VEry gEnet-
ous; because of the complexity of svent handling on this chip, the
actual number is higher,

Some receive time is alse included in this number,

non-LIFQ message buffer,

7 Related Work

Like the message-driven processor from which the MIT
J-Machine is built, the Caltech MOSAIC [33], Intel
iWARP [3], and INMOS Transputer [26] are integrated
processing nodes that incorporate a processor with mem-
ory and communication on a single chip. These inte-
grated nodes, however, lack the efficient mechanisms
of the MDP and thus cannot efficiently support many
different models of computation. Also, the software-
touted, bit-serial Transputer network does not have ad-
equate performance for many applications. '

Many machines built for a specific model of compu-
tation have been generalizing their mechanisms. For
example, the MIT Alewife machine [1], while special-
ized for the shared-memory model, provides an inter-
processor interrupt facility that can be used for general
message-passing, Being memory mapped, this operation
is somewhat slower than the register-based send opera-
tion described above. Dataflow machines, which once
hard-wired a particular dataflow model into the archi-
tecture [30, 34], have also heen moving in the direction
of general mechanisms with the EM4 [31] and *T' [28].



8 Conclusion

Two enabling technologies, fast networks (Section 4)
and efficient interaction mechanisms (Section 3), make
it possible to build and program fine-grain parallel com-
puters. Fine-grain machines have much less memory per
processor than conventional machines because they are
balanced by cost, rather than by capacity to speed ra-
tios. Inereasing the processor to memory ratio improves
the processor throughput and local memory bandwidth
by a factor of 30 with only a small increase in system
cosk,

We expect this dramatic performance/cost advantage
will lead to mechanism-based fine-grain parallel comput-
ers becoming universal, replacing sequential computers
in all sizes of systems from personal desktop computers
to institutional supercomputers. This universal paral-
lel computer will not happen with existing semiconduc-
tor price structures, where processor silicon is an order
of magnitude more expensive per unit area than mem-
ory silicon. Cest effective fine-grain computing requires
a true jellybean (inexpensive and plentiful) processing-
node chip.

Low-latency nelworks enable each node in a fine grain
machine to access any memory location in the machine
in time competitive with a global memory access in
a conventional machine, Thus, the small memary per
nade does not limit either the problem size that can be
handled or sequential execution speed. A fine-grain ma-
chine can execute sequential programs with performance
competitive with conventional machines.

High-bandwidth networks and efficient interaction
mechanisms enable fine-grain computers to apply their
high aggregate processor throughput and memeory band-
width with mivimum overhead. Heducing interaction
overhead to a few instruction times {Table 1) increases
the amount of parallelism that can be economically ex-
ploited. It also simplifies programming as tasks and
data structures no longer have to be grouped into large
chunks to amortize large communication, synchroniza-
tion, and task-switching overheads.

At MIT we have built and programmed the J-Machine
to test, evaluate, and demonstrate our network and mech-
anisms. By running three programming systems on the
machine, we have demonstrated the flexibility of its mech.
anigms and generated some ideas on how to improve
them. The next step is to work to commercialize this
technology by developing a more integrated and higher-
performance processing node in today’s technology and
by providing bridges of compatibiliity to existing sequen-
Lial software.
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