PROCEEDINGS OF THE INTERMATIONAL COMFERENCE
OM FIFTH GEMERATION COMPUTER SYSTEMS [992,
edited by ICOT. @ 1C0OT, 1992

600

Formalizing Database Evolution in the Situation Calculus

Raymond Reiter
Department of Computer Science

University of Toronto
Toronto, Canada M5S 1A4

and

The Canadian Institute for Advanced Research
email: reiter@ai toronto.edu

Abstract

We continue our exploration of a theory of database up-
dates (Reiter [21, 23]) based upon the situation calculus.
The basic idea is to take seriously the fact that databases
evolve in time, so that updatable relations should be
endowed with an explicit state argument representing
the current database state. Database transactions are
treated as functions whose effect is to map the current
database state into a successor stete. The formalism
is identical to that arising in the artificial intelligence
planning literature and indeed, borrows shamelessly from
those jdeas.

Within this setting, we consider several Lopics, specif-
ically:

L A logic programming implementation of query eval-
uation.

(3]

. The treatment of database views.
3. State constraints and the ramification problem.
4. The evaluation of historical queries.

5. An approach to indeterminate transactions,

1 Introduction

Elsewhere (Reiter [21, 23]), we have described how one
may represent databases and their update transactions
within the situation caleulus (McCarthy [13]). The ba-
sic idea is to take seriously the fact that databases evolve
in time, so that updatable relations should be endowed
with an explicit state argument representing the current
database state. Database transactions are treated as
functions, and the effect of a transaction is to map the
current database state into a successor state. The result-
ing formalism becomes identical to theories of planning
in the A literature (See, for example, {Reiter [18])).
Following a review of some of the requisite hasic con-
cepts and results, we consider several topics in this paper:

1. We sketch a logic programming implementation
of the axioms defining & database under updates.
While we give no proof of its correctness, we observe
that under suitable assumptions, Clark completion
axioms {Clark [3)) should yield such a proof.

2. We show how our approach can arcommodate
database views.

3. The so-called ramification problem, as defined in the
Al planning literature, arises in specifying database
updates. Roughly speaking, this is the problem
of incorporating, in the axiom defining an update
transaction, the indireci effects of the update as
given by arbitrary slate constraints. We discuss this
problem in the database setfing, and characterize
its selution in terms of inductive entailments of the
database,

4. An historical query is one that references previous
databese states. We sketch an approach to such
queries which reduces their evaluation to evaluation
in the initial database state, t.ugcl!.hsr with conven-
tional list processing techniques on the list of those
update transactions leading to the current database
stabe,

5. The database axiomatization of this paper addresses
only determinate transactions; roughly speaking, in
the presence of complete information about the cur-
rent database state, such a transaction determines a
unique successor state. By appealing to some ideas
of Haas ([7]) and Schubert [[24]), we indicate how
to axiomatize indeterminate database transactions.

2 Preliminaries
This section reviews some of the basic concepts and re-

sults of (Reiter [23, 21, 19]) which provide the necessary
background for presenfing the material of this paper.



These include a motivating example, a precise specifica-
tion of the axioms used to formalize update transactions
and databases, an induction axiom suitable for proving
properties of database states, and a discussion of query
evaluation. )

2.1 The Basic Approach: An Example

In (Reiter [23]), the idea of representing databases and
their update transactions within the situation caleulus
was illustrated with an example education domain, which
we repeat here.

Relations
The database involves the following three relations:

1. enrolled{st,course,s): Student si is enrolled in
eourse eourse when the database i3 in state s,

2. grade(st, course, grade, s): The grade of student st
in course course is grade when the database is in
state 5.

3. prerequipre, course): pre is a prerequisite course
for course course. Notice that this relation is state
independent, so is not expected o change during
the evolution of the database.

Initial Database State

We assume given some first order specification of what is
true of the initial state §p of the database. These will be
arbitrary first order sentences, the only restriction being
that those predicates which mention a state, mention
only the initial state Sp. Examples of information which

might be true in the initial state are:
enrolled{ Sue, C100, 55) V enrolled| Sue, C200, Sa)y

(Je)enrolled({Bill, ¢, 5a),
(Wp).prevequlp, P300) = p= P100 V p = M100,
(¥p)-prerequ(p, C100),

(Ve).enralled(Bill, e, 5o) =
c= M Ve= 100 e = PO,

enveolled| Meary, C100, Sg),
~enrolled(John, M200, S5), ...
grade(Sue, P300,75,5), grade(Bill, M200,70, 5),. ..
prevequ( M200, M100), -preregu(M100, 0100, ...

Database Transactions

Update transactions will be denoted by function sym-
bols, and will be treated in exactly the same way as
artions are in the situation caleulus. For our example,
there will be three transactions:

]|

1. register(st,course): Register student sf in course
COUTrSE.

2. change(st,course, grade):  Change the current
grade of student si in course course to grade.

3. drop{st,course): Student st drops course course,

Transaction Preconditions

MNormally, transactions have preconditions which must be
satisfied by the current database state before the transac-
tion can be “executed”. In our example, we shall require
that 2 student can register in a course iff she has ob-
tained a grade of at least 50 in all prerequisites for the
Courss;

Fosa(register(st, ¢), ) =
{(¥p).prerequ(p,c) D (3¢).grade(st,p,g,5) A g = 50}.!

It is possible to change a student’s grade iff he has a
grade which is different than the new grade:

Poss{change(st, e, ), 8) =
(3g).grade(st,e.q',s) Ag' # 9.

A student may drop a course iff the student is currently
enrolled in that course:

Poss(drop(st, c),s) = enrolled(st, ¢, 3).

Update Specifications

These are the ceniral axioms in our formalization of up-
date transactions, They specily the effects of all trans-
actions on all updatable database relations. As usual,
all lower case roman letters are variables which are im-
plicitly universally quantified. In particular, notice that
these axioms quantify over transactions. In what follows,
do(a, s) denotes that database state resulting from per-
forming the update transaction o when the database is
in state s

Pass(a, s) O [enrolled(st, ¢, dofs, 5)) =
a = register(st, c) V
enrolled(st, e, s) A a # drop(st, )],

FPossla, £) D [grade(st, c,g,doe,s)) =
a = change(st,c,g) V
grade(st,c,g,5) A (Vg')a # change(st, e, )]

2.2 An Axiomatization of Updates

The example education domain illustrates the general
principles behind our approach to the specification of

In the sequel, lower case roman letters will denote variables.
All formulas are understood to be implicitly universally quantified
with respect to their free variables whenever explicit quantifiers
are pot indicated.



62

database update transactions. In this section we pre-
cigely characterize a class of databases and updates of
which the above example will be an instance.

Unique Names Axioms for Transactions

For distinct transaction names T and T,
T(2) # T'(3).
Identical transactions have identical arguments:
Tz 2e) =Ty e ) D2y =30 Ao ATy, = Yn

for each function symbel T denoting & transaction.

Unique Names Axioms for States

(Va, )8y # do(a, s),

(Va, s,a', 5').do(a, s) = do(a',s) Da=d' Ns=24.

Definition: The Simple Formulas
The simple formulas are defined to be the smallest set
such that:

. F(f,s) and F(i,S) are simple whenever F is an
updatable database relation, the { are terms, and &
is a variabie of sort state, *

2. Any equality atom is simple,

d. Any other atom with predicate symbol other than
Poss is simple.

4. IT 5 and &y are simple, so are =5y, 5 ASs, 53w 5s,
S]: =2 Sﬂ, 51 - S';.

5. If § is simple, so are (32)S and {¥z)S whenever r
is an individual variable not of sort state

In short, the simple formulas are these frst order formu-
las whose updatable database relations do not mention
the function symbol do, and which do not quantify over
variables of sort stafe.

Definition: Transaction Precondition Axiem

A transaction precondition axiom ie & formula of the form
(v-fl SJ.PNS{T(EH Y In:h 3:' = H‘T:

where T is an n-ary transaction function, and IIy
is a simple formula whose free variables are among
PR B

Definition: Successor State Axiom

A successor state axiom for an (n + 1)-ary updatable
database relation F is a sentence of the form
(¥a,s). Poss(a,s) D
(Ves,...,20). P21, ..., 20, do(a, 5)) = Bp

¥For notational convenience, we assume that the last argument
of an updatable database relation is always the (only) argument
of sort sfade.

where, for notational convenience, we assume that F's
last argument is of sort sfate, and where $p is a
simple formula, all of whose free variables are among
B8, Ty Ty .

2.3 An Induction Axiom

There iz a close analogy between the situation calculus
and the theory of the natural numbers; simply identify
Sp with the natural number 0, and do{Add], s) with the
successor of the natural number s, Ineffect, an axiomati-
zation in the situation caleulus iz 2 theory in which each
“natural number” s has arbitrarily many suceessors.®
Just as an induction axiom is necessary to prove any-
thing interesting about the natural numbers, so also is
induction required {o prove general properties of states.
This section is devoted to formulating an induction ax-
iom suitable for this task.

We begin by defining an ordering relation < on states.
The intended interpretation of s < & is that state &' is
reachable from slale s by some sequence of transactions,
each action of which is possible in that state resulting
from executing the transactions preceeding it in the se-
quence. Hence, < should be the smallest binary relation
on states such that:

l. ¢ < dofa, e} whenever transaction a is possible in
stale &, and

2. ¢ < do{e,¢") whenever transaction « is possible in
state ¢’ and & < o',

This can be achieved with & second order sentence, as
follows:

Definitions: s < &, s < &'

(Vo,008<4'=
(VP).{[(Ya,8:).Poss(a, 51) D P(s1,de(a, )] A
[(¥a, sy, 33).Poss(a, s3) A P(s1,8) D
P(#1,do(a, 52))]}
> Pls, ).
(1)
(2)

Reiter [20] shows how these axioms entail the following
induction axiom suitable for proving properties of states
s when Sy < s

(YW). W (50)
[(Va,s).Poss{a,s) A Sy < s AW (s) D W(do(a, s))]}
2 (¥a).5 £ s 2 W(s).
(3)

This is our analogue of the standard second order indue-
tion axiom for Peano arithmétic,
*There could even be infinitely many successors whenever

an aetion is parameterized by = real number, as for’example
move(bock, location).

(Vs,8)s<s'=scs’ Ve=s




Retter [23, 20] provides an approach to database in-
tegrity constraints in which the concept of a database
setisfying its constraints is defined in terms of inductive
entailment from the database, using this and other ax-
ioms of induction for the situation calculus. In this pa-
per, we shall find other uses for induction in connection
with database view definitions (Section 4), the so-called
ramification preblem (Section §), and historical queries
{Section 6).

2.4 Databases Defined

In the sequel, unless otherwise indicated, we shail only
consider background database axiomatizations T of the
form:

D = less-azioms U Dyy U Dyp U Dyng U Dyt U D5,
wheze
# less-azioms are the axioms (1), (2) for < and <.

s D, is a sei of successor state axioms, one for each
updatable database relation.

¢ Dy, iz a sef of transaction precondition a.xiﬁms, one
for each database transaction.

¢+ D, is the set of unique names axioms for states.

s D 35 the set of unigue names axioms for transac-
tions.

o Dg, is a set of first order sentences with the prop-
erty that Sp is the only term of sort staie mentioned
by the database updatable relations of a sentence of
Ds,. Ses Section 2.1 for an example Ps,. Thus,
no updatable database relation of & formula of Dg,
mentions a variable of sort stafe or the function sym-
bol do. Dg, will play the role of the initial database
(i.e. the one we start off with, before any transac-
tions have been “executed”).

2.5 Querying a Database

Motice that in the above account of database evolution,
all updates are virtzal the database is never physically
changed. To query the database resulting from some
sequence of transactions, it is necessary to refer to this
sequence in the guery. For example, to determine if John
is enrolled in any courses after the transaction sequence

drop{John, C'i 00), register(Mary, C100)
has been ‘exscuted’, we must determine whether

Database | (3¢).enrolled(John, ¢,
do(register(Mary, C100), do{drop( John, C100), 5))).

603

Querying an evolving database is precisely the temporal
projection problem im Al planning [8].%

Drefinition: A Regression Operator &

Let W be first order formula. Then R[W] iz that formule
obtained from W by replacing each atom F(t,do(e, 7))
mentioned by W by $(f, &, o) where F's successor state
axiom is

(Va, s).Poss{a,s) > (VZ).F(Z, do(a, 8)) = Br(Z, ,5).

Al other atoms of W onot of this form remain the same.

The use of the regression operator B is a classieal plan
synthests technique (Waldinger [2—5]:] See also [Pednault
[16, 17}). Regression corresponds to the operation of un-
folding in logic programming. For the class of databases
of this paper, Reiter [23, 19] provides a sound and com-
plete query evaluator based on regression. In this paper,
we shall have a different use for regression, in connection
with defining database views (Section 4).

3 Updates in the Logic Pro-
gramming Context

It seems that our approach to databese updates can be
implemented in & fairly straightforward way as a logic
program, thereby directly complementing the logic pro-
gramming perspective on- databases [Minker [15]). For
example, the axiomatization of the education example of

- Bection 2.1 has the following representation as clauses:

Successor State Axiom Translation:

enrolled|st, c, do(regisler(sl, ), s))

+— Poss(register(st, ), 2).
enrolled(st, ¢, dofa, s))

— a 3 drop(st, c), envolled(st, ¢, 8), Poss(a, 5).
grade{st, ¢, g, do(change(st, ¢, g), 5))

+— Poss{change{st,c,g),5).
grade(st,c,g, do(a, )

+— a # change(st, c, ¢'), grade(st, ¢, g, 5), Poss(a, ).}
Transaction Precondition Axiom Translation:

Poss(register(st, ), s) = not P(st,c, ).

Q(st,p,s) — grade(st,p,g,5),g = 50.°
Poss{change(st,c,g),8) — grade(st, c,q",5),9 £ 9",
Poss(drop(st,c), s) — enrolledist,c,5).

*This property of our axiomatization makes the resulting ap-
proach quita different than Kowalski's situation caleulue formalize-
tion of updates 8], in which each database update is accompanied
by the sddition of an atomic formuls to the theory axiomatizing
the database.

®This translation is problematic because it invokes magation-
as-failure on a non-ground atom. The inktention is that whenever
a 15 bound to a term whose functiot syinbol is charige, the call
should fail. Thizs can be realized procedurally by retaining the
clanse sequence as shown, and simply deleting the inequality a #
change(st, ¢, g').



604

With a suitable clausal form for Dy, , it would then be
possible to evaluate queries againet updated databases,

for example

— enrolied(John, C200,
do{register(Mary, C100), do{drop(Joln, C100), S5))).

Presumably, all of this can be made to work under
suitable conditions. The remaining problem is ta char-
acterize what these conditions are, and to prove correct-
ness of such an implementation with respect to the logi-
catl specification of this paper. In this connection, notice
thaf the equivalences in the successor state and transac-
tion precondition axioms are reminiscent of Clark’s [3]
completion semantics for logie programs, and our unique
names axioms for states and transactions provide part of
the equality theory required for Clark's semantics (Lloyd
[12]. pp.T9, 109).

4 Views

In our setting, a view is an updatable datebase relation
V{#, s) defined in terms of so-called base predicates:

(VE, s).V(E,s) = B(T,8), - (a)

where B is a simple formula with free variables amaong &
and s, and which mentions cnly base predicates.” Unfor-
tunately, sentences like (4) pose a problem for us because
they are precluded by their syntax from the databases
considered in this paper. However, we can accommodate
nonrecursive views by representing them as follows:

(WE).V(Z, %) = B(Z, S), (8)

{¥a,s).Possla, s} O 6
(V2).V(Z, do(a, )) = R{B(3, do(a, s)))* ®)

Sentence (5} is a perfectly good candidate for inclusion
in Dg,, while (6) has the syntactic form of a successor
state axiom and hence may be included in T,,.

This representation of views requires some formal jus-
tification, which the following theorem provides:

Theorem 1 Suppose V(F,2) iz an wpdatable database
relafion, and that B(T,s) is a simple formula which does

“We have here invoked some of the program transformation
rubes of {Lloyd [13], p.115) to convert the non-clausal farmula

{(¥p).prerequip, &)
(Fg).grade{st,c, g, 5) A g = 60} D Poss(register(st, ¢), 1)

to & Prolog executable form. P and @ are new predicate symbols,
"We do not comsider recursive views, Views may also be defined

in terms of other, already defined views, but everything eventually

“hottoms out”™ in base predicates, so we only consider this case,
*Motice that sinee we are nob considering recursive views (ie., B

does net mention V), the formula R[B(F, do(a, £)]] is well defined.

not mention V' and whose frec variables are among I, 5,
Suppose further thai D,, containg the successor stafe ax-
iom (6) for V', and that Ds, contains the initial state
aziom (5], Then,

DU {3} k= (V). < 8 D (VE).V(Z, s) = B(, 5).

Theorem 1 informs ns that fram the initizl state and
successor state axioms (5) and (6) we can inductively
derive the view definition

(¥s).50 < 8 D (VE).V(E, 5) = B(Z, 5).

This i= not quite the same as the view definition (4) with
which we began this discussion, but it is close enough. It
guarantees that in any database state reachable from the
initial state S5, the view definition {4) will be true. We
take this as sufficient justification for representing views
within our framework by the axioms (5) and (§).

5 State Constraints and the

Ramification Problem

Recall that our definition of a database (Section 2.4} does
not admit state-dependent axioms, except those of Ty,
referring only to the initial state 5y, For example, we
are prevented from including in a database a statement
requiring that any student enrolled in C'200 rmust also be
enrolled in G100,

(Vs, 81).5; < s A enrolled(st, C200,5) O (1
enralled(st, C100, ). )

In 2 sense, such a state-dependent constraint sheuld be
redundant, since the successor state axioms, because
they are equivalences, uniquely determine all future ave-
luticns of the database given the initial database state
Su. The information conveyed in axioms like (7} must
already be embodied in Ds, together with the successor
state and transaction precondition axioms. We have al-
ready seen hints of this observation. Reiter [20] proposes
that dynamic integrity constraints should be viewed as
inductive entailments of the database, and gives sew-
era] examples of such derivations. Moreover, Theorem
1 shows that the view definition

(¥5).5 < s D (VF).V(Z, 5) = B(F, 5).

is an inductive entailment of the database containing the

initial state axiom (5) and the successor state axiom (6},
These considerations suggest that a siate consiraint

can be broadly coneeived as any sentence of the form

|:I'lf$1,..-|ﬂn}--5|}£3i M &g ﬂ"_fl"" res O W[S‘.I:”'s-!ﬂ}r

and that a database is said to satisfy this constraint iff
the database inductively entails it.?

YSes Section 2.3 for & brief diseussion of industively proving
properties of states in the situation caleulus.



The fact that state constraints like (T) must be indue-
tive entailments of a database does not of itself dispense
witl the problem of hew to deal with sueh constraints
in defining the database. For in order that a state con-
straint be an inductive entailment, the surcessor state
mxioms must be so chosen as to guarantee this entail-
ment. For example, the original successor state axiom
for enroll (Section 2.1) was:

Poss{a, s} O {enrolled{st, c, do(a, s)) =
a = register(st, eV (8}
enrolied(st, ¢, 8) A a 3 droplst, o)}

As ane would expect, this does not inductively entail (7).
Ta accommodate the state constraint {7}, this successor
state axiom must be changed to:

FPossla,z) O {enrolled(st, ¢, dofa, 5)} =

a = register|st, ) A Je = C200 2 envelled(si, 100, 8)]

W

envolled(st, e, 5) A a # drop(st, )

[e = C'200 3 & # drop(st, C'100)]}.
(9)

It iz now simple to prove that, provided Dy contains
the unique names adom &100 £ C200 and the initial
instance of (7],

envolled(st, C 200, 55) = enrolled|st, C100, Sg),

then (7] iz an inductive entailment of the database.

The example illustrates the subtleties involved in get-
ting the successor state axioms Lo reflect the intent of a
state constraint. These difficulties are a manifestation
of the so-called ramifiealion problem in artificial intelli-
gence planning domains {Finger [4]). Transactions might
have ramifications, or indirect effects. For the example
at hand, the transaction of registering a student in 0200
kas the direct effect of causing the student to be ensalled
in 200, and the indirect effect of causing her to be en-
rolled in 100 (if she is not already envolied in C'100).
The modification (9] of {8) was designed to caplure this
indirect effect. In our setting, the ramification problem
15 this: Given a static state constraint like {7), how can
the indirect effects implicit in the state constraint be em-
bodied in the successor state axioms so as to guaraniee
that the copstraint will be an inductive entailment of
the database? A wvariety of circurnscriptive proposals for
addressing the ramification problem have been proposed
in the artificial intelligence literature, notably by Baker
|'|]1 Baker and Gins b-e:'g [2]II 'G';TLRI'.IEI'E and Smith [5]r Lif-
schitz [10] and Lin and Shoham [11]. Our formulation
of the problem in terms of inductive entailments of the
database seerns to be new. For the databases of this pa-
per, Fanghzen Lin'® appeats to have a solution to this
prablem.

YParsonal communication.

605

6 Historical Queries

Using the relations < and < on states, as defined in

Section 2.3, it is possible to pose kistoriesl queries to a
database, First, some notation.

Notation: do{ey,...,n], )

Let ap,...,a, be transactions. Define
dof[],5) = s,
and forn=1.2,...

da[[uh ey an],s:l = Ja{an,da{[a], 00 )ﬂ:n_],s]].
do([my, ..., 84],%) i5 a compact notation for the state
term dola,, do{o,_y,...dofa;, 8)...)) which denotes that
state resulting from performing the transaction a,, fal-
lowed by asz, ..., followed by aq, beginning in state 5.

Now, suppose T is the transaction sequence leading
to the current database state (i.e., the current database
state is do{T,5n)). The following asks whether the
databaze was ever in & state in which John was simulta-
neously enrolled in both C100 and A71007

(Js).50 = s nvs = do(T, Sa)h
enrolled] John, 0100, 5} A enrolled( John, M 100, 5).
(10)
Has Sue always worked in department 137

(Ws).Sz <shs<do(T,5) > smpll[Sue., 13,8).  (11)

The rest of this section skebches an approach to an-
swering historical queries of this kind. The approach is of
interest because it reduces the evaluation of such queries
to evaluations in the initial database state, together
with conventional list processing techaiques on the list of
those transactions leading to the current database state,

Begin by considering two new predicates, lost and
mem-diff. The intended interpretztion of last(s, a) is
that the transaction a is the last transaction of the se-
quence 5. For example,

last(do([drop{ Mary, CL00), register(John, C100)], Sp),
register{Jolin, C100))

is true, while

last(dol[drop{ Mary, C100), drop{ Joln, C100)], S3),
register(John, C100))

iz false, assuming unique names axioms for transactions.
The following fwo axioms are sufficient for our purposes:

=(last{ 5y, a).

lasi(dofa,z), eV =a = a",



B06

The intended interpretation of mem-diff{a,s, ") s that
transaction o i3 @ member of the “list difference” of s
and =', where state 5' is & “sublist” of 5. For example,

mem-diffl drop{ Mary, C100),
dof[register] Jofm, Z100), drepl Bill, C100),
drop( M ary, C100), dropl Johkn, A100)], 55),
da[ [T'cyis!cr{ John 5 £104 }]J Hu}}

is true, whereas

mem-diflregisier | Mary, C100),
do{[register(Jofin, C100), drop{ Bell, £100),
drop{ Mary, C100), drop{ John, M100)], S,
dof [register| John, C1007], Sp))

is false [assuming unigue names axioms for transactions).
The following axioms will be sufficient for our needs:

~mem-diffia, 3, 3).

s = § O mem-diff{a, dofa, s"), 5).
mem-diffla, 5, 5") O mem-diffla, dola’, 5), 57
mem-diffia, dof{a’, £), £ A a # 2" D mem-diff{a, s, ")

We begin by showing how to answer query {11). Sup-
pose, for the sake of the example, that the successor state
axiom for emp is:

Poszsla,s) 2 empip, d,dole, 5)) = a = hirve(p,d} v
emp(p,d, 5} Aa s fire{p) A a £ quit{p).

Using this, and the sentences for last and mem-diff to-
gether with the induction axiom (3), it is possible to
prove:

Sa € 5 D emplp, d, £) = emplp, d, 5] A
—mnem-difff fire(p), 5, Sp) A ~memediffi quit{p), 5, S} Vv
(3s).5 < 5" < s Alast(s, hire(p, d)) A
—mem-dif| fire(p), 5, 8" A ~mem-diff{ quii(p), s, 8",

Using this and the (reasonable) assumption that the
fransaction sequence T is lega.l,“ it iz simple to prove
that the query (11) is equivalent to:

emp| Sue, 13, 55) A
{ —mem-diff| fire{ Sue), do(T, 53], Sa) A }

—~mem-diffl guit(Sue), do{T, 5), o)

(3s").50 = 5" = dolT, 55) A

lost{s’, hire(Sue, 13)) A

—nemn-diff{ fire(Sue), do{T, Sy}, s} A
~mem-dif{ guit(Sue), do{ T, Sp), &').

Vintuitively, T is lsgal iff each transaction of T satisfies its pre-
conditions [ses Section 2.1) in that state resulling from perlorming
all the iransactions precesding it in the sequence, beginning with
slate 5. See (Reiter [19]) for details, and & procedese for verifying
the legality of a transaclion sequence.

This form of the original query is of interest because
it reduces query evaluation te evaluation in the initial
database state, together with simple lisl processing on
the list T of those transactions leading to the current
database state. We can verify that Sue has always been
employed in department 13 in one of two ways:

1. Werifv that she was nitially employed in department
13, and that neither fire(Sus) nor guit{Sue) are
mermbers of list T.

2. Verify that ' T las
a sublist ending with hire(Swue, 13), and that nei-
ther fire[Sue} nor quit{Sue) are members of the
list difference of T and this sublist.?

We now consider evaluating the first query (10) in the
same list processing spirit. We shall assume that (8] is
the successor state axiom for enrolled. Using the above
sentences for lasi and mem-diff, together with (8) and
the induction axiom (3), it is possible to prove:

5o £ 5 D envalled(st, e, 8)) =
enralled(st, e, 5) A ~mem-diff{drop(st, e}, s, 5e) V
(Fs").5 < &' < s A lagt(s', register(st, c)) A
—mem-diff{droplst, e), 5,80

Then, on the assumption that the transaction sequence

T is legal, it is simple to prove that the query (10) is

equivalent to:

(ds).50 = s < do{T, 5) A
[

enrolledJohn, C100, 55} A
enrolled| John, M100,5;) A
~mem-diffldrop{ Johr, C100), 5, 5} A
—mem-diff drop( John, M 100}, £, 5o}

W

enrolled{ Jolhn, 100, 53) A

—~mem-diff| drop( John, C100%, 3, 55) A

(Fe).Sp <" <sh

fast(s’, register{John, MI00)) A

~mem-diffldrop(John, M100), 5,2')
W

enrolled| Tohn, M100, 55) A

J (Fs").Sp = s" <3 h
last(s", register(John, C100)) A
. —mem-diffl drop{ John, C100), 5, ")

W

[ (38,5 2 =asnGHEs"<sn
last{s', register(John, M100)) A

5 lasts", register{ John, C100)) A
—mem-diffldrap( John, M100), 5,5") A
—mem-diff{ drap( John, CL00}, 5, 5")

]

]

*The correctness of this simple-minded list processing proces
dure relies on some assumptions, notable suitable unigue names

axioms.



Despite its apparent complexity, this sentence also has a
simple list processing reading; we can verify that Jehn
is simultanecusly enrolled in 100 and AM100 in some
pre\l'iﬂus databaee state as follows. Find 2 sublist {looq.e]}r
denoted by &) of T such that one of the following four
conditions holds:

1. John  was mitizlly  enrolled in  both
C100 and A100 and neither drop(Jofn, &100) nor
drop{Jehn, M100) are members of list s.

=]

. Joln was initially . enorolled in
C100, drop(Jokn, C100) is not a member of list s,
s has a sublist s’ ending with register(John, M100)
and drop(John, MI00) is not & member of the list

difference of 5 and &',

3. John  was  initially  enrolled  in MI100,
drap(John, M100) 1= nol a member of list =, 5 has
a sublist ' ending with register(John, C100) and
drop( Jolre, C100) is not a member of the list differ-
ence of 5 and s’

4. There are two eublists &' and * of 5 &

ends with regisier(John, M1}, 5 ends with
register{ John, 0100}, drop{John, M100) is not a
member of the list difference of 5 and &', and
d?'ﬂp[.}mﬁnjlﬂllw] is not a member of the list dif-
ference of s and s".

We can even pose queries about the fubure, for exam-
ple, is it possible for the database ever to be in a state
in which John is enrolled in both C100 and C'2007

(35).5p = s A enrolled| Joln, C100,3) A
enrolledJohn, C200, 5).

Answering queries of this form is precisely the problem
of plan synthesis in Al (Green [6]). For the class of
databases of this paper, Reiter [22, 18] shows how regres-
sion provides a sound and complete evaluator for such
fqueries,

7 Indeterminate Transactions

A limitation of our formalism is that it requires all trans-
actions to be determinefe, by which we mean that in
the presence of complete information about the initial
database state a transaction completely determines the
resulting state.

One way to extend the theory to include indetermi-
nate transactions is by appealing to a simple idea due
to Haas [7], as elaborated by Schubert [24]. As an ex-
ample, consider the indeterminate transaction drep-e-
studenf(c), meaning that some student — we don't know
whom ~ is to be dropped from course e. Notice that we
cannol now have a successor state axiom of the form

Poss(a,8) D {enrolled(st, ¢, dofa,5)) = B(st,¢,4,2)].

607

To zee why, censider the following instance of this axiom:

Poss(drop-a-student (C100}, 5a) D
{enrolled]John, C100, dof drop-e-student{C100), 55))
= ®(Jahn, C100, drop-a-student(C100}, So)}.

Suppese Lp is a complete description of the initial
database state, and suppose moreaver, that

Ty | Poss{drop-a-student(C100), 55) A
enrolled] John, C100, 5.

By the completeness assumption,
By | 8 John, C100, drop-a-student(C100), 5y,

in which cagze

Ly | denrolled(John, 100,
dol drop-a-student[C100), 5)).

In other words, we would know whether John was the
student dropped from 100, viclating the inftention of
the drop-a-student transaction.

Despite the inadeguacies of the axiomatization of Sec-
tion 2.2 (specificaliy the failure of successor siate axioms
for specifying indeterminate transactions), we can rep-
resent this setting with something like the following ax-
ioms:

(Jst)enrolled|st, o, .sj 2 Poss{drop-a-studen |’.|:c:| 2 §).

enrolled(st, ¢, 8) O Poss(drap{st, c), s).

Possla,s) D
{a = drop{st,c) 2 —enrolled(st,c, dola, s)}}.

Possa,s) D {e = drop-a-student(c) o
{ st henrolled(st, ¢, s} A —enrolled{st, ¢, dofa, s)}.2

Possla,s) O
{—enrolled|st, ¢, 8) A enrolled|st, ¢, dofa, ) D
e = register{st, c)}.

Poss{a,s) 2
{enralled(st, ¢, 5) A —enrolled|st, e, dofa, 5)) O
a = drop(st,¢) V a = drop-a-siudent{c) }.

The last two formulas are examples of what Schubert
[24] calls ezplanation closure azioms. For the example
at hand, the [ast axiom provides an exhaustive enu-
meration of those transactions (namely dreop(st,e) and
drop-a-student{c)) which could possibly explain how it
came to be that =t iz enrolled in ¢ in the current state
5 and iz not enrclled in ¢ in the successor state. Simi-
larly, the second last axiom explains how & student could
come to be enrolled in & course in which she was not en-
rolled previous to the transaction.! The feasibility of

B3 254) denotes the existence of a gnigue st

Wt i these explanation clagure axioms which provide & suc-
clnet alternabive Lo the frame axtoms (MeCarthy and Hayes [14])
which would normally be required to represent dynamically chang-
ing werlds like databases (Reiter [23]),



608

such an nppmach relies on a closure EISELLJT!PHD!'.I:, na.rn.r:l:.r
that we, as database designers, can provide a finite ex-
haustive enumeration of such explaining transactions'®
In the “real” world, such a closure assumplion iz prob-
lematic. The state of the world has changed so that a
student is no langer earolled in a course. What can ex-
plain this? The school burned down? The student was
kidnapped? The teacher was beamed to Andromeda by
extraterrestrials? Fortunately, in the datebase setting,
such open-ended possible explaining events are precluded
by the database designer, by virtue of her initial choice
of some closed set of transactions with which to model
the application &t hand; no events outside this closed
set (school burned down, student kidnapped, stc.) can
be considered in defining the evolution of the database.
This initial choice of a closed set of transactions having
leen made, explanation closure axioms provide a natural
representation of this closure assumption.

By appealing to explanation closure axioms, we can
now specify indeterminate transactions. The price we
pay is the loss of the simple regression-based query eval-
uator of {Reiter [23, 21]); we no longer have a simple
sound and complete query evaluator. Of course, conven-
tienal first order theorem-proving does provide a query
evaluator for such an axiomatization. For example, the
following ave entailments of the above axioms, together
with unique names axioms for transactions and for Join
and Mary:

envolled|John, C100, Sq) A enrolled{ Mary, C100, 5q)
o

enrolled{JJohn, 0100, do{drop{ Mary, C'100), 5u)) A

—enrolled{ Mary, C100, do{drop{ Mary, C100), 5a)).

{(Wst) . enrolled(st, 100, 55) = st = John} D
(st )=enralled|at, C100,
doi drop-a-student (C100), Sa)).

{{Wst) enrolled{st, 0100, 5;) =
st = Jofhin V st = Mary}
2
envolled| John, C100, dof drop-a-sindent(C'100), 5p)) @
enrolled{ Mary, C100, do{ drop-a-student{C100), Sq)).

Notice that the induction axiom (3] of Section 2.3 does
not depend on any assumptions about the underlying
database. In particular, it does not depend on sucees-
sor state axioms. It follows that we can continue to use
induction to prove properties of database states and in-
tegrily constraints in the meore generalized setting of in-
determinete transactions. The fundamental perspective
on integrity constraints of [Reiter [20]) — namely that
they are inductive entailments of the database — remains
the same.

5Tyiz assumption is already implizit in our swecessor aiate nx-
1oms of Section 2.2

Acknowledgements

Many of my colleagues provided important conceptual
and technical advice. My thanks to Leo Bertossi, Alex
Borgida, Craig Boutilier, Charles Elkan, Michael Gel-
fond, Gosta Grahne, Russ Greiner, Joe Halpern, Hee-
tor Levesgue, Vladimir Lifschitz, Fargzhen Lin, Wiktor
Marek, John McCarthy, Alberto Mendelzon, John My-
lopoulos, Javier Pinto, Len Schubert, Yoav Shoham and
Marianne Winslett. Funding for this work was provided
by the National Science and Engineering Research Coun-
cil of Canada, and by the Institute for Rebotics and In-
telligent Systems.

References

[L] A. Baker. A simple solution to the Yale shoot-
ing prablem. In R. Brachman, H.J. Levesque, and
H. Reiter, editors, Proceedings of the First Interna-
tional Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR'89), pages 11-20,
Morgan Kaufmann Publishers, Inc., 1939,

[2] A. Baker and M. Ginsherg. Temporal projection and
explanation. In Proceedings ef the Eleventh Inier-
national Jeint Conference on Arfificial Intelligence,
pages 906-911, Detroit, MI, 1980,

[3] KL, Clack. Negation as failure. In H. Gallaire
and J. Minker, editors, Logie and Dale Bases, pages

202-322, Plenum Press, New York, 1978,

[4] . Finger. Ezploiting Constraints in Design Synthe-
gis. PhD thesis, Stanford University, Stanford, CA,
1986.

[5] M.L. Ginsberg and D.E. Smith, Reasoning about
actions I: A possible worlds approach. Artificiel fn-
telligence, 35:165-195, 1988,

[6] C. C. Green. Theorem proving by resolution as a
basizs for question-answering systems, In B. Meltzer
and D. Michie, editors, Machine Inlelligence 4,
pages 183-205. American Elsevier, New Yorl, 1964,

[7] A. B. Haas. The case {or domain-speeific frame ax-
ioms. In F. M. Brown, editor, The frame problem in
artificial infelligence. Proceedings of the 1987 work-
shop, pages 343-348, Los Altos, California, 1987,
Morgan Kaufmann Publishers, Inc.

[8] 8. Hanks and D. McDermott. Default reasoning,
nonmenotonic logics, and the frame problem. In
Proceedings of the National Conference on Artificial
Intelligence, pages 328-333, 1986,

[9] R. Kowalski. Database updates in the event cal-
culus. Journal of Logic Programming, 12:121-146,
1992,



[10] V. Lifschitz. Toward a metatheory of action. In
I Allen, B. Fikes, and E. Sandewall, editors, Pro-
ceedings of the Second International Conference on
Principles of Knowledge Hepresentation and Hea-
soning (KR'91), pages 376-386, Los Altes, CA,
1991, Morgan Kaufmann Publishers, Inc.

[11] F. Lin and Y. Shoham. Provably correct theories of
action. In Preceedings of the Notional Conference
on Artificial Intelligence, 1991,

[12] JW. Lloyd. Foundalions of Legic Programming.
Springer Verlag, second edition, 1987,

[13] J. McCarthy. Programs with common sense. In
M. Minsky, editor, Semantic Informaiion Process-
ing, pages 403-418. The MIT Press, Cambridge,
MA, 1068,

[14) J. McCarthy and P. Hayes. Some philosophical
problems from the standpoint of artificial intelli-
gence, In B. Meltzer and D. Michie, editors, Ma-
chine Intelligence §, pages 463-502. Edinburgh Uni-
versity Press, Edinburgh, Secotland, 1969,

[15] 1. Minker, editor. _ Foundations of Dedus
Databases and Logic Programming. Morgan Fauf-
mann Publishers, Inec., Los Altos, CA, 1988,

[16] E.P.D. Pedrault. Synthesizing plans that contain
actions with context-dependent effects. Computa-
tional Intelligence, 4:356-372, 1988,

[17] E.P.D. Pednault. ADL: Exploring the middle
ground beiween STRIPS and the situation calecu-
lus. In R.J. Brachman, H. Levesque, and R. Re-
iter, editors, Proceedings of the Firsi Iniernational
Conference on Principles of Knowledge Represente-
tion and Remsoming (KR'89), pages 324-332. Mor-
gan Kawfmann Publishers, Inc., 1989.

[18] B. Reiter. The frame problem in the situation caleu-
lus: & simple solution (sometimes) and a complete-
ness result for goal regression. In Vladimir Lifschitz,
editor, Artificial Intelligence and Mathematical The-
ory of Computation: Papers in Honor of John Me-
Sﬂrﬂi'r,pa.gcs 352-380. Academic Press, San Diegﬂ,
CA, 1991,

[19] K. Reiter. The projection problem in the situation
calculus: A soundness and completeness result, with
an application to database updates, 1952, subrmil-
ted for publication.

[20] R. Reiter. Proving properties of states in the situa-
tion caleulus. 1992, submitted for publication.

[21] K. Reiter, On specifying database updates, Techni-
cal report, Department of Computer Science, Uni-
versity of Toronto, in preparation.

609

i22] R. Reiter. A simple solution to the frame problem
(sometimes). Technical report, Department of Com-
puter Science, University of Torento, In preparation.

[23] R. Reiter. On formalizing database updates: prelim-
inary report. In Proc. Srd International Conference
on Ertending Detobase Technology, Vienna, March
23 . 27, 1992, to appear.

[24] LK. Schubert. Monotonic solution of the frame
problem in the situation caleulus: zn efficient
method for worlds with fully specified actions. In
H.E. Kyberg, R.P. Loui, and G.N. Carlson, editors,
Knowledge Representetion and Defeasible Reason-
ing, pages 23-67. Klewer Academic Press, 1990,

[25] K. Waldinger. Achieving several goals simultane.
ously, In E. Eleock and D, Michie, editors, Machine
Intelligence &, pages 94-136. Eilis Horwood, Edin-
burgh, Scotland, 1577,



