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Abstract

Programs operating on inductively defined data struc-
tures, such as lists, are naturally defined by recursive
programs. Millroth has recently shown how many auch
programs can be transformed or compiled to iterative
programs operating on arrays. The transformed pro-
grams can be run more efficiently than the original pro-
grams, particularly on parallel computers,

The paper proposes the introduction of ‘bounded
quantifications’ in logic programming languages. These
formulas offer-a natural way to express programs-oper-
ating on arrays and other ‘indexable’ date structures.
‘Bounded quantifications’ are similar to “array compre-
hensions' in functional languages such as Haskell. They
are inherently concurrent and can be run efficiently on
sequential computers as well as on various classes of par-
alle]l computers,

1 PROCESSING DATA STRUCTURES

There are two principal ways of building a data structure
in a logic program.

Al. Use a recursive relation which defines explicitly the
contents of a finite part of the data structure and
then uses itself recursively to define the rest of the
data structure.

Bl. Express directly the contents of each element of the
data structure, preferrably through an ‘indexing’ of
the elements of the data structure.

Correspondingly Lthere are two prineipal ways of fravers-
ing & data structure in a logic program.

A2 Use a recursive relation which examines explicitly
the contents of a finite part of the data structure
and then uses itself recursively to traverse the rest
of the data structure,

B2, Access directly the contents of each element of the
data structure, preferrably through an ‘indexing’ of
the elements of the data structure,

(There is, of course, an chvicus duality between these
operations.

Method A is often natural when one uses induc-
tively defined datz structures, including lists, trees, ete.
Methed B is often natural when one uses data structures
whose elements can be indexed. Some data structures,
most importantly lists, fall in both categeries and which
method is mest natural depends on the context.

2 RECURSION

We can broadly classify recursive programs in ‘conjunc-
tive' and ‘disjunctive’ programs (some are a mixture).
The former category use recursion to compute a con-
junction, like the following lessell program.!

lessall{ A, [BIX]) — A < B A lessall(A, X).
lessall{ A, []).

A formula lessalll A, [By, B, ..., Ba]) reduces to the fi-
nite conjunction

A<BrA<sB A -AA=< B
which could be expressed more briefly as
Vi{l<i<n— A< B}

This reduction can be performed ab compile time, ex-
cept that the value of n is the length of the list actually
supplied to the program. Such a program can be run
efficiently as an iteration on a sequential computer.

The latter category uses recursion to compute a dis-
junction, for example the member program,

member{A, [B|X]) — A = B.
member{ A, [B|X]) — member{4, X).

A formula member{ A, [By, Ba,. . ., B.]) reduces to the fi-
nite disjunction

A=BvVvA=HBvV - -vA=5,

“ur language consists {initially] of clavses whose hodies may
conlain comjunctions, disjunctions and negations,  We sssume
“Herbrand" equality except for arithmetic expressions and array
elements. All examples can be easily translated into Pralog or
Gisdel (Hill & Lloyd, 1091).
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which could, in furn, be expressed more briefly as
F{l<iZnhd=5]}

which can, similarly, be run efficiently. Millroth’s com-
pilation method (1980, 1991), based on Tarnlund’s Re-
form inference system (1992) transforms ‘conjunctive’
and *disjunctive’ recursive programs to the iterative pro-
grams ahowve.

2.1 Concurrency

The conjunction, or disjunction, in a logic program can
be interpreted as a concurrent operator, as in AND-
parallel and OR-parallel logic programming systems.
This does not yield sufficient, concurrency for running re-
cursive programe efficiently on parallel computers. Even
using a conecurrent connective, work is only initiated on
one ‘recursion level’ in each step. This implies a linear
run time which can be approximated by an expression
An - B (where A 15 the overhead for each recursion level,
n is the recursion depth and # is the time spent in each
recursion level). The number of literals in a recursive
clause i3 typically much smaller than the depth of the
recursion. For recursive programs with simple bodies,
such as {essall or member, the An term will always dom-
inate Only for small recursion depths and complex bodies
will the B term be significant.

Recursive programs transformed by Millroth’s metheod
have a much larger polential to run efficiently an paralle]
computers, The iterative programs can be run in parallel
on n processors unless prohibited by data dependencies
ote, Techniqu&s for pam]ldizitlg this kind of iteralions
have been developed for, and applied to, FORTRAN pro-
grams for some time.

3 EXPLICIT QUANTIFICATION

It is possible to build arrays and other indexable data
structures, or express relations over them using recursive
programs. If is often more natural to use a universal or
existential quantification over the members of the data
strackure.

We may express the lessall relation over artays as

lessalll A, X) — YBYI{X[I|= B — 4 < B},

provided that the the value of the expression X|[7] is the
TIth element of the array X.
We may express reversal of the elements in an array:

reverse( Xy, Xa) —
size(0, Xy, L} A size(0, Xq, L) A
VAYI{A[I]=A4 = XL - I - 1] = 4}.

(Our notation assumes thai the expression [ — T —1 is
evaluated and replaced by its value. We alse assume that
array indices are zero based. Finally, we let size{ D, X, 5)
express that the size of the array X in dimension [ is
5.)

We may express one generation of Conway’s game of
Life:

SEﬂP{GhGﬂ) -
size(0, Gy, So) A size(0, @, So) A size{0, Gz, Sa) A
size(1, Gy, 51) A size(1, @, 8) A size(1, Ga, 51) A
VIVI{Q[I,J) = Gy[I — 1 mod 5, J — 1 mod 8] +
G4 =1 mod S5, J] +
Gill — 1 mod S, J + 1 mod 5y] +
Gi{I,J =1 mod 5] +
GalT,J +1 mod 5 +
Gi[I + 1 mod 5, J — 1 mod 5i} +
G1[I + 1 mod Sp, J] +
Gl +1 mod 5o, J + 1 mod 5] —+
(QU,J|<2AG|I,Ji=0V
QU J|=2AG,Ji=1V
QUI=3AGLJI=1V
QU J] > 3 A Gy[I, 7] = 0)}.

We can also present a simple example of the use of
explicit existential quantifiers. The problem is to find
the position I in a array X of some element which is
smaller than a givc.;u value A

small(], X, A) — 3I{X[J|=B - B< AAT=1T}.

In all these examples we have quantified over the ele-
ments of an indexable data structure, There are olher
useful relations which can be expressed naturally in this
way, and run efficiently. Specifically we want to include
all quantifications over the elements of & finite set, whose
members are ‘obvious’. Below we will be somewhat more
precize what this means,

4 BOUNDED QUANTIFICATION

Consider those universally quantified formulas which are
instances of the schema

Ve{B[z] = $[z]}

where @ is a formula which iz “obviously™ true for
only a finite number of values of z, denoted by, say,
{€0,€15- .-, €61 }. In this case the gquantification is clearly
equivalent to the finite conjunction

{©cg) — Blen]) A
(©lc] — D) A+ A
(&ex—] — Plew-1]}
which is, by the definition of 8, equivalent to
Pleg) A Bley] A A Bleas].

Similarly, a formula which is an instance of the schema
Jz{B[z])A®[x]} is under the same assumptions equivalent
to
Bleg) W Ble] V- - W Bleg-].
We propose to

1. identify a set of formulas which always are true for
only & finite number of objects, we call them range
Jormulas,



2. make a system which recognizes those instances of
the schema above where B is a range-formula, we
call them bounded guantifications, and

3. interpret bounded quantifications concurrently. The
conjunces obtained from a bounded quantification
may be run in any order, even simultaneously, pro-
vided that any data dapendencies (arising, e.g., from
numerical expressions) are satisfied.

Sinee a range formula is required to hold for a finite num-
ber of chjects, it is posaible fo enumerate them (as we
have indeed done above with {ep, ey, ... e5-11) 1t will
become apparent from exarmples below thal it is very
useful to have range formulas relate each object with a
unigue integer in {0,1,... & —1}.

In the following sections we will first identify a few use.
ful range formulas and then show how to run bounded
gquantifications efficiently on sequential and paralle! com-
puters.

5 RAMNGE FORMULAS

The following is an incomplete set of interesting range
formulas.

5.1 Array and “structure” elements

As we have seen_ it is useful to quantify over all elements
of a data structure. In an array, each element is associ-
ated with a unique integer in the range, say, {0,1,...,n}.
We could, for example let X[f] = E (where X iz an ar-
ray, [ is a variable and B is a term) be a range formula
and the lessall and reverse programs above are examples
of its use. [t may be difficult to write a compiler which
recognizes precisely this use of an equality as a range
formula. One solution would be to predefine, say, the
predicate symbaol elf by

eli(l, X, E) — X[I] = E.

and only recognize predications on the form efif-,-,-) as
range formulas.

5.2 Integer ranges

An obviously useful range formula would be one which
is true for the first k integers ([0, & — 1]). Again, the
formula 0 < X A X < K expresses exactly that relation,
but for practical reasons it may be wise to define the
binary predication cardinall X, K} to stand for the binary
relation which is true whenever 0 < X < K. Note that
the enumeration in this case coincides with the ohjects
themselves,

Note, moreover, that it is trivial to oblain 2 range
formula which is true for all integers in an arbitrary range
[{, J] using the binary eardinal predicate.
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5.3 Enumerable types
A logic programming language with types is likely to
contain “enumerable” types, for example, finite sets of
distinet constants. One may wish to consider any predi-
cation, whose predicate symbol coincides with the name
of such a type, a range relation. For example, suppose
that colour is a type with the elements spades, hearts,
clubs, and diamonds (in that erder). Then colowr(l, X)
is & range formula which is true if and only if F i3 0 and
X iz spades, [ is 1 and X iz kearts, [ is 2 and X is clubs,
or {15 3 and X is diamonds,

Mote that in this view an enumerable type of K ele-
ments is isomorphic with the inteper range [0, K = 1], =0
it does not really add anything to the language as such.*

5.4 List elements and list suffixes

Lists are usually operated upen by recursively defined
programs. Still, there are occasionally reasons for ex-
pressing programs through bounded gquantifications. We
propose two range formulas involving lists. The first as-
sociates every element of some list with its (zero-hased)
position in the list. The second enumerates every (not
necessarily proper) suffix of some list (with the list itself
being suffix 0). 'We propose to recognize the predication
member(I, L, X} as & range formula which is true if and
only if X s the fth element of the st L.

The predication suffiz(f,L,X) is a range formula
which is true if and only if X iz the Jth soffix of the
list L. Note that if the length of L iz K and || denotes
an empty list, then suffix(0, L, L) and sufie{ K, L, []) ave
true formulas. (Since Prolog has no occur check, a pro-
grammer in that language could apply these predicates
to cyclic “terms”. We leave the behaviour in such a cese
undefined. )

5.5 Finite sets

Given that finite sets are provided as a data structure it
would make sense to have range formulas for sets {e.g.,
membership), as has been suggested by Omodeo {per-
sonal communication). This is an interesting proposal,
but is is difficult to represent arbitrary sets efficiently in
a way that allows the elements to be enumerated. Multi-
sets (bags) are easier to implement, but these are, on the
other hand, quite similar to lists, except that the order
in which elements occur is irrelevant.

6 SEQUENTIAL ITERATION

Congider a bounded quanﬁﬁcaﬁnn 'ﬂ"a:{ﬁl::] ==k "'1*[2]},
such that &[z| is true when (and only when) the value of
x iz one of {¢g,€1,...,00-1}. We may run the conjuncts
Bleg) A Bley] Ao A Dlop_y] in any order, provided that
any data dependencies are satisfied.

*They do, however, seemn to make programs easier Lo under
stand and debug.
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We consider now a bounded quantification without
dependencies. Running it on a sequential computer is
straightforward: translate the gquantified formula into
an iteration which evaluates, in sequence, the formulas
Bleo], Blen], .- ., Plewl-

Since the compiler knows in advance about the possi-
ble range formulas, it may generate specialized code for
each kind of range formula. For example, if the range
formuta B[z] is member{l, X, L) then we can illustrate
the resulting code as

allocate_environment;

¥y = deref(l);
while {y !'= NIL)
{

x = deref(y-rhead);

code for "bll‘-];

¥ = deref(y->taill;
}

deallocate_environmant,

using & C-style notation. (MNote that we ignore the enn-
meration of the list elements in this example.) Assum-
ing that the implementation is based on WAM {Warren,
1983) the “code for @[z]" may introduce choice points
(and thus be unable to deallocate environments) if there
are aliernative solutions for ®/x|.

In the important case that the proof for $fz] is de-
terministic, every pass through the loop will begin in
Lhe same environment. This is more efficient than the
corresponding recursive computation in Prolog (under
WAM)} which will allocate and deallocate an environ-
ment for each recursive call. Most implementations will
also refer to the symbol table when making the recursive
call. That is somewhat less efficient than the (condi-
tional) jump performed at the end of a loop. We predict
that together these improvements will result in substan-
tial savings, particularly when proofs are deterministic,
the bodies of recursive clauses are small and recursion is
deep. Meier also notes these advantages when compiling
some recursive programs as iterations (1991).

7 PARALLEL ITERATION

On sequential computers bounded quantification, when
al all appropriate, is likely to offer significant improve-
ments over the corresponding recursive programs, run
in the wsual way. The potential speed-ups on parallel
computers are still more dramatic.

Consider the conjunclion

®lca] A S A--- A Bleg]

obtained from a bounded guantification Ye{@[r] =
$[z]}. Since we may run the conjuncts in any order, we
may alse run them all in parallel {similarly for disjune-
Lions), provided that we add synchronization to satisfy
dependencies.

7.1 Running deterministic programs

There are several methods for running deterministic it-
erations in parallel; these ideas have successfully applied
to FORTRAN programs for a long time. The following
iz one of the simplest. If Lthere are k processors, num-
bered from 0 to & - 1, simply let processor ¢ evaluate
®|ci], for each i, 0 < i < k. If there are fewer than &
processors, say &' processors, simulate & processors by
letting processar @ evaluate $fe], for each 3,1 =7 < k,
such that j moduls & 15 o0 If the computation of sach
®{cy| is deterministic, then this is quite straightforward.

7.2  Running nondeterministic programs

Suppose that the formula ® is such that there is a choice
of twa or more potential proofs for some conjunct &g
If no two conjuncts ®[c] and ®[g], i # 7, share any
variables, then we have independent. parallelistn in which
backtracking is ‘local’ and easily implemented, cf., ez,
DeGroot (1984),

This iz a special case of the more general situation in
which one can compute the variable assignments satisfy-
ing each conjunct independently of each other. For ex-
ample, the conjuncts may share a variable, whose value
at runtime is an array, and only access distinct elements
of it. In general it is not possible to verify this condition
statically so some run time tests will be necessary,

Consider the other case: that the free variables of
conjuncts interact in such a way that it is not possi-
ble to compute variable assignments independently for
each conjunct. In that case the corresponding recursive
program, if run in the wsual way using depth-first search
of the proof tree, has to perform deep backtracking to
earlier recursion levels. When investigating this class of
programs we have noted that they eccur surprisingly in-
frequently. Running such programs often leads to a com-
binatorial explosion of potential proofs which is only fea-
sible when backtracking over a few recursion levels. The
programs &lso do not behave nicely when running on,
e, WAM. They tend to consume stack space rapidly
if choice information prevents environments from being
deallocated.

The problem of simultaneously finding variable assign-
ments for a set of non-independent and non-determimstic
conjuncts is also very difficult. Earlier research on back-
tracking in AND-parallel logic programming systems by,
e.g., Conery (1987) confirms this claim.

Qur current position s therefore to refuse to run in
parallel any bounded quantification for which we can-
not show statically, or at least with simple run time
tests, that the conjuncts are independent. In the con-
text of AND-parallel logic programming systems, De-
Groot among others have investigated appropriate run
time tests for independency. Note that the overhead for
such tests s lower in our context. One test (say, for de-
termining whether a free variable in a bounded quantifi-
cation is instantiated at run fime) is sufficient for starting



arbitrarily many independent computations.

By applying these requirements also when running
bounded quantifications on sequential processors it is
guaranteed that the stack size when starting the proof
of each conjunct will be constant,

8 SIMD AND MIMD PARALLEL COMPUTERS

We believe that bounded quantifications will run effi-
ciently on both SIMD and MIMD parallel computers.
When the bodies of bounded quantifications are simple
and no backiracking is needed inside them, the capahil-
ities of SIMD parallel computers are sufficient. 1t seems
that most programs belong, or can be made to belong,
to this class.

For those programs which do more complicated pro-
cessing in the bodies of bounded quantifications, e.g.,
backtracking, not all processors of a SIMD parallel com-
puter will be active simultaneously. This will reduce the
efficiency of such a computer, while it may still be pos-
sible to fully utilize a MIMD parallel computer,

9 OTHER OPERATIONS

We think it is also heneficial to predefine certain useful
operations, such as reductions and *scans’ over lists and
arrays. Such operations will make it easy to eliminate
many parallelization problems with variables shared be-
tween conjuncts in bounded universal quantifications.

For example, this is a progeam which computes the
inner product 5 of two arrays X and V.

ip( X, ¥, 5) —
size(0, X, Z) A size(0, ¥, Z) A 5ize(0, T, Z) A
YIVQ{Y[I]=Q@ — T = X[I] = @} A
reduce(+, T, 5).

The arrays X, ¥ and T are shared between all conjuncts
but they all access distinet elements of the arrays. (The
variable (J was only intreduced to maintain the standard
form of bounded quantifications. It seems convenient
and possible to relax the syntax to recognize expressions
such as YI{T[I] = X[I] x Y[I]} as bounded quantifica-
tions, which is certainly even more elegant.

Sometimes the partial sums are also needed in the
computation. In this case it is useful to compute a ‘scan’
with plus over an array. The result is an array of the
same length but where each element contains the sum of
all preceding elements in the first arcay.

10 FURTHER EXAMPLES

We now turn to a few more examples written using
bounded gquantifications. In the authors’ opinion these
formulas express at a high level the essentials of the al-
gorithms they implement. In some cases they contain
formulas reminiscent of what would be (informally ex-
pressed) loop invariants when programming in another

language,
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10.1 Factorial

The following program computes the factorial of . The
program shows the use of the cerdinal range formula.

factoriall N, F) —
size(0, T, N) A
Wi {eardinallI,N) — T[I]=T+ 1} A
reduce{ =, T, F).

10.2 Fibonacci

The following program computes the Nth Fibonacci
nurmber. The pregram is remarkable in being both simple
and efficient, since it does not recompute any Fibonacci
numbers. Similar effects have been accomplished using
‘memo’ relations and ‘bottom-up’ resolution, ete., but
this solution appears both simple, elegant and semanti-
cally impeccable.

Sfibonacei N, F')
size(0, T, N + 1) A
YWI{cardinal I, V) —
I=0AT[li=1Vv
[=1AT{]=1V
I ATH =TI =1 +T[F -2} A
F=T[N-1].

10.3 Finding roots in oriented forests

Suppose that the array P represents an oriented tree.”
Each element of P contains the index of the parent of
some node; roots contain their own index. The follow-
ing program returns a new array in which each element
points immediately to the rool of its forest. This is an
example of a parallel-prefix algorithm and it also illus-
trates how bounded quantifications and recursion can be

used together.

find(P, P} ~— VI{P[I]= PlI] — P[] = P[PI]]}.
find(Fy, P) =
VINI{BT) = J — (J = BJ) A Bl = Jv
7 # RJIA BT = R} A
ﬁnd{PhP:I'

10.4 Matrix transposition
The following little program transposes 2 matrix.

trans( My, M) —
size(0, My, A} osize(1, My, B) A
size(0, M, B) A size(1, Mz, A) A
VINIVQ{Mi{I, J] = Q@ — My[J, 1] = Q).

*Recall that an orfented tree is a “directed graph with a spec-
iRed node & such that: each node N # R is the initial node of
exartly on are; i is the initial node of no are; R is a root in the
sense that for each node N 3£ R there is an oriented path from N
to A7 (Knuth, 1968).
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10.5 Mumerical integration

The following program computes an approximation fo
the integral

ff{.z)dx

using Simpson’s method (a guadrature method). In the
program below we let 4 and B be the limits, N the
number of intervals and I the resulting approximation of
the integral. We assume that the relation (X, ¥') holds
if and only if f(X) =¥, where f is the function being
integrated.

intsimp(A, B, N, T) —
W =(B— A)/N A
5ize(0,G,2 % N + 1) A size(0, Z, N) A
YIVY{G] =Y = r{A+ 1 < W/2,¥)} A
VIVS{Z[[] = S —
§=W x(G[2x N+
txG2xT+1)+
G2 x T +2])/6} A
reduce(+, Z, 7).

The array G ia set up to contain the 2 x N + 1 values
F(a), fla+w/2), fla+w), ..., f{b—w), F(b—wf2),
f(b). These values are used to compute the area for each
of the intervals, stored in 2. Finally the sum of the areas
is computed.

10.6 Linear regression

This 15 an example of 2 more invelved numeric computa-
tion, adopted from Press et al. (1989). The problem is to
fit a sel of n data points (z;, 1), 0 = i < n, to a straight
line defined by the equation y = 4 + Bz, We assume
that the uncertainty oy associated with each item y; is
known, and that all z; (values of the dependent variable)
are known exactly.
Let us first define the following sums.

5= ?;ul;% S_,.= :l:ulf? S,: :L:Jf.#
Se=TI S Sn=Tn W

The coefficients A and B of the equation above can now
he computed as

-& = SS;; - -S;Sg

Sr-rS:u - S._--E"

” 55, ﬂS S

- Ty = wpidy
o A

The following program computes A and B from thres
arrays X, ¥ and [7,

linear_regression( X, Y, U0, A, B) «—
size(0, X, N A size(0, ¥, V) A size(0, I, W) A
stze(, Z, N} A size(0, £z, N) A size(0, 2y, N) A
size(0, Zo, N) A size(l), 2oy, N) A

Wi{cardinal I, N) —
211} = /(U] % UI) A
Ze{1) = X(11/(UU) x UL A
Zy[1] = Y[I/(U[I] = ULIT) A
Zeell) = (X[1] x XID/ULN % UIT]) A
Zoy 1) = (XU1]  Y{I1)/(U11) x UL} A
reduce(+, Z, §) A
reduce{+, Zz, S;) A reduce(+, Z;, S5y} A
reduce(+, Zor, Saa) A reduce(+, Zoy, Sy A
Delta = 5 % 80p — S % S A
A= (8er % 8y — Sz % 8g,)/ Deltan
B = (8 8;y — 8. x 8,)/Delta.

It is obvious that this program can be run in Oflogn)
time wsing n processors, dominated by the reductions.
The bounded quantification which computes the inter-
mediate arrays &, Z., &y, Jer and Z,, runs in constant
time using n processors.

11 LIST EXAMPLES

The following two examples are present simply to show
that it is possible to express also list algorithms us-
ing bounded quantifications, although the recursive pro-
grams are usually more elegant.

11.1 Lessall

The lessall program for lists is of course very similar to
the array program (this makes it easy to change the data
structure).

lessall( A, L) « YBYI{member(!, L, B) — A < B).

11.2 Partition

The partition program, finally, is an example of a pro-
gram which is much elearer when expressed recursively.
We intend that partition(X, A, L, I} be true if and only
if £ contains exactly those of elements of X which are
less than or equal to A, and H contains exactly those
which are greater than 4. The partition predicate is
usually parl of an implementation of Hoare's Quicksort
algorithm. Here is the recursive program:

partition([], A4, [, [1).
partition([B|X], 4, L, |[B|H]) +~—

A € BA partition( X, A, L, H).
partition([B|X], A, [B|L], H) —

A = B A partition( X, A, L, H).

In the following program which uses bounded quantifi-
cations, we have tried to keep some of the stracture of

the recursive program.

partition{ X, A, L, H) +
YEyVEY T suffif], X, Fy) —
member(I, 55, L) A
member{ I, S, H) A
Pdrt{FXrL1H|A: SLrSH}} A



member{1, 5., L) A member{1, Sy, H).
pari([], [], 0. A, 5i, Su)-
Pﬂfﬂ[B|X],L1H,A,SL,SH} -

J=I+1n

member{J, S, In) A member(.J, Sy, f1) A

(A< BAL=LAH=[BH]|V

A=8BAaL= [ElLtlﬁHE Ht}..

The program computes two lists of lists Sy, and Sy which

are scans of partitions on X, picking out those elements
which are less than or greater than A, respectively.

12 NESTED BOUNDED QUANTIFICATIONS

Consider a bounded guantification whose body is an-
other bounded quantification:

V{8, [x] — ¥y{Oaly] — 2[z,¥]}}.

Provided that @, [z] is true for any 2 in {ca, €1, .., ek-1],
and that similarly ®sy] is true for any ¥ in {do,dy, ...,
dy_y }, the nested bounded quantification is equivalent to
the k = ¢ element conjunction

@Eﬂﬂ. d’] 'ﬂ' Q:"H‘h dl] 'Iﬁ' s
.’\q}[ﬂhdn] h@{dl,dll Moo

A ®[eg, der ]
A Bley, dea]

ﬁ@fc;—llﬁ] A®ekog di] Ao AB[opy,de]

As before, provided that all data dependencies are satis-
fied, all these conjuncts can be run simultanecusly.

13 TOLERATING DEPENDENCIES

In all examples shown above the computations of the
conjuncts obtained from a bounded quantification have
been independent. Therefore the conjuncts could be
computed in any order, for example in parallet,

There are interesting computations where the result-
ing conjuncts are dependent. Consider, for example, the
following program (adapted from a program by Ander-
son & Hudak [1990]) which defines an n » n matrix A
through a recurrence.

1'&:{;&] —
size(0, A, N) A size(1, A, N} A
WIVJ{A[LJ] =X —

I=1paX=1V
I=ladJ=18aXK=1V
I=1Ad=1n
X=A[I-1,J]+
Alf =1, =-1)+
Al J =1]}.

This program requires a co-routining implemnentation of
bounded guaniification to run on a sequential computer
or synchronization to run on & parallel computer. We are
currently investigating whether automatic generation of
synchronization/co-routining code is sufficient or if the
programmer should be allowed to annotate the program,
for example, through read-only variables (Shapiro, 1883).
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14 RELATED WORK

We noted above that M. Meier has suggested [1591) how
to compile some tail recursive (conjunctive as well as
disjunctive) programs to iterative programs on top of
WAM.

Several authors, e.g., Lloyd & Toper (1984) and Sato
& Tamaki (1989), have discussed methods for running
logic programs with arbitrary formulas in bodies. Our
method only covers a limited extension of Horn clauses.

14.1 Array Comprehensions

It is obvious that there are similarities between arrays
and bounded quantifications on one side, and the array
comprehensions proposed for the Haskell language (Hu-
dak & Wadler, 1990) on the other. Both concepts aim
to express the contents of an array, or the relationship
between several arrays, declaratively.

It appears to us, as with most functional programming
language concepts, that when they are at all appropriate
they offer & more compact and occasionally more ele
gant notation. For example, the factorial program above
could have been expressed more easily if an expression
describing the temporary array I' could have been writ-
ten immediately.

However, when the relationship between the elements
of more than ene array are to be described, the bounded
quantifications appear to be more comprehensive.

Array comprehensions are, in general, evaluated by
lazy computation. This can be thought of as a degener-
ated form of concurrency which suspends part of a com-
putation until it is known that it must be performed.
We do not think lazy computation is necessacy, provided
unification with the “logical variable™ and a more general
form of concurrency.

Futures (Halstead, 1985) are yet another way of giving
names for values which are yet to be fully computed.

14.2 Nova Prolog

The ideas presented above originated as a generaliza-
tion of the langnage Nova Prolog (Barklund & Millroth,
1988).% Here, however, it is appropriate to present Nova
Prolog as a language embodying a subset of bounded
quantifications. The subset is chosen to obtain a lan-
guage tailored specifically for massively parallel SIMD
computers, such as the Connection Machine. Mare
specifically, we assume that we can store some data strue-
tures in such a way thal processor ¢ has particularly ef-
ficient access to the ith element of each data structure.
We say that those data structures are distributed.

“Nova Prolog reletes to Pralog in much the same way as *LISP
{by Thinking Machines Corp.) relates to Commen LISP and C*
{also by Thinking Machines Corp.) to C. That is, itis a sequential
programming langauge extended with & distributed data structure
and a control structure for expressing computations over each ele-
ment on the data structure.
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We currently limit the distributed data structures to
be compound terme; in fact only those compund terms
whose function symbel is pferm and whose arity is some
fixed value. We shall call them ‘pterms.’ (This is to help
a compiler distinguish distributed data structures from
other compound terms.)

Since pterms are the only distributed data structures
and they are compound terms, the only range formula we
need is arg(i, {,2).% We have chosen a syatax for bounded
quantifications which makes it possible to combine the
range formula with the quantification of variables. In
Mova Prolog a formula

Ay Ty Ay: Ty, Ag T [ ®lself],

where T' is a plerm, is called a ‘parall’ and has the same
meaning as the bounded quantification

VIVAN Ay - WA ara(1, T}, Ay) —
ﬂfﬁf,Tj,J{z] Moeea My
arg(, To, Aa) A (1),

namely that & is true {or every corresponding element
Ai of Ti, 1 < ¢ < n. We can see that in Nova Prolog
the ‘index’ I is implicit and is denoted by the constant
symbal sell in the body &. _
All examples above for array computations can be
translated into Nova Prolog. We have recently imple-
mented parts of Nova Prolog in *LISP (Blanck, 1991).

15 CONCLUSION AND FUTURE WORK

We have defined bounded quantifications, a new con-
struct for logic programming languages. We have dis-
cussed how they can be efficiently implemented on se-
quential and parallel computers. They offer clarity as
well as efficiency and we propose that language designers
and implementors consider including them in implemen-
tations of, e.g., Prolog, Gédel and KLL.

A matural continuation of this work is to verily ex-
perimentally that bounded quantifications can be im-
plemented efficiently in sequential and concurrent lan-
guages, and on sequential and parallel computers. It
is also important to investigate how data dependencies
and other synchronization considerations can be han-
dled, when bounded quantifications are interpreted con-
currently.
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