PROCEEDIMGS OF THE INTERNATIONAL CONFEREMCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

Towards an Efficient Compile-Time
Granularity Analysis Algorithm

X. Zhong, E. Tick, 5. Duvvuru,

L. Hansen, A. V. S. Sastry and R. Sundararajan
Dept. of Computer Science
University of Oregon
Eugene, OR. 97403

Abstract

We present a new granularity analysis scheme for con-
current logic programs. The main idea is that, instead of
trying to estimate costs of goals precisely, we provide a
compile-time analysis method which can efficiently and
precisely estimate relative costs of active goals given the
coat of a goal at runtime. This is achieved by estimat-
ing the cost relationship between an active goal and its
subgoals at compile time, based on the call graph of the
program. [teration parameters are introduced to handle
recursive procedures. We show that the method accu-
rately estimates cost, for some simple benchmark pro-
grams. Compared with methods in the literature, our
scheme has several advaniages: it is applicable fo any
program, it gives a more precise cost estimation than
static methods, and it has lighter runtime overheads
than absolule estimation methods.

1 Introduction

The importance of grain sizes of tasks in a parailel com-
putation has been well recognized [6, 5, 7). In practice,
the overhead to execute small grain tasks in parallel may

well offset the speedup gained. Therefore, it is impor-
tant to estimate the costs of the execulion of tasks so
that at runtime, tasks can be scheduled to execute se-
quentially or in parallel to achieve the maximal speedup.

Granularity analysis can be done at compile time or
runtime or even both [7]. The compile-time approach es-
timates costs by statically analyzing program structure.
The program is partitioned statically and the partition-
ing scheme is independent of runtime parameters. Costs
of most tasks, however, are not known until parameters
are instantiated at runtime and therefore, the compile-
time approach may result in inaccurate estimates. The
runtime approach, on the other hand, delays the cost
estimation until execation and can therefore make more
accurate estimates, However, the overhead to estimate
cogts is usually too large to achieve efficient speedup,
and therefore the approach is usually infeasible. The
most promising approach is to try to get as much cost
estimation information as possible at compile time and

make the overhead of runtime scheduling very slight.
Such approach has been taken by Tick [10], Debray et
al. [2], and King and Soper [4]. In this paper, we adopt
this strategy.

A method for the granularity analysis of concurrent
logic programs is proposed. Although the method can
be well applied to other languages, such as functional
languages, in this paper, we discuss the method only
in the context of concurrent logic programs. The key
ohservation behind this method is that task spawning
in many concurrent logic program language implemen-
tations, such as Flat (uarded Horn Clauses (FGHC)
[13], depends only on the relative costs of tasks. If
the compile-time analysis can provide simple and pre-
cise cost relationships betwesn an active goal and its
subgoals, then the runtime scheduler can efficiently es-
timate the costs of the subgoals based on the cost of
the active goal. The method achieves this by estimat-
ing, at compile time, the cost relationship based on the
call graph and the introduction of iteration parameters,
We show that for common benchmark programs, the
method gives correct estimates.

2 Motivations

Compile-time granularity analysis is difficult hecause
mast of the information needed, such as size of a data
structure and number of loop iterations, are not known
until runtime. Sarkar {7] used a profiling method to
get the frequency of recursive and nonrecursive function
calls for a functional language. His methed is simple
and does not have runtime overheads, but can give only
a rough estimate of the actual granularity.

In the logic programming community, Tick [10] first
proposed & method to estimate weights of procedures
by analyzing the call graph of a program. The method,
a3 refined by Debray [1], derives the call graph of the
program, and then combines procedures which are mu-
tually recursive with each other into a single cluster
{i.e., a strongly connected component in the call graph).
Thus the call graph is converted into an acyclic graph.
Procedures in a cluster are assigned the same weight

glo

which is the sum of the weights of the cluster's children
{the weights of leaf nodes are one, by definition). This
method has very low runtime overhead; however, goal
weights are estimated statically and thus cannot cap-
ture the dynamic change of weights at runtime. This
problem is especially severe for recursive (or mutually
recursive) procedures,

Ag an example of the method, consider the naive-
reverse procedure in Figure 1. (The clavses in the nrev/2
program do not have guards, i.e., only head unification
is responsible for commit.) Examining the call graph,
we find that the algorithm assigns & weight of one to
append/3 (it is a leaf), and a weight of two to nrev/2
{one plus the weight of its child). Such weights are asso-
ciated with every procedure invecation and thus cannot
accurately reflect execute time.

Diebray et al [2] presented a compile-time method
to derive costs of predicates. The cost of a predicate is
assumed to depend solely on its input argument sizes,
Relationships between input and cutput argument sizes
in predicates are first derived based on so-called data de-
pendency graphs and then recurrence equations of cost
functions of predicates are set up. These equations are
then solved at compile time to derive closed forms (func-
tions) for the cost of predicates and their input argument
sizes, together with the closed forms (functions) between
the output and input argument sizes, Such cost and ar-
gument gize functions can be evaluated ai runtime to
estimate costs of goals. A similar approach was also
proposed by King and Soper [4]. Such approaches rep-
resent & trend toward precise estimation. For nrev/2
Debray"s method gives Costyrg(n) = 0527 4 L3n + 1,
where n is the size of the input argument. This function
can then be inserted into the runtime scheduler. When-
ever nrev/2 is inveled, the cost function iz evaluated,
which obviously requires the value n, the size of its first
argument. If the cost is bigger than some preselected
overhead threshold, the goal is executed in parallel; oth-
erwise, it is executed sequentially.

The method described suffers from several deawbacks
(see [11] for further discussion). First, there may be
considerable untime overhead to keep track of argu-
ment sizes, which are essential for the cost estimation
at ruotime. Furthermore, the sizes of the initial input
arguments have to be given by users or estimated by the
program when the program begins to execute. Second,
within the umbrella of argument sizes, different metrics
may be used, e:g., list length, term depth, and the value
of an integer argnment. It is unclear (from (2, 4]) how to
correctly choose metrics which are relevant for a given
predicate, Third, the resultant recurrence equations for
size relationships and cost relationships can be fairly
complicated.

it is therefore worth remedying the drawbacks uf_t.he
above two approaches. It is also clear that there is a

tradeaff between precise estimation and runtime aver-
head. In fact, Tick's approach and Debray's approach
represent two extremes in the granularity estimation
gpectrum. Our intention here is to design a middle-
of-the-spectrum method: fairly accurate estimation, ap-
plicable to any procedures, without incurring too much
runtime overhead.

3 Overview of the Approach

We argue here, as in our earlier work, that it is sufficient
to estimate only relafive costs of goals. This is especially
true for an on-demand runtime scheduler [8], Therefore,
it is important to capture the cost changes of a subgoal
and a goal, but not necessarily the “absalute” granular-
ity. Obviously the costs of subgoals of a parent goal are
always less than the cost of the parent goal, and the sum
of costs of the subgoals (plus some constant everhead)
is equal to the cost of the parent goal. The challenging
problem here is how to distribuie the cost of the parent
goal to its subgoals properly, especially for a recursive
call. For instance, consider the naive reverse procedurs
nrev/2 again. Suppose goal nrev([1,2,3,4] .R) is in-
voked (i.e., clause two is invoked) and the cost of this
query is-given, what are the costs of nrev([2,3,4],R1)
and append(R1,[1] ,R)?

It is clear that the correct cost distribution depends
on the runtime state of the program. For example, the
percentage of cost distributed to nrev([1,2,3,4],R)
{i.e., as one of the subgoals of nrev({[1,2,3,4,5],T)
will be different from that of cost distributed to nrewv(
[1,2].R}. To caplure the runiime state, we introduce
an iteralion perameter to model the runtime state, and
we associate an iteration paramefer with every active’
goal, Since the cost of a goal depends solely on its en-
try runtime state, its cost is a function of its iteration
parameter, Several intuitive heuristics are used to cap-
ture the relations betwesn the iteration parameter of a
parent goal and those of its children goals. To have a
simple and efficient algorithm, only the AND/OR call
graph of the program, which 15 slightly different from
the standard call graph, is considered to obtain these
iteration relationships. Such relations are then used in
the derivation of recurrence equations of cost functions
of an active goal and its subgeoals. The recurrence equa-
tions are derived simply based on the above chservation,
i.e., the cost of an active goal is equal to the summation

of the costs of its subgoals.

We then proceed to solve these recurrence equations
for cost functions bottem up, first for the leaf nodes
of the modified AND/OR call graph, which can be ob-
tained in a similar way in Tick's modified algorithm by
clustering those mutually recursive nodes together in the
AND/OR call graph of the program (see Section 2). Af-
ter we obtain all the cost functions, cost distribution
functions are derived as follows. Suppose the cost of an

active goal is given, we first solve for its iteration param-
eter based on the cost function derived. Onee the itera-
tion parameter is solved, costs of its subgeals, which are
functions of their iteration parameters, can be derived
based on the assumption that these iteration parameters
have relationships with the iteration parameter of their
parent, which are given by the heuristics. This gives the
cost, distribution functions desired for the subgoals,

To recap, our compile-time granularity analysis pro-

cedure consists of the following steps:

1. Form the call graph of the program and
cluster mutually recursive nodes of the
modified AND/OR call graph.

2. Associate each procedure (node) in the
call graph with an iteration parameter
and use heuristics to derive the itera-
tion parameter relations.

3. Form recurrence equations for the cost
functions of goals and subgoals.

4. Proceed bottom up in the modified AND-
OR call graph to derive cost functions.

5.. Solve for iteration parameters and then
derive cost distribution functions for each
predicate.

4 Deriving Cost Relationships
4.1 Cost Functions and Recurrence Equations

To derive the cost relationships for & program, we use
a graph & {called an AND/OR call graph) to capture
the program structure. Formally, & is a triple (M, E, A),
where N is a set of procedures denoted as {py,pa,. ., pn}
and E iz a set of pair nodes such that {p;,p) € F if and
only if p; appears as one of the subgoals in one of the
clauses of py. Notice that there might be multiple edges
(pi, p2) because py might call pg in multiple clauses. A is
a partition of the multiple-edge set E such that (p;, pa)
and (py, pa) are in one element of A if and only if px and
pa are in the body of the same clause whose head 13 py.
Intuitively, 4 denotes what subgoals are AND processes.
After applying A to edges leaving out a node, edges are
partitioned into clusters which correspond to clauses and
these clanses are themselves OR processes. Figure 2
shows an example, where the OR branches are labeled
with a bar, and AND branches are unmarked. Leaf facts
{terminal clauses) are denoted as empty nodes,

As in (1], we modify & so that we can cluster all
those recursive and mutually recursive procedures to-
gether and form a directed acyclic graph (DAG). This
is achieved by traversing & and finding all strongly-
connected components, I[n this traversing, the differ-
ence between AND and OR nodes is immaterial, and
we simply discard the partition 4. A procedure is re-

g1

cursive if and only if the procedure is in a strongly-
connected component. After nodes are clustered in a
strongly-connected component in &, we form a DAG
', whose nodes are those strongly-connected compo-
nents of & and edges are simply the collections of the
edges in (7. This step can be accomplished by an effi-
cient algorithm proposed by Tarjan [9].

The cost of an active goal p is determined by twe
factors: ils entry runtime state s during the program
execution and the siructure of the program. We use
an integer n, called the iferation parameter, Lo approxi-
mately represent state s, Intoitively, n can be viewed as
an encoding of a program runtime state. Formally, let
& be the set of program runtime states, M be a map-
ping from & to the set of natural numbers N such that
M(s) = nfor s € § It is casy to see that the cost of
pis a funetion of its iteration parameter n. It is also
clear that the iteration parameter of a subgoal of p is
a fanction of n. Hereafter, suppose py; is Lhe %% sub-
goal in the i clause of p. We use [;;{n) to represent
the iteration parameter of pi;. The problem of how to
determine function fj; will be discussed in Section 4.2,

To model the structure of the program, we vse the
AND/OR call graph (as an approximation. In other
words, we ignore the attributes of the data, such as size
and dependencies. We first derive recurrence equations
of cost funclions between a procedure p and its subgoals
by locking at G. Let Costp{n) denote the cost of p.
Three cases arise-in this derivation:

Case 1: pis a leaf node of ' which is non-
recursive. This includes cases where that p
is a built-in predicate. In this case, we sim-
ply assign a constant ¢ as Cost(n). cis the
cost to execute p. For instance such cost can
be chosen as the number of machine instruc-
tions in p.

For the next two cases, we consider non-leal nodes
p, with the following clanses (OR processes),

cl P Pl s Ping -
Catp = PaveroyPang
Ce:p = Prae-os Pl

Let the cost of each clause be Coste,(n) for 1 < 7 < k.
We now distinguish whether or not p is recursive.

Case 2: pis nof recursive and noi mutually
recursive with any other procedures, We can
easily see that

812

Costy(n) < i Coste, (n). (1)

J=t

Conservatively, we approximate Costy(n) as
the right-hand side of the above inequality.
WNotice that in a committed.-choice language,
the summation in the above inequality can
be changed to the maximum (i.e., max) func-
tion. However this increases the difficulty of
the algebraic manipulation of the resultant
recurrence equations (see |11] for example)
and we prefer to use the summation as an
approximation.

Case 3: p is recursive or mutually recur-
sive. In this case, we must be careful in the
approximation, since minor changes in the
recurrence equations can give rise to very
different estimation. This can be seen for
split in gseort example in Section 2.

To be more precise, we first observe that
some clauses are the "boundary clauses.” that
is, they serve as the termination of the recur-
sion. The other clauses, whose bodies have
some goals which are mutually recursive with
p, are the only clauses which will be effective
for the recursion. Without loss of general-
ity, we assume for j > u, O are all those
“mutually recarsive” clauses. For a nonzero
iteration parameter n (i.e, n = 0}, we take
the average costs of these clauses as an ap-
proximation:

k

Costy(n) = L 3" Coste,(n) (2)
B

and for n = 0, we take the sum of the costs

of those “boundary clauses™ as the boundary
condition of Costy(n):

Cost, (0) = 3. Coste (0).

jml

The above estimation only gives the relations be-
tween cost of p and those of its clauses. The cost of
clause O can be estimated as

Costg,(n) = CHead; + 3 Costy,. (Iim(n)) (3
m=1
where CHead; is a constant denoting the cost for head
unification of clause C; and [jwin) is the ileration pa-
rameter for the m™ body goal. Substituting Equation 3
back into Equation 1 or 2 gives us the recurrence equa-
tions for cost functions of predicates.

4.2 Tteration Parameters

There are several intuitions behind the introduction of
the iteration parameter. As we mentioned above, iter-
ation parameter n represents an encoding of a program
runtime state as a positive integer. In fact, this type of
encoding has been used extensively in program verifica-
tion, e.g., [3], especially in the proof of loop termination.
A loop £ terminates if and only it is possible to choose a
function M which always maps the runtime states of C
te nonnegative integers such that M monotonically de-
creases for each iteration of £, Such encoding also makes
it possible to solve the problem that once the cost of an
active goal is given, its iteration parameter can be ob-
tained. This parameter can be used to derive costs of
its subgoals (provided the iteration-parameter functions
I, are given), which in turn give the cost distribution
fonctions,

Admittedly, the encoding of program stales may be
fairly complicated. Hence, to precisely determine the
iteration-parameter functions for subgoals will be com-
plicated too. In fact, this problem is statically unde-
cidable since this is as complicated as to precisely de-
termine the program runtime behavior at compile time.
Fortunately, in practice, most programs exhibit regular
control structures that can be captured by some intu-
itive heuristics.

To determine the iteration-parameter functions, we
first observe that there is a simple conservative rule:
for a recursive body goal p, when it recursively calls
itself back again, the ileration parameter must have been
decreased by one {if the recursion terminates). This is
similar to the loop termination argument. Therefore,
as an approximation, we can use Io(n) = n-1lasa
conservative estimation for a subgoal gy which happens
to be p (self-recursive). Other heuristics are listed as
follows:

§1. For a body goal p. whose predicate only
occurs in the body once and it is not mutu-
ally recursive with p (i.e., not in a strongly-
connected component of p), fim(n} = n.

§2. If pim is mutually recursive with p and its
predicate only occurs once in the body, Lin(n)

=nu-1.

§3. If pim is mutually recursive with p and ils
predicate occurs | times in the body, where
I =1, Iin(n) = nfl (this is integer division,
i.e., the floor function).

The intwitions behind these heuristics are Bimpiﬂ.
Heuristic §1 represents the case where a goal does not
invoke its parent. In almost all programs, this goal will
process information supplied by the parent, thus the it-

eration parameter remaing unmodified. Heuristie §2 s
based on the previous conservative principle. Heuristic
§3 is based on the intuition that the iteration is divided
evenly for multiple callees. MNotice for the situation in
heuristic §3, we can also use our conservative principle.
Howewver, we avoid use of the conservative principle, if
possible, because the resultant estimation of Cost,(n)
may be an exponential function of n, which, for maost
practical programs, is not correct.

These heuristics have been derived from experimen-
tation with a number of programs, placing a premium
on the simplicity of I(n). A partial summary of these
results is given in Section 6. A remaining goal of fulure
research is to further justify these heuristics with larger
programs, and derive alternatives.

4.3 An Example: Quicksort

After we have determined the iteration-parameter func-
tions, we have a system of recurrence equations for cost
functions. These system of recurrence equations can he
solved in a bottom-up manner in the modified graph &,
The problem of systematically solving these recurrence
equations in general is discussed in [11]. Here, we con-
sider a complete example for the qsort/2 program given
in Figure 2.

The boundary condition for Costyyere(n) is that
Costyer(0) is equal to the constant execution cost d) of
qsort/2 clause one. The following recurrence equations
are derived:

I

UDS‘nnum]
Costgyare (1)

dy

cﬂﬂtg!

With Heuristic §3, we have
Cﬂﬁtc, = d’i + Cmap{ﬂ{“} + 2':05tqigfl {ﬂfZ}

where dy is the constant cost for the head unification of
the second clause of gsort/2.

Similarly, the recurrence equations for Costuu(n)
are

Costypy(0) = da
Costorr(n) = (Costg, + Coste, }/2
Furthermore,

Gﬂstc, = C‘:‘s'tﬁ-‘a
d.g + CIDSt,_p,!,'II:ﬂ =].}

where dy is the constant cost for the head unification
of the second (and the third) clause of split. We first
solve the recurrence equations for split, which is in
the lower level in ' and and then solve the recurrence
equations for gsert. This gives us Cosl,g(n) = dytdyn

El13

which can be approximated as dyn and Costendn) =
dy +dz log n+dyn log n, which is the well known average
complexity of geort.

Finally, it should be noted that it is necessary to dis-
tinguish between the recursive and nonrecursive clanses
here and take the average of the recursive clause costs
as an approximation. If we simply take the summation
of all clause costs together as the approximation of the
cost function, both cost functions for split and gsort
would be exponential, which are not correct. More pre
cisely, if the summation of all costs of clauses of split

is taken as Costya(n), we will have
E':'St'lph't{n} = dy 4+ 2{dy + Costpain — 1

The solution of Costyuy(nr) is en exponential function,
which iz not correct.

5 Distributing Costs

So far, we have derived cost functions of the iteration
parameter for each procedurs. However, to know the
cost of a procedure, we need to first know the value of
its iteration parameter. This, as peinted out in our in-
troduction, may require too much overhead. We notice
that, in most scheduling policies (such as “on-demand
scheduling), only relaiive costs are needed. This can be
relatively easily achieved in our theory since cost func-
tione only have a single parameter (iteration parameter).

To derive cost distributing formulae for a given pro-
cedure and its body goals, the first step is to solve for
the iteration parameter n in Equation 3 assuming that
Costy(n) is given at runtime as Cp. Assuming thal
clause i is invoked in runtime, we approximate Coste, (1)
as , and solve Equation 3 for n. Let n = F(C,) be the
symbolic solution, which depends cn the runtime value
of Casty(n) (i.e., Cp), we can easily derive costs of its
subgoals of clause i as we can simply substitute » with
F{C.) in Costy, (lim(n)), which gives rise to the cost

distributing funclions we need to derive al compile time.

Let’s reconsider the nrewv/2 pfocadure. The cost
equations are derived as follows:

Costuren(n) = Costueeu(n — 1) + Cosbappend(1t)
Cost.oul) = o
Costappend(n) = Costappena(n — 1)+ O,
Costoppena(0) = 2

We can easily derive the closed forms for these two cost
functions as Costappena(n) = n x O 4 o3 which can be
approximated as O, » n, and Cost.,(n) = O, = n?f2,
Now, given the Coslgre(n) as O, we solve for n and

have n = ‘v%- Hence, we have Costyre(n — 1) =

14

Cals a’%‘z — 1)2/2 and Costappena(n) = Cay/%=. These
are ihe desired cost distributing functions.

It should be pointed out that in some cases, it is
not necessary Lo first derive the cost functions and then
derive the cost distributing functions since we can sim-
ply derive the cost distributing scheme directly from the
cost recurrence equations. For example, consider the Fi-
bonacci function, where the cost equations are

G_r’ + 2 x CDEL;,-;{;:.,I’E)
Ch

Cost ;.'l.l[n)
Cost g (0]

Without actually deriving the cost functions of Cost puin),
we can simply derive the cost distributing relationship
from the first equation as Costrai{n/2) = (Cost uln) —
Cy)f2.

Also note that at compile time, the cost distribut-
ing functions should be simplified as much as possible
to reduce the runtime overhead. [t is even worthwhile
sacrificing precision te get a simpler function. There-
fore, & conservalive approach should be used to derive
the upper bound of the cost functions, In fact, we can
further simplify the cost function derived in the follow-
ing way. If the cost function is of a polynomial form
such as epn® + ene®™! 4 ... e, we simplify it as kegn®
and if the cost function is of several exponential com-
ponents such as epa™ + cpb® where b > a, we simplify
it as (g + ez)b". This will simplify the solution of the
iteration parameter and the cost distributing function
and hence simplify the evaluation of them at runtime.

51 Runtime Goal Management

The above cost relationship estimation is well suited
for a runtime scheduler which adopts an on-demand
scheduling policy {e.g., [8]), where PEs maintain a lo-
cal queue for active goals and once a PE becomes idle,
it requests & goal from other PEs. A simple way to
distribute a goal to a requesting PE is to migrate an
active goal in the quene. The scheduler should adopt
a policy to decide which goal is geing to be sent. Ii is
obvious that the candidate goal should have the maxi-
mal grain size among these goals in the queve. Hence,
we can use a priority queune where weights of goals are
their grain sizes (or costs). The priority is that the big-
ger the costs are, the higher priority they get. Because
the scheduler only needs to know the relative costs, we
can always assume the weight of the initial goal is some
fixed, big-enough number. Based on this initial cost and
the cost distributing formulae derived at compile time,
every time a new clause is invoked, the scheduler derives
the relative costs of body goals. The body goals are then
enquened into the priority quewe based on their costs.

Some bookkeeping problems arise from this approach.
First, even though we can simplify the cost distributing

functions at compile time to some extent, the runtime
overhead may still be large, since for each procedure
invecation, the scheduler has to caleulate the weights
of the body goals. One solution to this problem is to
let the scheduler keep track of a module eounter and
when the content of the counter iz not zero, the sched-
wler simply lets the costs of the body goals be the same
a5 that of their parent. Once the content of the counter
becomes zera, the cost-distributing functions are used.
If we can choose an appropriate counting period, this
method is reasonable {one counter increment has less
overhead than the evaluation of the cost estimate).

Another problem in this approach is that for long-
running programs, costs may become negative, i.e., the
initial weight is not large enough. Since we require only
relative costs, a solution 15 to reset all costs I:irlclud-
ing those in the queue, and in suspended goals), when
some cost becomes too small. Cost resetting requires
the incremental overhead of testing to determine when
to reset.

Ag stated above, we nesd to choose the initial cost as
big as possible. However, this can introduce an anomaly
for our relative cost scheme. To see this, consider the
nrev example again, Suppose that the initial query is
nrev([1,...,50]). The correct query cost is approxi-
mately 50 x50 = 2500. The correct eost of its immediate
append goal is approximately 49, and the correct cost of
cne of its leaf descendant goals nrev([1)} is one (the
head unification cost). If we choose the initial cost as
a big number, say 10%, then the corresponding iteration
parameter is 10°. This will give the cost of nrev([])
as {1[]3 - ..';_h‘.'.l]lz which is bigger than the eslimated cost
of the initial append goal {only arcund 10°). In other
words, this gives an incorrect relationship betweean goals
near the very top and near the very bottom of the proof
tres.

Far this particular example, the problem could be fi-
nessed by precomputing the “correct™ initial value of the
iteration parameter: exactly equal to the weight of the

Cguery. However, in general, a correct initial estimation

is not always possible, and when it is possible, its com-
putation incurs too much overhead. All compile-time
granularity estimation schemes must make this trade-
off. Fortunately, in our scheme, the problem is not as
serious as it first appears. For initial goals with suffi-
ciently large cost, our scheme is still able to give correct
relative cost estimation for sufficiently large goals which
are not close to leaves of the execution call graph. This
can be seen in the nrev example, where the relative costs
among nrev{[2,...,50] through nrev{[42,...,50])},
and the initial append are still correct in our scheme.
Correct estimation for the large goals (those near the
root of the proof tree) is more important than that for
small goals (Lthose near the leaves) because Lhe load bal-
ance of the system is largely dependent on those big
goals, and so is performance,

Heuristic Applicable Correct Percentage

§1 74 a1 §T.5%
§2 29 26 89.6%
§3 4 2 50.0%
all 32 27 1. 7%

b o

Table 1: Statistics for Benchmark Programs

[Heuristic Applicable Correct Percentage

g1 fid 57 89.1%
§2 49 55 87.3%
53 6 4 B6.7%
all 111 101 01.0%

Table 2: Statistics for a Compiler Front End

& Empirical Results: Justifying the Heuristics

We applied our three heuristics and the cost estima-
tion formulae to two classes of programs. The first
class includes nine widely used benchmark programs
[12], containing 32 procedures. The second class con-
sists of 111 procedures comprising the front-end of the
Monaco FGHC eompiler. The resulls are summarized
in Table 1 and Table 2. For each heuristic, the tables
shew the number of procedures for which the heuristic is
applicable (by the syntactic rules given in Section 4.2),
and the number for which the heuristic is carrectly esti-
mates complexity. The row labeled “all® gives the total
number of procedures analyzed. Since more than one
heuristic may be applicable in a single procedure, the
total number of procedures may be less than the sum of
the previous rows. ‘

From the tables, we see that §1 and §2 apply most
frequently. This indicates that most procedures are lin.
ear recursive {i.e, have a single recursive body goal)
which can be estimated correctly by our scheme. The
relatively low percentage of §3 correctness is because the
benchmarks are biased towards procedures with expo-
nential time complexity, whereas §3 usually gives poly-
nomial time complexity.

MAnalysis of the benchmarks indicated two major ano-
malies in the heuristics. Although §1 may apply, a pro-
cedure may distribute a little work (say, the head of a
list) to one body goal and the rest of the work (say, the
tail of the list) to another goal. This cannot be captured
by §1, which essentially treats the head and tail of the
list as equal, i.e., o binary tree. A correct cost analysis
needs to explore the data structures of the program.

For recursive procedures, §3 can capture only the
fived-degree divide & conquer programming paradigm.
However, the compiler benchmark contained procedures
which recursively traverse a list (or vector) and the de-
gree of the divide & conquer dynamically depends on the
number of top-level elements in the list (or vector). In
this situation, the procedure may have to loop on the tap

Bl5

level while recursively traversing down for each element
(which may be tree structures). Again, this presents in-
herent difficulty for our scheme because we take the call
graph as the sole input information for the program to
be analyzed.

To summarize, our statistics show that our scheme
achieves a fairly high percentage of correct estimation.
However, we need to apply multiply-recursive heuristics
§2 and §3 with more finesse. Further quantitative perfor-
mance studies of the algorithm's utility are presented in
Tick and Zhong [11]. Those multiprocessor simulation
results quantify the advantage of dynamically schedul-
ing tasks with the granularity information.

7T Conclusions and Future Work

We have proposed a new method to estimate the relative
costs of procedure execution for a concurrent language.
The methed is similar to Tick's static scheme [10], but
gives a more accurate estimation and reflects runtime

weight changes. This is achieved by the introduction
of an iteration parameter which is used to model recur-

sions.

Our method iz based on the idea that it is not the
absolute cost, but rather the relative cost that maiters
for an on-demand goal scheduling pelicy. Our method
is also amenable to implementation. First, our method
can be applied to any program, Second, the resultant
recurrence equations can be solved svstematically. In
comparison, it is-unclear how to fully mechanically im-
plement the schemes proposed in [2, 4]. MNonetheless,
our method may result in an inaccurate estimation for
some cases. This is becanse we uge only the call graph Lo
madel the program structure, not the data, We admit
that further static analysis of program structure such as
argument-size relationships can give more precise esti-
mations. :

Future work in granularity analysis includes the de-
velopment of a more systematic and precise method to
salve the detived recurrence equations. [t is also nec-
essary te examine this method for more practical pro-
grams, performing benchmark testing on a multiproces-
sor to show the utility of the method.

Acknowledgements

E. Tick was supported by an NSF Presidential Young In-
vestigator award, with funding from Sequent Computer
Systeme Ine. The authors wish to thank §. Debray and
the anonymous referees for their helpful eriticism.

REFERENCES

(1] S. K. Debray. A Remark on Tick's Algorithm for
Compile-Time Granularity Analysis. Logic Pro-
gramming Newsletler, 3(1):9-10, 1989,

816

{?-] 5. K. Debray, N.-W. Lin, and M. Herme:negi]du.
Task Granularity Analysis in Logic Programs. In
SIGPLAN Conference on Programming Language
Design and Implementation, pages 174-188. ACM
Press, June 1990,

D. Gries. Seience af Programming. Springer-Verlag,
19349,

[3

—_—

4

iy

A. King and P. Soper. Granularity Contrel for Con-
curtent Logic Programs. In International Computer
Conference, Turkey, 1990,

B. Kruatrachue and T. Lewis. Grain Size Deter-
mination for Parallel Processing. IEEE Saftware,
pages 23-32, January 1988

[5

{6] ﬂ McGreary and H. Gill. Auiomatic Determina-
tion of Grain Size for Efficient Parallel Processing,
Communications of the ACM, 32:1073-1978, 1989.

[7] V. Sarkar. Partitioning and Scheduling Parallel
Frograms for Erecution on Mulliprecessors. MIT
Press, Cambridge MA, 1980,

arav{[l,R} :- R=[].

[8] M. Sato and A. Goto. Evaluation of the KL1 Paral-
lel System en a Shared Memory Multiprocessor. In
[FIF Working Conference on Paralle! Processing,
pages 305-318, Pisa, North Helland, May 1988

(9] R. E. Tarjan. Data Structures and Network Algo-
rithms, volume &4 of Regional Conference Series in
Applied Mathematics. Soeiety for Industrial and
Applied Mathematics, Philadelphia PA, 1983.

[10] E. Tiek. Compile-Time Granularity Analysis of
Parallel Logic Programming Languages. New Gen-
erafion Computing, T(2}:325-337, Jannary 1990,

[11] E. Tick and X. Zhong. A Compile-Time Granular-
ity Analysis Algorithm and its Performance Evalu-
ation. Jouwrnal of Parallel and Dhséributed Comput-
ing, submitted to special issue.

[12] E. Tick. Parallel Logic Programming. MIT Press,
Cambridge MA, 1991,

[13] K. Ueda. Guarded Horn Clauses. In EY. Shapire,

editer, Coneurrent Prolog: Collected Papers, vol-
ame 1, pages 140-156. MIT Press, Cambridge MA,

1957,

nrav{[|T],R} :- nrev(T,R1), append (R1, [H] ,R).

appand{[],L,A)} :- A=L.

append{ [HIT] LAY = h=TH|&1], append(T,L, AL} . hack to nrev

I

back to append

Figure 1: Naive Reverse and its Call Graph

gmort([], 8) :- 3=0.
qeort([M|T].8} :-
split(T,H,5,L),
qaort(5,55),
gsort(L,LS),
append(38,L5,8).
epliz([1, M,3.,L} :-
spliv{[R{T] ,N,8,L) :-
S=[H|TS], =plit(T,
split([HIT] ,M,.8,L) :-
L=[HITL], split(T,

back to gsovt

@

AN

back to split

Figore 2: Quick Sort: FGHC Source Code and the AND/OR Call Graph

