PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © [COT, 1992

682

A New Perspective on
Integrating Functional and Logic Languages

John Darlington

Yi-le Guo Helen Pull

Department of Computing
Imperial College, University of London

180

ueen’s Gate London SWT 2BZ UK.

-mail: jd, yg, hmp@doc.ic.ac.uk
February 1992

Abstract

Traditionally the integration of functional and
lugic languages is performed by atiempting to in-
tegrate their semantic logics in some way. Many
languages have been developed by taking this ap-
proach, but nove manages to exploit fully Lthe pro-
gramming features of both functional and logic Jan-
guages and provide a smooth integration of the two
paradigms. We propose that improved integrated
systemns can be construeted by taking a broader view
ef the underlying semantics of logic programming.
A novel integrated language paradigm, Definitional
Constraint Programming (DCF), is proposed. DOP
generalizes constraint logic programming by admit-
ting user-defined functions via a purely functional
subsystem and enhances it with the power to solve
eonstraints over functional programs. This constraing
approach to integration results in a homogenecus uni-
fied system in whith functional and logic program-
ming features are combined natiurally.

1 Introduction

During the past ten years the integration of functional and
logic programming languages has attracted mueh research.
An extensive survey and classification of their results can
be found in [GLDDA0]. Traditionally this integration is per-
formed by attempting to integrate the respective semantic
logics of functional and logic languages in some way, re-
sulting in a “super logic language”. The conventional un-
derstanding is that a logic program defines a logical theory
and computation is attempting to prove that a query is a
logical consequence of this theory. Taking this view, inte-
gration is regarded as enhancing the original logie to cope
with functional programming features and results in o new
logic programming system. In section 2 we survey the main
results of this approach. It seems to us that this approach
fails to deliver all the features of both functional and logie
programming. The main source of inadequacy appears to
stem from the respective Yintended semantics” assumed for
logic and functional languages. It is this intended semantics
which we question, motivating ouor search for a new way of
approaching the problem of integrating functional and logle
languages.

We show in later sections that if we regard functional pro-
gramuning as defining a higher-order value epace, we can ex-

tend the conventional constraint logic programming {CLF)

framework by using a functional programming language to

define the domain over which relations are defined. Thus we

combine fanctional programming with a general CLP frame-

work rather than with the convenfional Prolog-like system.
We call the resulting langnage paradigm Definitional Con-

straint Programming (DCP). We claim that DOP pro-

vides a uniform and elegant integration of functional, con-

straint and logic programming, while preserving faithfully

the essence of each of these langwage paradigms.

In section 3, constraint systems and constraint program-
ming are investigated at a very general level, A constraint
logic programming model is then presented in section o
as a particular constraint programming paradigm. Section
5 presents constraint funetional programming (CFP) as a
framework which superimposes a solving eapability on the
functional programming paradigm, The definitional con-
strainl programming paradigm is developed in section 6, We
digcuss foture work in section 7 and make some concluding
comments in section 2.

2 Background and Motivation

From the traditional view of logic programming, integrat-
ing lunctional and logic languages is viewed as enhancing
the original logic to cope with functional programming fea-
tures. Most approaches take first-order equational logie as
the semantic logic of functional languages and combine it
with Horn clause logic. A comprehensive presentation of
the theory of Horn clause logic with equality may be found
in [GM87] and [Yuk88]. This shows that for every theory
in Horn clause logic with equality, its initial model (called
the least Herbrand E-model in [Yuk85), and the least Her-
brand model in [Sny@0]) always exists. Crucially, the initial
model is the intended model of a logic programming system,
since, according to the Herbrand theorem, the model is com-
plete with respect to solving 2 query. For a Horn clause with
equality program I and a query 3z;,...,5,4y,..., A, where
Aj is an atom or equation, & computational model must ver-
ify T'l= 35,00 2mdyy. ., Ay by computing an answer snh-
stitution & such that I' |= W84, A ... 0 #4,). Such models
integrate SLD-resolution with some form of equational de-
duction such as paramodulation. A complete computational
model was proposed recently by Snyder et. al, [S2v00) as a
goal directed inference system. Systems which aim to sup-

port the full power of lorn clause logic with equality include
Eqlog [GM&4], which exploits fully the order-sorted variation
of the logic, SLOG [Fri85] in which a completion procedure
is used as the computational model, and Yukawa's system
[Wuk28] which uses an explicit axiomatization of equality.

The computational difficulties of constructing a practical
programming language based on the full Horn clause logic
with equality leads us to conclude that this approach is not
appropriate. Alternative languages overcome these prob-
lems by imposing syntactic and semantic restrictions on the
paradigm. They all aim either to restrict the use of, or to
weaken, defined equality. An example of the firat approach is
Jaffer and Lassez’s Logle Programming Scheme [JLEA],
in which the equality parl of a program is defined sepa-
rately from predicate definitions. A program uses a first-
order equational sublanguage to define abstract data types
over which a definite clause subprogram is imposed. Oper-
ational models are hased on SLD-resolution together with
an E-unification procedure which solves equations over the
equality defined by the equational subprogram.

Another way to restrict the computational explosiveness
of general equational deduction is to use equational cladsas
as directed rewrite rules. A full discussion may he found
in [DM288]. Narrowing [Hel30] (resp. conditional narrowing
[D088]) is employed to selve equations in a rewriting system
(resp. conditional rewriting system). Many languages have
been developed along this line, e.g. RITE [DP86L), K-Leaf
[EGP86]. They sepresent enhanced Prolog systems in which
a “rewrite” relation is defined over the Herband space. Syn-
tactic restrictions guarantee the confluency of this rewrite
relation so that equational logic can mimic first order fone-
tional programming. In the case of K-Leaf, the Herbrand
gpace is enhanced to include partial termas, thua the lazy
evaluation of functional languages may be modeled.

These endeavours have led to the development of several
very suceessful languages and have significantly enriched the
state of the art of declarative language design, semantics
and implementation. However, we believe that the ben-
efits of this combination are arguable and question how
much is gained by enhancing a first-order logic by weak-
ening & higher-order logic. Moreover, even with only first-
order equational logic added, the inefficiencies of equational
deduction mean that the resulting system iz far from prac-
tical. This approach to language integration results in a
sophisticated theorem prover, which we find unsatisfactory.
We suggest, therefore, some fundamental rethinking on the
purpose of integrating functional and logle languages.

In fact, the conventional assumption that a logic program
defines a logical theary has heen eriticized in many eircum-
stances because: “there is no reference to the models that
the theory is a linguistic device for” [Mes89], A logical the-
ory may have many models, however when we are program-
ming we always have & particular intended model in mind.
Thie alternative school of thought regards a program as a
linguistic description of the intended model; but the model
itzelf is primary. For a Horn clause program, its least Her-
brand model is taken as the intended model, Therefore, if a
program is regarded as a linguistic description of this model,
the canomical denotation of a program is not a first-order

683

theory but a set of relations over the Herbrand space. This
view of logic programming has also been taken by researchers
wizhing to extend Prolog-like systems. Hapiya and Sakurai
[MT84] present a formnal system for logic programming based
on the theory of iterative inductive definitions. A similar ap-
proach is taken by Hallnas and Schroeder- Heister to develop
the framework of General Horn Clause Programming
[AEHKSS]. Paulson and Smith proposed an integrated sys-
tem in which a logic subprogram is regarded as an inductive
definition of relations [PS89].

This definitional view of logic programming suggests the
flexibility to define Horn clauses over arbitrary domains.
Relaticns become constraints over the domain of discourse,
which coincides with the general framework of Constraint
Logic Programming [Smo84]. ln this paper, we take this
idea one step further by using & functional programming
language to define the domain over which relations are de-
fined. A novel definitional constraint programming system
is induced in which functions and relations are used together
to define constraint systems,

3 Constraint Programming

In this section, we present a framework for constraint pro-
gramming which has it origing in the seminal work of Steels
[Ste80]., From the mathematical point of view, constraints
are associated with well-studied domains in which some priv-
ileaged predicates, such as equality and various forms of in-
equalities, are available. Relations formed by applying these
predicates are regarded as constraints. A constraint may be
regarded as a statement of properties of objects; its deno-
tation is the set of objects which satisfy these properties.
Therefore, constraints provide a suceinct finite representa-
tion of possibly Infinite sets of objects. We present & simple
definition of constraint systems to capture these character-
istics.

3.1 Constraint System

Definition 3.1 (Constraint System) A constroint ays-
temn is « fuple < A, V, &, T > where

o A is a set of values called the domain of the system.
o V iz a zet of variables,

o T iz a sef of constraints.

We define an A-valuclion as a mapping V — A, and
VA as the set of all A-valuations, A computable func-
tion V is used lo assign to every constraint ¢ a fi-
nite set V(&) of variables, which are the variables con-
stratned by ¢. Valy denotes the set of all A-valuations.
T iz an interpretation which consists of & solution map-
ping [7, mapping every basic constraint & to [#1' , a
set af A-valvations called the solutions of ¢ and ['[‘I
iz solution closed in the sense that

Ve € [¢]' Yz € V(¢) B(z) = a(z) = 8 € [9]

We now present some examples of constraint systems. The
most familiar constraint system in the context of program-

684

ming languages is perhaps the Herbrand system which is a
congtraint system over finite labelled trees.

Example 3.1.1 (Herbrand System) Let © be a set of
ranked sigratures of function symbols and V' be a set of con-
stant symbols treated as variables. T(E) is the ground term
algelima consisiing of the smailest set of induclively gener-
ated E-terms. A Herbrand system is a constraint system
< T(X), V.8, T > where & consistz of all term equations of
the form by = & for), € T(Z, V), where T(E, V) is the
free term algebra, and [t = 6] = {a | at, = ot} where =
denotes the identity of two terms,

Example 5.1.2 (Herbrand E-System) Lot £,V be as
above and E an equational theory over T(Z, V). Then
T(EWE denotes the quotient term algebra consisting of the
finest X-congruences over T(X) generated by E. The con-
straint system < T(EYE, V8,1 = ir called the Herbrand
£-System where § consists of all term eguations of the form
h =t for fj, € T(E,V) and [t1 = 6]’ = {fa)s |
[ot]e = [at)g]), where [t)g stands for the equivalence class
af tin T(E} and [o)g 1 V = T(E)/E stonds for the cor-
responding equivalence ecloss of ground term subsiifutions
a: ¥ — (L.)

Constraint systems on various term structures can be re-
garded as cases of the following general definition of an al-
gebraic constraint system.

Example 3.1.3 (Algebraic Constraiot System) Let 4
be an algebra equipped with a set of operators & and a set
of predicates 11, Then the algebra is associnted with a con-
straind system Sy : <| A, V, &, > where | 4| is the car
vier of the algebra and evey constraint in & i5 of the form
plen, ..., e,) where every e is an A-ezpression and p € [T
is an neary predicate in the algebra. [ple, ..,e,,]l]" = {a |
A,a k= pley,. .., eq)}. Examples of algebraic constraints are
constrainis over term algebras, constrgints over arithmetic
ezpressions and consiraint syslems in boolean algebra,

Following the idea of associating constraint systems with
algebras, predicate logic can be viewed from the constraint
system perspective.

Example 3.1.4 {Predicate Logic) Suppose © is the first
order signature of symbols, the well-formed ¥-formulz are
constrainds, V(¢ © V are free varfables in ¢ with V' the set
of free (unguandified) variables, A is given by ¢ - structure
(algebra) over which symbols are interpreted. With respect
to a particular interpretation, I can be given as [}’ = {o |
A = d

For any constraint system, the solution of & constraint ¢
can be restricted to a set of variables in e. Given a finite
set of variables W C; V, a valuation with respect to W
becomes a partial mapping defined as follows ;

_] wiz) rew
aw(z) = { L otherwise
The solutions of 2 constraint & with respect to W are defined
s

[#{w = {mw | = € [¢]'}

A constraint ¢ is consistent jn a constraint system iff
[4)" #8. A consistent constraint ¢ € @ is valid iff [¢]' =
VA, We use the word true to denote a valld constraint and
false to denote an inconsistent constraint. Given a set of
constraints, the set inclusion relation of solutions introduces
a preorder over consttaints that reflects the richness of the
information they possess. A constraint dy is a W-refinement
of a constraint ¢a, da <jw du, T[]y C [6:lyy. #135 a

refinement of ¢g, ¢z < ¢y, iff [qh]" € [#2)'. The preorder
introduces an equivalence relation belween constraints. A
constraint ¢ is equivalent to a constraint ¢, denoted ¢ = o'
iff {1} = [éal.

We comsider some fundamental operations over con-
straints.

Definition 3.2 Lei ¢y, ¢u be two constraints. Then their
congunction, ¢y A gy, 15 o constraint with Vidy A gg) =
Vig)UV(a) and [y Adal = [61]7 N [$a]%; the constraint
implication, ¢y — ¢y, 15 a constraint with Vigy = gu) =

Vigr)U V(ga) and Itr — daf" = (VA - [6:]7} U [pa]*.

The definition of binary constraint conjunction can be ex-
tended to the conjunction of a set of constraints. A finite
set of constralnts s called & goal when it is interpreted as
the conjunction of all itz element constraints, A consiraint
implication ¢y — g is always valid whenever [&.]I C [#:F
in which case we say that ¢y entails dy, denoted gy - dy. It
is obvious that ¢y F gy &= oy < &y,

Definition 3.3 [f ¢ iz o constraind and ¢ € V{g), then
the eristentinl gquantification, Je.d, is o constraint with
V(izr.g) = V(d) = {z} and [3z4]" = (e e VA |38 e
I41%, @Ypgy—e = Py)i the negation of ¢, -, is a con-
straint with V¢ = Vg and [-6]" = VA - [¢]'.

Existential quantification provides a means of hiding, hy
projecting away, information about quantified variables. A
constraint system is said to be closed with respect to an
eperator I the constraint obtained by applying the operator
is always in the system.

3.2 Constraint Solving

The computational task of a constraint system i& to solve
constraints. This is a constructive procedure which not only
verifies that the solution set is non-empty, but transforms
it to an equivalent, more informative form, from which so-
lutions are easily derived. Such a form is called a solved
form. As suggested by Smelka in [Smo91], constraint solv-
ing can be modeled by a rewriting system which simplifies
& constraint to its equivalent solved form. Since, in the
programming coniext, we are interested in solving goals,
rewriting is applied to a set {more precisely, multiset) of con-
straints. Therefore, to express constraint solving in terms of
rewriting we use multiset transformation systems.

Definition 3.4 (Constraint Solver) A constraint sim-
plification rule is a multize! fransformation rule 0 — &
where @, ' are multisets of constraints {goals) such that

6T C[G). A constraint solver C is a multiset transfor-
mation system contoining a set of constraint simplification
riles which is solution preserving, ie. for n simplifica-
tion rules of the form G — G} with the zame left hand side
M (up to renaming), we have :

T*
[e1' = Uiy’
im]
We call the relation 5 a one step simplification and —~
a gimplification derivation. A selved form of o goal 7 is a
goal 7' such that G' is @ normal form with respect to the
conslraint solver,

The set SF; of all salved forms of & goal & is complete
iff
Va e [G]. 30" € 5F g such that o € [6']'
For & one step simplification M — M7, it is obvious that
simplification is sound.

Lemma 3.4.1 {Soundness of Simplification) For one
step simplifiention G 5 &', [T C [6]'.

The following proposition is alao straightforward.

Lemma 3.4.2 For any goal & which is net in normal form
and a € [G]’, there exists a one step simplification G 5 G
such that a € [G]'.

To model precisely the idea of simplification and its com-
pleteness, the familiar methodology of term rewriting sys-
tems is adapted. We require a complexity measure of a goal
& with respect to a solution e, | {7, a)|. We say that a
constraint solver iz well-founded iff

Ve € [G] G =" G =((G,a)2I(G,)

For any well-founded solver, a salved form is always reach-
able for a comsistent goal & for a particolar solution a.
Therefore, it is always possible te enumerate a simplifica-
tion derivation such that & —=+" ' with &' in solved form
and a € [6']".

Lemma 3.4.3 (Completeness of Simplification} If =«
consirgint selver O is well-founded, then for every consis-
tent goal G, there is @ sel, SF 5, which s the complete set
of solved forms of .

The well-foundness of a constraint solver does not suggest
that the complete set of solved forms for a goal is finite. [t
would be helplul to consider only finite sets of solved forms.
For this we need the notion of compaciness of constraint
systems.
Definition 3.5 (Compactness) 4 constroint system is
compact iff for every finite set of consiraints & .

GF G = 30; Cf &) such that G F Gy
For any compact constraint system, a sironger completeness
condition holds for any well-founded solver,

Lemma 3.5.1 Let 5 be o compact constraint syslem and ©
be a solver for 5. [fC i well-founded, for any goal &, &' and
Gk G, there are a finite number of derivations G' =" Gl
such that Gf is in solved form and &' F I, GL

685

Thiz lemma shows that, in a compact constraint system,
any information contained by a goal constraint can always
ba processed by a finite amount of computation.

A constraint solver is deterministic when the simplifica-
tiom system is confluent. A simplification rule is determinis-
tic in the solver if no other rule in the system has the same
left hand side. For a well-founded deterministic solver, a
consistent goal has 4 unique solved form. Constraint solv-
ing by a non-deterministic solver can be regarded as a re-
duetion procedure which shmplifies a disjunction of goals by
rewrlting It into an equivalent one. A constraint solver is
terminating Hf there is no infinite simplification derivation
0 = 7 = ... A wellfounded constraint solver is de-
cidable iff any unsatisfiable constraint can be simplified to
false. Thus, a complete constraint sobver is a decision pro-
cedure for the satisfiability of constraints.

8.3 Constraint Programming

Constralnt programming is a decarative programming
paradigm in which the task of programming is to define a
constraint system and the task of computation is to solve
the constraints. Therefore, the declarative semantics of &
constrainl program is given by determining the domain of
discourse and defining the denotation of each constraint as
its solution set. Itz operational semantics is given by the
constraint solver of the system which can be presented as a
rewriting system which must be sound with respect to the
declarative semantics and preferably complete. A sufficient
condition for completeness is well-foundness of the solver,
This notion of constrain! programming is a generalization
of the approach of Steele [Stef0] and Lassez [LM29], Here
the constraint system is assumed to be “built-in" and there
fore, “programming” smply means imposing constraints,
When designing a constraint programming language it Is
essential to develop a systematic way to define constraints
and a generic way to construct & solver for each defined
constraint system. We give two examples of this generalized
definition of constraint programming: Horn Clause Logie
Programming and Equational Logic Programming.
Example 3.5.1 (Horn Clause Logic Programming)
A Horn clayse program I' defines o constraini system <
T(Z), V,@,1 > where T(E) is the ground term alpebra for
the signature T of function symbols (Herbrand space) and
b consists of all positive llerals and is closed under renom-
ing, conjunction and existential quantification. | interprets
constraints (defined predicates) as relations in the leasi Her-
brand model Mr of the program :

[F{tln"':ll}]; = {E: V— T{E” Ml"-ﬂ I: Pl:q'*lﬂrwﬂ‘tu.”

SLO resolution iz o well-founded constraint solver which
simplifies each consistent goal G into o disfunclion of idem-
potent substitution equations: 3X.\/, 5.

This view of Horn clause logle programming js consistent
with its traditional presentation. The major divergence is
that we take the definiticnal view of logic programs. In an-
other words, it is a linguistic specification of the intended
model of the program, the least Herbrand model. This di-
vergence results in some subtle differences in the properties

686

of programs. For example, the completeness condition of
comstraint solving may not hold for all models of a program,
Therefore it s not true that I' 5 ¢ <= W & in the above
examphe. To get this result a completion procedure must be
applied to programs.

Example 3.5.2 (Equational Logic Programming)

An equational program E is a consiroint sysiem for solo-
ing equations in the guotient term algebra which it defines.
A general B-unification procedure is s constroind solver.
Follotring Gallier and Synder’s result [Sny#0), such a proce-
dure exists and ean be represenied as muliise! transformation
spatern. Moreover, il is also well-fonnded, Therefore, it is
a complete solver which simplifies an equational goal o o
(possibly infinile) set of idempotent substitution equations,

These two logic programming systems show two different
ways bo construct constraint systems in terms of logical for-
mulas. A constraint system may be defined by & Horn clause
logic program using recursive definition rules to define con-
straints over a fixed underlying domain. By contrast, in
the case of equational logic programming, the form of con-
straints is fixed as equations over terms. An equational logic
program forms & Herbrand E-system by defining the domain
of discourse along with the interpretation of constraints (i.e.
the equality in the domain). The former approach may be
seen as a “relational extension” of a basic constraint system
comprising the predefined fixed domain of discourse together
with some “built in" constraints. In section 4, a systematic
framework is constructed for such an extension. On the
other hand, an equational logic program can be understood
as defining an abstract data type with equations as con-
straints. Thiz method of defining constraint systems may
be called “domain construetion™ for some fixed constraint
relation. In section 5, we propose a way to use functional
programs Lo define the domain of discourse for solving con-
straints.

These two approaches may be combined to form a pow-
erful constraint programming system in which both the do-
main of discourse and constraint relations are user-definable,
The logic programming scheme [JL87), in which a program
is regarded s a velational extension of the Herbrand E-
constraint system defined by the equational subprogram,
takes this route, although this was not the original semantics
of the scheme. We believe that the constraint programuming
perspective provides a simpler and more intuitive semantic
treatment of the scheme. Moreover, if we instantiate the
underlying constraint system of the general CLP framework
by constraint systems constructed over funetional programs
we have a powerful, general purpose, definitional constraint
programming model which unifies fonctional and logic pro-
gramming. This is the main result derived from our gener-
alized view of constraint programming.

4 Constraint Logic Programming

As mentioned in the previous section, from the definitional
view of logie programming, a constraint system can easily
be integrated into a logic programiming system, The re

sulting constraint logic programming system is a defi
nitional logie system which allows a predefined underlying
constraint system to be extended by defining relations as
new constraints. This formalism, which was first proposed
by Héhfeld and Smolka in [Smo89], is more general than
the proposal of Jaffer and Lassez [JL87], in which CLP is
modelled within the traditional logic programming school.
Many restrictions that are imposed on the underlying con-
straint system in the latter approach, such as the require-
ment that it is effectively axicmatized in first-order theory,
are unnecessary within the definitional framewsark.

Let € 0 A, V. %, [, > be & constraint system closed
under conjunction, renaming and existential quantification.
Given @ signature 7 as a family of user-defined predicates
indexed by their arities, a constraint legic program I ever
€ is a set of constrained defining rules of the form

'p‘_'-_ll"-:fﬁﬂhn-lﬁm

P is an R-atom of form p{z,...,z,) where p € R, is an

n-ary user-defined predicate, ¢ € &, and the B; are atoms.
An interpretation J of T over (' is defined by interpreting

each predicate symbol p € R as & relation pf over A, An
ordering over interpratations is defined by the set inclusion of
the relations. That is, for any interpretations I, f*, J < I’ iff
p' C p'" C A™ for any n-ary predicate p € R,. Thus, the set
af all interpretations forms & complete latbice. With respect
to a given interpretation, I, any R-atom, p(zy,..., 2.}, can
be regarded as a constraint whase solutions are given by

[p(z1,. ... 2)) = {a] (a(z)....,a(z.)) € p7}

The solution set of a conjunction of atoms, a goal, is the
intersection of the solutions of its elements. A defining rule
Py, By, By is valid in an interpretation [iff
[z, 2]’ 2 My L] 0 A, (B

A model of T over ' is an interpretation in which all rules
of the program are valid. The set of all models of & CLP
program is closed under intersection and union, therefore,
the minimal model exists, We take the minimal model as
the intended model of a program. This may be constructed
by the standard ileration procedure which computes the in-
ductive closure of relations generated by the clanses in T,

given as:
h =49

Lisn = Upen pletl

where pit+) defines the denotation of predicate p at the
1 4 1th iteration step ;

P = {(afar), .., a(za)) | a € () Eed™ n () [B2%)

=1 =l
for all p(z1,....2) i~ @1y .65, By vy By € T The se-
quence fg, ly, ..., Jp.. . is a chain in the interpretation lat-
tice. The limit of the chain, fr = U 1., i= the minimal
model of the program [and can be computed as the least
fixed point of the iteration procedure. This is presented as
the following theorem:

Theorem 4.0.1 Let & 1< A, V, 80,1 > be a constraint
systern and ' a constraint logic program over . The se-
quence of interpretations I, represenis a chain in the com-
plete lattice of interpretations of T. The lmit of the choin
is the mintmal model of I' over .

In this least medel semanties of a CLP program the underly-
ing constraint system is extended to anew constraint system
via nser-defined constraints. We call this a relational ex-
tension of a constraint system.

Definition 4.1 (Relational Extension) Lel [be a con-
straint logic program and T be the signature of user-defined
predicates in [, ' constructs the constraint system :

R(C) 1< AV, 8% 7~
as a relational extension of e underlying constraind sys-
tem O = A, V,®,, [> by extending @, fo accommodote
user-defined relations over A. That is, @7 = ¢, Udg where
$x contains all B-atoms and

11 L= 1"
Iz, ...z)1 = {al(a(=n),....a(z)) € p™}

wlere I i the mingmal model of T owver C,

A solver for a relationally extended constraint system
can be constructed by integrating SLID-resolution with the
constraint selver of the underlying constraint svstem to
give constrained SLD-resolution. Constrained SLD-
resolution rewrites a goal of the form & = &, U Gg, where
(¥ 1% a finite subset of atoms in $ and (7, i= a finite subset
of &., to its solved forms. This model can be represented
by the following multiset transformation rules.

Semantic Resolution:
GiOX < Cpu{pla,non U Fe>
GRAXUY LU By, B JUG U 2y 2 TU 2y sy, P |

where WY .plz...5) i~ oo o, By By i85 a
variant of a clanse in a program I

Constraint Simplification: g%%%%ﬁ%
if 3X.0, —, AX.G and —_ iz the simplification
derivation realised by the solver in Lhe underlying sys-
termn.

o - SAXERUE,
Finite Failure; S3p mttc
if 3X.G, —, falsa.

In this model, sernantic resoclution generates a new sel of con-
straints whenever a particular program rule is applied, The
unification component of SLD-resolution is replaced by solv-
ing a set of constraints via the underlying solver. Whenever
it can be established that the set of constraints is unsolvable,
finite failure results.

For example, the following CLP program [Cal87):

InCap ([], 0)

InCap (i:z, e) :—= InCap [z, 1.1% - §)

can be used to compute a series of instalments which will
repay capital borrowed at & 100 interest rate. The first rule
states that there is no need to pay instalments to repay zero
capital. The second rule states that the sequence of N+1 in-
stalments needad to repay capital ¢ consists of an instalment
1 followed by the sequence of V¥ instalments which repay the
capital increased by 10% interest but reduced by the instal-
ment i When we use the program to compute the value

af m required to repay $1000 in the sequence [m, 2m, Fmj,

6eT7

we compute the solved forin of the goal constraint: MmCap
{{m, #m, 3m|, 1000}. One execution sequence is illustrated
belaw, in which -5 denotes a semantic resolution rewrite
Btep:

InCap ([, 2m, 3m], 1000)

—g InCap (z1.1e-i), z=[2m, dm], i=m, c=1000

=g InCap(z'1.1e"-i"}, z=i"12', e'=1.1e-4,
z=[2m, 3m)], i=m, c=1000

= InCop (z'1.1c "), i'=2m,
'=[dm],i=m, ¢'=1100-m

=i fﬂCﬂp{ﬂ”,l.lf“—I‘”j,5:!"=t'”:1”,1,l¢" F
, i'=2m, £'=[3m],i=m,c'=1100-m

— fFI-GIIF f!”.].lﬂn'fnh z:l=n1 £n=3ﬂ’l,l-'=2m|
i=mz'=[3m], ¢'=1100-m, ¢"'=1210-3.1m

—p #"=[],1.1c"-i"=0, i"=3m, i"=2m, i=m,
z'=3m, e'=1100-m, e"=1210-3.1m

=, LI1210-3.1mY=3m

— M=207T+413/641

It

Constrained SLD-resolution i a sound solver for a re-
lationally extended constraint system and, as proved in
[Smof9], it is alse well-founded. Therefore, any consistent
goal can be simplified to a set of solved forms. Let € [C @
be the set of all solved forms for ©. Then it iz easy to show
that ®% |C &, |. Therefore, from the completeness of the
model, for any goal & with Y;u, G as its solved forms,
given a goal o) C; &, containing only basic constraints,
G G o= G GE Moreover, if the underlying con-
straint system is compact, then % F W2, ¢! for some n,
i.e. the model has the stronger completeness of section 3.2,

5 Constraint Functional Programming

Constraint functional programming (CFFP) is characterized
as functional programming, enhanced with the capability
to solve constraints over the value apace defined by a fune-
tional program. An infuitive comstruction of this language
paradigm is presented below.

5.1 Informal CFF

A data type D in a functional program, I', can be assoclated
with a comstraint system Cp. Cp may contain privileged
predicates over [, A CFP system may be formed Lo ex-
tend the constraint solver so that any D-valued expression,
which may involve user-defined functions, can be admitted
in constraints. A D-valued expression must be evaluated to
itz mormal form with respect to I' to enable the constraint
solver to handle that value.

We give a simple example of this paradigm. We assume &
consiraint system over lists in which atomic constraints are
equations asserting identity over finite lists. A unification
algorithm is used as the basic solver for the system. Given
a functional program defiring the function ++ which con-
calemates two lists and the function length which computes
the length of a list:

688

data [alpha] = [] | alpha : [alpha]
functions
++ i [alpha] % [alpha] — [alpha]
length :: |alpha] — Num
[++ ==
Leiy) ++ £ = = (y++z)

length [| = 0
length (z:3) = 1 + length o

An extension to the basic solver may be used to solve the
constraint:

U4+ 12 = [al, a2 ..., an], length] = 10

to compute the first 10 elements of a the list [a1, a2, ..., an].
The solver must apply the function definitions of ++ and
lenglh and must gness appropriate instances of the con-
strained variables. We will show that this procedure itself
may be modelled by some new constraints generated during
rule application,

Solving constraints over a funetional program significantly
enhances the expressive power of functional programs to in-
corparate logic programming features. This idea was cen-
tral to the absolute set abstraction construct which was
originally proposed in [DAPES,DGEY) as a means to invoke
constraint solving and collect solutions. Using the absolute
set abstraction notation, the above constraint may be rep-
resented as the set-valwed expression:

{1 ++ 12 ={al, a2 ..., an], length 11 = 10}

Reddy’s proposal of "Functional Logic Programming” lan-
guages [Reds6] also exploits thiz solving capability in fune-
tional programs. However, his description of functional logic
programming as functional syntax with logic operational se-
mantics fails to capture the essential semantic characteristics
of the paradigm. The constraint programming approach, as
we will show in the following, presents a concise semantical
and operational model for the paradigo.

We assume a functional language that is strongly typed, em-
ploys a polymorphic type system and algebraic data types,
and supports higher-order functions and lazy evaluation.
Examples of such languages are Miranda [Tur85) and Haskell
[Com®0]. To investigate constraint solving we put aside the
statical features of & functional languege such as its type
system, and concentrate om its dynamic semantics. We use
a kernel functional language with recursion equation syntax
for defining functions. We assume variables ranged over by
and y, a special set of functional variables (identifiers)
ranged over by f and g, constructors ranged over by d, con-
stants ranged over by a and b, patterns ranged over by ¢
and & and expressions ranged over by e. A pattern is as-
sumed to be lnear, le. having no repeated variables. Data
tarms comprise only constants, constructors and first-order
vatiables. The following syntax defines this tiny funetional

language:

Program = Deecl in Fep
Deel = fi=g
| Decl; Decl
Eep = z|a|eey| e ope;
| Lf ¢ then e; alae &3
FPattern = z|a|dly,....fb

The language can be regarded as sugared A-calculus and a
program as a A-expression. The program shown above is
an instance of this formalism in which the data statement
introduces a list structure with & nullary constructor [] and
a binary comstroctor :, and functions length and ++ which
are defined by recursion equations.

The semantics of a functional program is given in the stan-
dard way [Sco88). The semantic domain D of the program
is an algebraic CPO which is the minimal solution of the
domain equation :

D=HF +C(D)+D—+D
I} containe the domain B, of basic types (real numbers,
boolean values et. al. lifted by L which denotes unde-
finedness), the domain O(D) for constructed data strue.
tures which consists of partial terms ordered with respect to
the monotonicity of constructors and the domain D — D
of all continuous functions. A subdomain A of C(I) :
A = 8 4 C(A) is distinguished as the domain of data
terms in the language {which is defined by the eq-type of
ML |Mil84]). We use T to denote all complete objects of 4.

For a functional program, the semantic function P[]
computes the value of the program in terms of the func-
tion P[] : Decl — {Var — D} — (Var — D) which
maps function definitions to an environment which asso-
ciates each function name with its denotation. The function
EQl : Ezp — (Var — D) — D maps an expression together
with an environment 5 : Var — [(a D-valuation) to an
element of 1.

5.3 Evaluating Nonground Expressions

Conventional functional programming involves evaluating a
ground expression to its unique mormal form by taking
program as & rewriting system. To superimpose a solving
capability on the functional programming paradigm, we con-
sider first the extension of functional programming to handle
non-ground expresstons. The meaning of a non-ground ex-
pression is a set of values corresponding to every correctly
typed instantiation of its free variables. Narrowing has been
proposed as the operational model for computing all possi-
ble values of a nonground expressions [Red84), In the the-
orem proving comtext, enwmerating narrowing derivations
provides a complete E-unification procedure for equational
theories defined by convergent rewriting systems. This use
of narrowing must be refined for the functional programming
context. Due to the lazyness of functional languages, only
those narrowing derivations whose corresponding reduction
derivations are lazy should be enumerated. This notion of
lazy narrowing is mentioned by Reddy in [Red84]. A lazy
narrowing procedurs, pattern-driven narrowing, is pro-
posed by Darlington and Guo in [DGE90] for evaluating ab-
solute set abstractions. A similar procedure wes indepen-

dently developed by You for constructor based equational
programuouing systems [You88]. Here we present a lazy nar-
rowing model following the constraint solving approach. The
maodel is central to the CFP paradigm.

Consider reducing a non-ground expression of form fe by a
defining rule ft = &'. The environment n should be enhanced
to satisfy E[e]g = £[¢]n, ie. s a solution of the rewriting
constraint e = ¢t. This equality is the so called semantic
aqueality since it is determined by the identity of denotations
of components, It is not even semidecidable since it involves
verifying the equivalence of partial values, However, since
in our problem ¢ is always a linear pattern, a somidecidable
solver exists.

Definition 5.1 The zolved form of a rewrifing constraint
e=tisoftheform {m=h,... o=t =8, =
em} where the m € We) are oulput variobles and the
g € V() are inpu! variables. The equation set & : {zm =
baoo By o= B} ois an oultpul substitulion equation and
el = €pernytim = B} 18 an inpul substilution equation.
The substitutions § and 8 corresponding to § and § are called
oulputl substitutions and fnput substitutions respectively.

The constraiut salver presented below simplifies & rewriting
constraint to its solved form. Solving a rewriting constraint
realises the bidireclional parameter passing mechanism for
narrowing an outmaost function application. The algorithm
is called pattern-fitting [DGR9].

Substitution: {z=r}U G = {z=r}up?
where g = {£ — r}.

Decompesition: {de = di} U & = {e=t}ju &

Removing: {a =a} UG = &

Failure: {dyey = dyep} U 7 = falsa
if dy # d.
Constrained Narrowing: {fe = s} UG = {r = ds,e = tJu

where ff=r el

Lemma 5.1.1 The pattern-fitting algorithm is o complete
solver for simplifying o rewriting constroini to ils solved
form.

For any rewriting comstraint e = f, a solved form corre-
sponds to & pattern-driven narrowing step fe ~g e’ with
reapect to & defining rule fi = & where 6 is the output
substitution and # is the input substitution associated with
the solved form. A pattern-driven narrowing derivation is
defined in & standard way by composing the output sub.
stitutions of each of its component steps. Note that a one
gtep pattern-driven narrowing derivation contains many nar-
rowing steps due to the need to solve rewriting constraints.
Each narrowing step is demand driven and affects an onter-
most function applieation, Therefore, we have the following
theorem:

Theorem 5.1.1 For any erpression ¢ and lerm [if £ ~ag
i, then the corresponding reduciion derivation §e —* 1 is al-
ways ¢ lazy derivation. Juch o reduction derfnation is called

689

a stondard reduction in [HueS6]. Enumersting patiern-
driven derfvations is optimal and complete in the sense that
any other derivation is subsumed by a pattern-driven deriva-
tiorn.,

We conclude that pattern-driven narrowing provides a re
alization of lazy narrowing. Lasy narrowing extends func-
tional programming with the capability to find for which
values of variables in a nonground expression the expression
evaluates to a given value. Thus, it introduces the essen-
tial solving feature to functional languages. However, on its
own it is not encugh because “built in" predicates may ex-
ist in functional languages, for example equality and various
boolean valued primitive functions, for which a dedicated
congtraint solver is required. If we integrate lazy narrow-
ing with a constraint solver over data terms, the solver is
then extended to allow general expressions containing user-
defined functions. Therefore, querying a functional program
becomes possible. This enhanced functional programming
framework may be formalized as the paradigm of constraint
functional programming.

5.4 Formalizing CFP

We assuine & constralnt system Gr : (T, V, ., 1) over first-
order values, where V is the set of variables over first-arder
types and @, are constraints consisting of privileged predi-
cates T, Computing the truth value of a ground relation of
data terms with respect to 2 is decidable. Thus, a predicate
w in T2 can always correspond to a boolean valued function
£, in the language. A functional program may be applied to
Cr. This introduces a new syntactic category in the func-
tional program for constraints :

Constraint = w(ey,...,es) | Constraini, Constraint
where w(g,...
slrainls.

Constraints in O are now enriched to admit general ex-
pressions defined by the functional program. A constraint
system is admissible if it is closed under negation. In the
following, we assume the underlying constraint system is
admissable. A CFFP program is an extension of a functional
program with the syntasx:

I} € b, We use ¢ Lo range over con-

Program = Decline| Decline

The semantic function O[] + Constraint — P Env) maps
comstraints to their solution sets:

Cleny il elalnCle]
Chelen, ... e]] {"]|u'b"{¢.} | T Fw(Ele]n,....E[e]m)}

This semantics reveals constraint solving over a functional
language as “computing the environments® in which expres-
sions, when evaluated, satisfy constraints,

The constraint solving mechanism is formed by integrat-
ing the solver of Cr with lazy narrowing, thos enhancing
Cr to handle constraints in the more general universe con-
strocted by a functional program. A scheme for such an
integration is presented below. We use the pair (&, C) to
represent a goal & U € in which ' contains rewriting con-
straints and & contains constraints from the underlying con-
straint solver &.

6%0

Constrained Marrowing: [E,;E;{f'.';“__ -

where il =rel.
o,

Simplification 1:

il & = (' where = is a simplification derivation com-
puted by the under lying solver.

(G0
4,0

, ! : N . .
if © & ¢ where &5 stands for a simplification deriva-
tion computed by the solver of rewriting constraints,

4 &,
Faillure: e

if G = false or C 2 false
Substitution 1: R
where p= {z e+ ¢}l and s € WG} and CU{z = e} is
in solved form.
Substitution 2: i ""'":‘:i'?]
where p = {# — £} and &'U{z = 1} Is in solved form.

Simplification 2:

O e=true

Poditive Accumulating: mn

fw(z) e b,

Megative Accumulating: O Lestale

=l]

ifw{z) & ®. and the constraint system iz admissable.

An initfal goal takes the form (G, {}). Itz solved form is of
the form (G, €] where & is in solved form with respect
to the underlying solver and V() & V() and C ate solved
form rewriting constraints.

The soundness of lazy narrowing guarantees that the
eubanced solver is sound. However, it is not in general
complete becanse a functional program may define some
boolean-valued functions which have no corresponding con-
straints in %, This preblem is similar to that of solv-
ing “hard constraints™ in general constraint programming.
Some ways exist to resclve this problam such as the “waiting-
resmmning” approach in which the solving of 2 hard constraint
is delayed wntil its wariables are sofficiently instantiated
[JL8T], or by defining special simplification rules for such
constraints. However, for a program in which all boolean-
valued functions are consistent with the underlying con-
slraint ayatem, the scheme provides a complete enhanced
salver.

The scheme provides a generic model to enhance a con-
straint system to selve constraints in functional langnages.
In [Pul90], Pull nses nnification on data terms as the un-
derlying solver and combines it with lazy narrowing to
solve equational constraints in lazy funetional langnages, In
[HOGMRADL), a more general constraint system over data
terms is adopted in which disunification is also exploited to
deal with negative equational constraints. This modal can
be regarded as an instantiation of the scheme by providing
unification and disunification as the “built-in® solvars,

CTP represents a constraint programming system of the
“domain construction” approach of section 3.3, This means
that constrainls appear only as computational goals; it is not
possible to define new constraints in the system, Howewver,
the framework significantly enhances the expressive power
of both functional programs and the basic constraint sys-
temn. Moreover, since a CFP program provides a constraint
system in which defined functions hehave as operators in

some algebra, it is perfectly reasonable to define relations
over the system following the philosophy of general con-
straint logic programming. Therefore, CFP is a “building
block™ for deriving a fully integrated Definitional Con-
straint Programming system in which both constrainta
and the domain of discourse are user-definable.

6 Definitional Constraint Program-
ming

We are now in a position to present a unified definitional
constraint programming (IMCF) framework. A DCP pro-
gram defines a constraint svstem by defining its domain of
discourse and constraints over this domain., As discussed
ahove, CFP and CLFP exhibit, respectively, the power to de-
fine domains, and the power to define constraints, Therefore
we would expect the unification of these two paradigms to
result in & full definitional constraint programming system.

We start by superimpating a Tunctional program onto
a privileged constraint system. As shown in the previous
section, the functional program defining functions +<4 and
length can be queried to compute the initial segment of a
given list. A further abstraciion is possible if we take this
CFT enriched constraint syslem as the underlying constraint
system for a CLP language. Thus, CFP queries can be used
to define relations as new constraints. For example we can
define the relation frond:

Jront (n, LUy = 1 44 12 =1 length I =n

to compute the initial segment with leagth n of an input list
{. This systematic integration of CFP and CLP results in
a definitional constraint programming system and therefore,
can be expressed by the formula DCP = CLP(CFP).

It is straightforward to construct the semantic model of a
DCP program. The semantics for its functional component
are traditional functional language semantics. The intended
moded of the relational component is its least model. This
may be constrocted by computing all ground atoms gener-
ated by the program using the *bottom wp” iterative proce-
ilnre presented in theorem 4.0.1 and taking the functionally
enhanced constraint system as the underlying constraint sys-
temn. In terms of the semantic Tunctions defined above the
denotation of a defined predicate p in a program ' can be
computed by snumerating the indoctive elosure of [as fol-
lovws ¢

o= 0
B = {efa...,5) | € N, Clel NN, D51

for each p(zy,...,%a) := €10 €0, Byy... B € T. [B])
maps B to all solutions of B under the interpretation J for

the predicates in §. That is :
irler, o)l = {n| (Eleskns- -, Elenln) € p'

Compared with other functional logic svstems, this general
notion of constraint satisfaction permits us, not only to de-
fine equational constralnts over finite data terms, but alsa to
introdure more general domain specific constraints. Maore-
over, partial objects as introduced by lazy functional pro-
gramming are admissible for constraint solving in the system

as approximations of complete ohjects. This gives uniform
support for laginess in & fully integrated functional logic pro-
Eramming system,

The computational model of the DCP paradigm is simply
the instantiation of the underlying constraint solver in con-
strained SLD-resolution to the CFP solver. Soundness and
completeness are a direct result of the properties of these
LW com ponents.

Clearly then, DCP represents a supersystem of both these
paradigms. Both the CLF faCap program and the CFP
query which computes the initial segment of a st are valid
DCF programs and queries, Moreover, the expressive power
of each of these individual paradigms is enhanced in the
DOCP framework. We will demonstrate this with ceference
Lo some programming exarmples,

The “built-in" solver manipulates only first-order objects.
In any correctly-typed DCP program, a Tanction-typed varl-
able will never become a constrained variable. Thus, higher-
order functional programming features safely inherit their
intended use in functional computation without introducing
computability problems. The following examples illustrate
some of the attractive programming features of this rich lan-
guage paradigm,

The quicksort algorithm is defined below as a relation
which uses difference lists (which appear as pairs of lists
{z, y}) to perform list concatenation in constant time. The
partitioning of the input list is specified naturally as a func-
tion, while the ardering function is passed as an argument
to the quicksort relation. Within the semantics of DOP,
such a functional parameter can be treated as special con-
stant in relation definitions. A primitive function apply is as-
sumed which is responsible for the application of such func-
tion names to arguments.

functions
pariition : (alpha — alpha — boolean) » alphe » |alpha]
— ([alpha], [alpha])
relations
quicksart : (alpha — alpha — loclean) = [alpha)
% ([alpha]|alpha])
portifion (f,n,m 1} =if f (n, m)
then (m : 4, [2) else ({1, m : (2]
where (I, 12) = partition {f, n, [)
partition (f, n, [1) = ([, [})
guicksort {fin: § (2, 9)) -
parlition {f, n, I) = (11, 12),
quicksort ([, 11, (2, n : z)), quicksort ([, 12, (z, v])
quicksort (f,], (z, =))

The relation perme below shows an interesting and highly
declarative way of specifying the permutations problem in
termes of constrainls over applications of the list concatena-
tion function ++.

relations

perms @ [alpha] % [alpha]
perms {a L, (U +4 (a:12)) = (1] +4+12) = perms |

The final example shows how the recursive control constriuets
af higher-order functions may be nsed Lo solve problems in

691

the relational component of a DCFP langnage, We use a
reduce function over lists, togather with the “back substitu-
tion” technique familiar in logic programming, to find the
minimal value in & list and propagate thiz value to all cells
of the list. This iz shown via the relation propegatemin be-
low, which wses the standard list reduce function to find the
minimum value, g, in the input list and construet a list, i,
which is isomorphic to the input lst, in which each element
i5 a logical variable z

relations propagatemin @ [Int] = [Int]
prapogatermin 1 I —
reduce (f = [(Mazfnt, nil)) = (0,). 2= v
where f z n (m, [2) = (min (n, m), 2 : 12)

These examples show thal es well as being a systematic and
uniform integration of constraint, logic and functional pro-
gramming with & sound semantics, the DCP paradigm dis-
plays a significant enhancement of programming expressive
power over other integrated language systems. We believe
that this pleasing cuteome is a direct result of our strenuous
effort to identify clearly the essential characteristics of the
component language paradigms and to preserve them faith-
fully in the DCP language construction. We have defined a
concrete DCP language, Falcon [GPO1). Many Faleon pro-
gramming examples appear in {DGP91].

T Future Work

A very promising area of luture research it the use of DCP
as the foundation for studying declarative parallel program-
ming. The idea is quite simple. IF we keep strictly to the
functional computational model for the functional sublan-
puage of & DCP language, synchronization between fume-
tional computation and constraint solving over logic vari-
ables becomes possible, Within this concurrent DCP {rame-
wark, both the legical and the functional sublanguages coop-
arate to construct objects, The logical component approx-
imates objects by imposing constraintz and the functional
component constructs ob jects explicitly, At sach step of the
construction, the functional part asks for more information
and continues the construction if and when that information
is available. Otherwise, it suspendsz and waits until other
concurrently execnting agents provide the required informa-
tiom.,

This behaviour is an bmportant generalization of the tradi
tional loeal propagation model for constraint-based com-
putation [Stedl]. The synchronization mechanism for fune-
tional computation obviously follows the data flow school,
but the wse of constraint computation to enhance incremen-
tally the information of logical variables provides a very at-
tractive general data flow model, ie. bi-directional data
flaw. This idea originated from the data flow language fd-
Nouvegu [NPASG)] in which an array of logical variables is a
special structure for synchronising functional computation
and constraint solving. This feature is generalised by the
concurrent DCP model as the basic principle of program-
ming. Concurrent DCP may be understood as a further de-
velopment of the concurrent constraint programming frame-
work proposed by Saraswat et. al. [SR90] by exploiting the

692

elegant comcurrent cooperation between functional and logic
computation.

Since computation in its functional sublangaupe is deter-
ministic, we would expect the efficiency of the system to he
much better than a logic programming system, Moreover,
since Lhe funclional component provides a powerful synchroe-
nization mechanism for deduction, with such a “contral®
mechanism the overall efficiency of the paradigm is promis-
ing. This idea of exploiting deterministic computation in a
non-deterministic system by constraint propagation is also
central to the Andorra model [3.H90] which has been widely
accepted recently in the logic programming community. The
development of concurrent DOP has led to a very interest-
ing convergence of ressarch on language integration, con-
slraint programming and declarative parallel programming
in [GF91).

8 Conclusion

Thiz paper set oot to provide an answer to the question of
how and why we should integrate functional and Ingic pro-
gramming languages. We believe that this should be done
not only with the goal of building a more powerful program
ming system but also aiming at diminishing the drawbacks
of the individual language paradigms. An integrated sys-
tem should not only inkerent the features of its components
but also, and equally importantly, it should exhibit new dis-
tinguishing features as & result of their combination. We
have developed a methodology for integration which demon-
strates how the essential relational and functional features
may be preserved, and have explored the new programming
features which arise. The main idea undarpinning this work
comes from clarification of the intended semantics of logic
and functional languages which motivated the insight to use
constraints as the glue for their integration. This led us to
develop the new language paradigm of definitional constraint
programming. We belisve that the declarative constraint
programming model is & promising language paradigm for
the design of future programming languages.

9 Acknowledgements

We are indebted first and foremost to Sophia Drossopoulou
and Ross Paterson, our two colleagues on the Phoenix
preject at Imperial College, for many valuable discussions.
We also thank our other colleague on the Phoenix project
at Nijmegen University and at GMD Kahlsrahe, particu-
larly Maria Fereira for her cooperation and significant con-
tribution to the recent work on concurrest DOP, and Hen-
drick Lock for his enlightening discussions on the philoso-
phy of language integration. Many thanks are due to Dr,
Hassan Ait-Kaci, Prof. J-L Lassez, Dr. JI. Jaffer and Dr.,
Meseguer for their helpful insights and to all the people in
the Advanced Languages and Architectures Section at Tmpe-
rial College who provide » stimulating working environment.
This work was carried out under the Evropean Commmnity
ESPRIT funded Basic Research Action 3147 (Phoenix).
References

[AEHKSY]

[Cal87]

[Camdn]

[DAPES]

[DG83]

[DG90]

[DGPoI]

[DO38]

[DPeg]

[EG P&d]

{Friss]

[GFo1]

[GLDDa0

IGM&4]

M. Arcmzson, L-H Eriksson, L. Hallnas, and
P. Kreuger. A Survey of GCLA: A Definitional Ap-
proach to Logic Programming. In Proc. of the In.
ternafional Workshop on Extensions of Logie Pro-
gramming, volume 475 of Lecture Noles in Com-
puler Science, Springer Verlag. Springer, 1089,

A, Colmeraer. Opening the Proleg 11 universe.
Byle, July, 1987.

Haskell Committee. Haskell: A non-strict, purely
functional language, Technical report, Depl. of
Computer Science, Yale University, April 19590,

J. Darlingtom, Field. AJ., and H. Pull. The
unification of funeticnal and logic lanpuages. In
D. DeCGrent and G. Lindstrom, editors, Logic Pro-
gramming, pages 37=70. Prentice-Hall, Englewocd
Clifia, New Jersey, 1986,

I. Darlington and ¥.K. Guo. Narrowing and Uni-
fication in Functional Programming. In Pree. of
RTA 88, pages 202-510, 1980,

J. Darlington and Y. Gua. Constraint sgquational
deduction. Technical report, Dept. of Computing,
Imperial Collega, Mareh 1990, will be presented in
CTRS" 50,

I. Datlington, Y. K. Guo, and H. Pull. A new per-
spective on integrating functional and logic lan-
guages. Technical repart, Dept. of Computing, Im-
perial College, December 1991,

M. Dershowite and M. Okada. Conditional equa-
tional programming and the theory of conditional
termt rewriting, In Proe. of the FGCS 88, ed. by
TCaOT, 1988,

K. Dershowity and VA, Plaisted. Equaticnal pro-
gramming. Machine Mnielligence (Mitchie, Hayes
and Rickards, eds.), 1086,

2. Moiso B, Giovannetti, 2, Lewi
and C. Palmidessi. Kernel Leal: An experimental
logic plus functional language - its syntax, sernan-
tics and computational model, ESPRIT Froject
415, Second Year Report, 1986,

Laurent Fribourg, SLOG: A logie programming
language interpreter based on clawsal superposi-
tion and rewriting. In Proceeding of the 2nd JEEE
Jymposinm on Logic Programming, Feston, 1983,

Y. K. Guo and M. Fereira. Constraints, Functions
and Coneurrency. Technical report, Dept of Com-
puting, Imperial College, Sept. 1091, Working Re-
search Notes.

Y. Guo, H. Lock, J. Darlingtan, and I Dietrich, A
elaagification for the integration of fonctional and
legic languages. Technical report, Dept. of Come-
puting, Itaperial College and GMD Forchungsstelle
an der Universitat Karlsruhe, March 1990, De-
liverahle for the ESPRIT Basic Research Action
No.3l47,

Joseph A, Goguen and Jose Meseguer. Equal-
ity, types, modules, and (why not?) generics for
logie programming. Jewrnal of Legic Program-
ming, 2:179-210, 1934,

[GMET]

[GPa1]

[Huese]

[Hul80|

[JCGMRASI)

[IL86)

[JL87]

[LMES]

[Mesgg]

[emilad)

[MT34]

[NPASSE]

[PS89]

[Pulag]

[Reda4]

[Fedds]

Joseph Goguen and Jose Meseguer. Models and
equality for logical programming. Tn Proe, of TAP-
SOFT 87, volurne 250 of Lecture Noles in Com-
puler Science, Springer Verlag. Springer, 1B87.

Y.K. Guo and H. Pull. Faleon: Functional And
Logic language with CONonstraints-language def-
inition. Technical report, Dept, of Computing, Tm-
perial College, February 1991,

3. Huet. Formal structure for computation and
deduction. Technical report, Dept. off Computer
Science, Carnegie-Mellon University, May 1886

Jean-Marie Hullot. Canonical forms and umnifica-
tion. In Stk Conf on Aufomaled Deduction. LNCS
87, 19810,

M.T. Hortala-Gonzales] Carlog Gonzalez-Morena
and Mario Rodrigues-Artalgjo. A Functional Logic
Language with Higher Order Logic Varliables.
Technical Report, Dpto. de Informatics y Auto-
matiea UCM, 1991,

Joxan Jaffar and Jean-Louis Lassez, Logical pro-
gramming scheme. In 0. DeCroot and G, Lind-
gtrom, editors, Logic Programming, pages 441-467.
Prentice-Hall, Englewood Cliffs, New Jersey, 1986,

Joxan Jaffar and Jean-Louis Lassez. Consiraint
logic programming. Tn Pred. of POPL 87, pages
111-119, 1987,

J=L. Lassez and K. McAloon. A constraint sequent
caleulus. Technical report, IBM T.J. Watson Re-
search Center, 1888,

Jose Meseguer. General logics. Technical Report
SRI-CSL-80-5, SR International, March 1989,

Fobin Milner. A proposal for Standard ML. In
ACM Cenfersnce on Lisp and Functional Program-
manyg, 1954,

M.Hagiya and T.Sakurai. Foundation of Logic
Programming Based on Indoctive Definition. New
Feneralion Computing, 2(1), 1984,

K. Nikhil, K. Pingali, and Arvind. 1d nouvesu.
Technical report, M.1.T. Laboratory for Computer
Science, 1986, C5G Memo 265

L.C. Paalson and AW, Smith. Logic Program-
ming, Funetional Programming and Inductive Def-
initions. In Prec. of the Inlernaliona! Workshop on
Erlensions of Logic Programming, velume 475 of
Lecture Noles in Computer Science, Springer Ver-
lag. Springer, 1585,

Helen M. Pull. Egwation Sclving in Lezy Func-
lional Langunoges. PhD thesis, Dept. of Com-
puting, Imperial College, University of Loadon,
November 1990,

Uday 5. Reddy. Narrowing As the Operational Se-
mantics of Functional Languages. In Proe. of In-
tern. Symp. Logic Prog. IEEE", IEEE, 1984,

Uday 5. Reddy. Functional Logic Languages, Part
1. In J.H. Fasel and E.M. Keller, editors, Peceed-
ings of @ Workshop on Croph Reduclion, Senia
Fee, mumber 279 in Lecture Notes in Computer Sei-
ence, Springer Verlag, pages 401425, 1986,

(B

[5. a0

[SmoEEII

[Smefl]

[Smyan]

ISRO0]

{Seedn]

[Turss)]

[Yous$]

[Vukas)

693

Dana Scott. Semantic domains and denotational
semantics. Lecture Motes of the International Sum-
mier Schoal on Logic, Algebra and Computation,
Marktoberdorf, 1989, to be published in LNCS se-
ries by Springer Verlag,

S.Haridi. A logic programming language based on
andorra model. In New eneration Compuling.

18980.

Gert Smolka. Logic Programming over Polymor-
phically Order-Soried Types. FPhD thesis, Vom
Fachbereich Informatiy der Universitat Taiser
[antern, May 1089,

Gert Smolka. Residoation and Guarded Rules for
Constraint Logic Programming. Research Report
RR-01-13 DFKI, 1901,

W. Snyder. The Theory of Generol Unification.
Birkhauser, Boston, 1990,

V.A. Saraswaet and M. Rinard, Concurrent Con-
straint Programming. In Proc. i7h Annual ACMH
Symp. on Principles of Programming Longuages.
ACM, 1990, 1990,

Gi.L. Stesle. The Definition and fmplementation
of a Compuicr Programming Longuage Based on
Constrainfs, FhD thesis, M1.T. A-TR 595, 1980,

David A. Turner. Miranda: A non-strict language
with polymorphic types, In Conference on Func-
tional Pregromming Longuages and Computer Ar
chitecture, LNCS 201, pages 1-16, 1985,

Jie-Hugei You. Outer Narrowing for Equational
Theories Based on Construckors. In Timo Lep-
istd and Arto Salomaa, editors, 15th Imi. Colle-
gium on Awfomata, Longuages and Programming,
LIROCS 317, pages T27-T41, 1988,

K. Yukawa. Applicative logie programming. Tech-
nical Report LP-5, Logic programming Labora-
tory, June 1988

