PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © [COT, 1992

674

MLOG: A STRONGLY TYPED CONFLUENT FUNCTIONAL LANGUAGE
WITH LOGICAL VARIABLES

Vincent Poirries®

Université de Reims
INRIA-Ecole Normale Supérieure PARIS, FRANCE

Abstract

A new programming language called MLOG is intro-
duced. MLOG is a conservative extension of ML with
logical varizbles. To validate our concepts, a compiler
named CAML Light FLUQ was implemented. Numer-
ous examples are presented to illustrate the possibilities
of MLOG. The pattern-matching of ML is kept for A-
calculus bindings and an unification primitive is intro-
duced for the logical variables bindings. A suspension
mechanism allows cohabitation of pattern-matching and
logical varlables. Though the evaluation strategy for
the application is fixed, the order for evaluation of the
parts of pairs and application remains free. MLOG pro-
grams can be eveluated in parallel with the same result
abtained irrespective of the particular order of evalua-
tiotr. This is guaranteed by the Church Rosser prop-
erty observed by the evaluation rules. As a corollary,
a strict A-calculus with explicit substitutions on named
variables is shown to be confluent. A completely formal
operational semantics of MLOG is given in this paper.

1 Introduction

Many atternpts have been made at integrating fune-
tional and logical toole in the same language. It ac-
tually seems worthwile te combine the strengths of the
two paradigms, allowing the programmer to chocee the
most appropriate tool to resolve his problem. The ap-
proach we have followed is to add “logical” tools to a
well-known strongly typed functional language: ML, To
validate our ideas and to demonstrate that MLOG is a
realistic proposal, we have implemented a compiler for
MLOG named "CAML Light FLUO". It is an extension
of the CAML Light system of X Leroy[Leroy 90]. Log-
izal variables and unification serve two goals in logical
languages: to hanedle partially defined values, and to
provide a resolution mechanism. The implementation
of logical variables and unification is a required step to

*Projet Formel BP 105 Domaine de Volucean
7815} Recquencourt Cedex | FRANCE.
peirriszdnerganz . iaria.fx

implement a resolution mechanism, so we bypass that
second goal and focus on the fiest one. MLOG is an
extension of ML with built-in logical variables instan-
tiable once, and unification. We allow a fruitful cohab-
itation of logical variables and ML pattern matching
by introducing a suspension mechanism, thus when an
application cannot be evaluated due to a lack of infor-
mation, the application is suspended. In the designing
of MLOG, we strive to obtain & conservative exfension
of ML. Pure ML programs are not penalized by the
extension. This result is obtained by limiting the do-
main of logical variables and suspensions to specified
logical types. Moreover, MLOG inherits from ML a
strong system of types and a safety property for the ex-
ecution of well-typed programs. Thus the programmer
does not waste energy in checking types. In this arti-
cle, we trace the execution of programs that illustrate
that synchronisation algorithms, demand driven compu-
tation, algorithms wsing petentially infinite data strue-
tures or partially instantiated values are easily written
in MLOG. Then we focus on the confluence property.
In MLOG, the strategy for the evaluation of an applica-
tion is strict evaluation: i.e. we impose the evaluation
of the argument before reducing the application. Never-
theless, some freedom remains in the order of evaluation
of a term: both parts of an application or of a pair for
example, Then MLOG is independent of the implemen-
tation cholees and it can be implemented on a parallel
machine. As we fix the strategy for the evaluation of
the applications, we can name variables without risking
clashes. A complete operational semantics is given in
appendix. A subset limited to the functional part of
these rules is a strict A-calculus with explicit substitu-
tions and named variables that verify the Church Rosser
property. That calculus is & very slmple formalism and
as it is confluent, it is a good candidate to deseribe any
implementation of strict A-calculus, even a parallel one.

2 MLOG syntax and examples

We describe here the added syntax to ML. As MLOG is
an extension of ML, all progrems of ML are programs of

MLOG. For clearness, we limit ourselves to a mini-ML.
All examples are produced by a session of our system
CAML Light FLUQ. Note that # is the prompt and ;;
the terminator of our system.

2.1 Syntax

The language we consider is A-calculus with pattern-
matching, concrete types (either built-in, as int or
string, or declared by the user), constructors, the let
construct and the conditional. We first define the set
P of programs of MLOG. We assume the existence of
a countable set Var of term variables, with typical ele-
ments z,y, and a disjoint countable set €' of construc-
tors, with typical elements c. Some constructors are
predefined: integers, strings, booleans {true, false) and
£), the element of type unit. In the following, i ranges
over integers and s over strings. The syntax of patterns,
with typical element p, is:

pr=z|e| (Pry...aPn) | P

As in ML, we limit ourselves to linear patterns. The
syntax of programs, with typical elernents a, b, is:

n::=m[c|a&][m,,..,an}ﬂeim=a.:'nia[a;b
(Junctionpy — a1 | .- | px = @n) | unde | unif

a: b is the ML notation for a sequence, it means evaluate
a then evaluate b and return the value of b. The Iast two
constructs are specific to MLOG: undef is a generator
of fresh logical variables; unif is the unification primi-
tive. let_var u im ... is syntectic sugar for let u
= undef in

2.2 Types

In MLOG, the programmer has to declare specially the
types that may contain undefined objects (that is, log-
ical variables and suspensions). The notion of logical
type, is introduced. We assume given a countable set of
type variables TVar, with typical elements ‘o, ‘b, a dis-
joint countable set of variables over logical types LTV ar
with typical elements ‘a?, ‘67 and two countable sets af
type constructors with typical elements ident and lident.
The sets of logical types £, with typical element 7, 2nd
types T (typical element #;) are recursively defined by:

= 'a? | {t;] lident

and

= 1; | bool | int | string |unit | #; — t; [tixt; |
[ti] ident

Note that £ is a strict subset of T. Expressions to
declare new type are :

type ['a,...,'klident = ¢ [of ;][] ... |¢" [of &]] |
type logic ['a,...,’k] lident = ¢ [of][} ... |e" [of ;]

675

where [] surround opticnal expressions. A logical type
is declared by the new key-word: type logic. The
type void below has a unique value void and logical
variables of type void may be declared. The type void
is isomorphic to the type unit except that no logical
variable can be declared in unit. A wvalue of the type
Bool below is True, False, or a free logical variable
that will possibly be instantiated later to either True or
False.

#type logic void = weid;;

Type void defined.

#type logic Beol = True | False;;
Type Bool defined.

The fallowing rules govern type vatiable instantiations:
(1) *a may be instantiated by any type (including b7
(2) *a? may be instantiated by any logical type; (3) *a?
may not be instantiated by a non logical type.

We write “a : ;" the program a of type ¢ Thus,
the set of MLOG programs is in fact the subset of the
well-typed programs Pr of P defined by the familiar
ML type system. We just have to specify that : (1} un-
def : ‘o (2) unif : 'a —' @ -+ veid. Fortunately, as far
as types are concerned, logical variables and assipnable
constructs are quite close, we have adapted to logical
variables previous work done for typing assignable ob-
jects in ML. We have directly applied the idea of Pierre
Weis and Xavier Leroy [LeroyWeis 91], and, using their
notion of cautious generalization, we get an extension of
the ML type system to logical variables that is sound:

Theorem 1 No evaluation of o well-iyped program can
leads to a run-fime type error.

Thus CAML Light Fluo bas a type-checker that infers
and checks the types of programs.

2.3 Examples

We give below very simple examples to illustrate Lhe
semantics of unification and logical variables in MLOG.
First logical variables are instantiable once, when the
unification fails, the exception Unify is raised:

#let (un:Bool) = umdef;;

Value w : Bool u = 7

#unif uw True: unif u False;;

= : woid Uncaught exception: Unify
#a;;

= : Bool - = Trus

CAML Light FLUO prints "7" for a free logical vari-
able, Rational trees are allowed; unif does not perform
any occur-check. Moreover, unif does not Joop when
unifying rational trees. The type 'a stream below im-
plements the potentially infinite lists,

676

#itype logic ‘a stream = Nil [5t of 'a * 'a stream;;
Type stream defined.

filet (uw:int stream) = undef;;

Value u : int strea;n u = 7

fanif u (St(1,udd;u;;

= : int stream

- =8t (1, 5% (3, 5t (1, 5t (1,Interrupted.

The printing of u was Interrapted by a system break.
At that point we can use classical technics used in the
logical languages, see for example in the appendix the
classical functional quicksort program, except that dif-
ference lists are used instead of lists to improve the con-
catenation of sorted sublists.

2.4 BSuspensions: an intuitive semantics

Consider first the example below:

#let neg = function True -> False |False -> True;;
Value neg : Bool =-> Bool

flet b,exp = let_var u in {u, meg u);;

Value b : Bool Value axp : Bool b =7 exp = ...

b is a new free logical variable of type Bool. The ap-
plication cannot match w with True or False: u is free.
3o what is the meaning of exp? The answer is: the
application neg w is suspended. Thus, exp is & suspen-
sion of type Booll., A suspension is a first class citizen
in MLCHE, Tt may be handled in datz stractures, and
used in ether expressions.

#let exp’ = onif exp False;;
Value exp’ : wvoid exp’ =

Simce exp is a suspension, MLOG cannet perform the
unification ufexp with False. Therefore this unification
is also suspended?. Let us now instantiate b with True,
and leck at exp and exp’.

#unif b True; exp,exp’;;
Valuas = : Bool = woid =: (False,void)

We have to clarify when & suspension is awakened.
Awakening a suspension could be delayed until it is ac-
tually neaded. We must define when such &n evaluation
is needed :

#let {a,b,e) = let_var a,b in

(a,b,{(function True =>(unif a True)lb);;
Velue & ; Bool Value b : Bool Value e: void
a=7? b=7 e= ...

e is suspended waiting for the instantiation of b,

funif b True;;
Value - : void - = veoid

‘Note that CAMI, Light FLUQ prints suspensions as *...",
*That is why the-kype of the result of uni# has to be a ID.EH:EJ.
{ype. We do not want to have suspension in a non logical type.

As b iz instantiated, e can be awakened. If we choose
to wake up a suspension only if its value is needed, =
remains suspended and then a remains free. If the value
of 2 is needed, nothing indicates that the evaluation of
e will instantizte a. This motivates our choice to wake
up all suspended evaluations that can be aweckened. An-
other motivation is that, if an expression is suspended, it
iz because its evaluation was nesded and unfortunately
was stopped by lack of information. So if we lock at a:

#a;; Value - : Boel - v True

The example above illustrates the fine control on eval-
uation allowed by the suspension mechanism. The ap-
plication is performed and then a is instantiated only
when b is instantiated.

3 A confluence result

To give an operational semantics for MLOG we have to
deal -with bindings of A-calculus variables, bindings of
logical variables and suspensions. We give here a simple
formalizm that allows us to keep named parameters and
we show that this caleulus is strongly confluent?, In this
section we neglect types.

3.1 A strict calculus with environment

We store bindings of parameters in environments. We
call EA the set of terms with environments. As our
caleulus is strict, we specialize a subset Val of EA which
is the set of the values handled by the language. Typical
elernents of Val and FA are respectively noted v and 1.

o s] (y)se
vu=cle(v) | (v,#') | (lanction ..).e
ta= e eft) | (687 | 66"} |ae

3.2 Logical variables, substitutions and sus-
pensions

Now we have to extend the set Val with logical wvari-
ables. We assume the existence of a countable set [F
disjoint with ¥V and ' with typical element u(i), dis-
tinet logical variables have distinct indexes. We call
EVal and ELA the obtained sets of values and terms
with environments. To manage the bindings of logical
variables we define substitutions as functions from U/
to ELA. We will use greek letters to note substitu-
tions. 'We call the domain of ¢ and note dom{s) the set
{ulf) st. o(u(i)) # u(i)}. We will note ¢ o & the com-
position of substitutions. The MLOG pattern matching
algorithm has to deal with logical variables. It has to

IRecall that if no stmategy for application is Imposed, name
clash may ceeurs. To avoid that problem, the names of variables
can be replaced by numbers “4 la De Bruijo® [AbadiCaCuLe 90,
HardinLevy $0j

access to the pointed valus when it checks a bound vari-
able, it fails with U'nknown when it tries to match a free
logical variable with a construct pattern. We define the
match of a term ¢ with a pattern pat in the substitution
o and note &, (pat, t) as the list of appropriate bindings
of parameters of pat. Recall that patterns are linear.
We define now a sequential pattern matching without
entering into the optimization of the algorithm®,

if Bglp,t) = e then $ag(i,pg = pl) =i,e

if ®(pu,t) = Unknown then $s5(i,po = -, t) = i, Unknown

if ®o(po, t) = fuil then Bs.{i,po = [.t) =%, fail

if ®-(po,t) = foil and pl # [Jthen

Dagli,py = patl,t) = s, (i + 1, patl, t)

When the pattern matching fails with Unknown, we
suspend the application, We do not want te have to
go throughout the term to wake up suspensions or to
duplicate suspensions when reducing application. On
other hand, we note that both free logical variables and
suspensions are holes in the term that will be plugged in
when more information is broadcast. So we replace the
new suspension by a logical variable w(j) (with 7 <0
to recall that it is created for a suspension) and we
bind u(§) with the suspension in a dedicated substitu-
tion e{See rules Susp and ASusp in figure 2). As ex-
plained above, unification may build rational trees, thus
a naive recursive application of a substitution to a term
may loop. We define o*(t) as the recursive application
of o to t that does not substitute a logieal variable if
it has already been substituted in a prenex cccurrence
of t. More precisely, we call M the set of the logical
variables of dem(e) already met, o* is defined by:

o =0F¢* and
M b om{uli)} = u(i) if w(i) € M or u(i) € dom(r)
M E o {ufi)) = {u(i)} UM F o~(c(u(i))) if u(i) ¢ M
MEo(c)=¢
MEF e (t{t')) = (M e (g))(M F o™ (7))
MEor(tt) = (MFo(t),MFa(t)
MEoipe)=(MF e (plMFa(e])

3.2 Uniflcation

The used unification procedure is adapted from
[Huet 76]. We do not discuss here the whole algorithm
but the three following points deserve mention: (1) We
do not want to open the Pandora’s Bex of higher or-
der unification, so when we compare closures we limit
ourselves to physical identity {we assume an appropri-
ate primitive eq).(2) When the procedure has to unify
a suspension with any other term, it stops and returns
susp®. (3) When the procedure has to unify a free log-

The interssted reader is referred to [Laville 88] and
[PuclSuares 90| for presentation of optimized algorithms in the
framewark of functional lagy eveluation. Such algorithms may be
of some interest for our language s they avoid useless tests and
then avoid useless suspensicns.

®susp is returned even if the procedure has to unify a free
logical variable and a suspension.

677

jcal variable with a construct term, the unification is
performed even if 3 suspension occurs in the term. We
define unif., (t,t") by:

(a) tenify, (t,1') = o iff the unification procedure applied
to{(t,t')} with the initial substitution op succeeds and
builds the substitution a.

(b) unify, (t.#'} = fail iff the unification procedure ap-
plied to {(t,1'}} with the initial substitution op stops
with fail.

(¢) unify, (t,t) = susp{u()) iff the unification proce-
dure applied to {(t,t')} with the initial substitution oy
stops with susp(u(d)).

The following result holds:

Theorem 2 For all terms t,t' unifn,(t,t') terminates
and:(a) if t and t' are not unifiable in the initinl substi-
tution op, then unify, (£,17) = fail or susp(.); (b} oth-
erwise if there is at least one pair of the form (u(j),t")
with 7 < 0 built then unify,(t,t') = susp(-} (¢} else
unify, (') = o which is the most general unifier of
(t,£'), moreover there is no cycle in ¢ of the form

o*(u(i)) = uli).

3.4 Confluence of the reduction over ELA

The reduction has to account for the bindings of logi-
ecal variables and those of logical variables created for
the suspensions. Moreover, it has to deal with waking
up the suspensions. Thus we define — as the small-
est relation over B LA % substifutions X substiutions x
substitutions that verifies the rules given in figures 1
and 2in appendix . A 4-tuple is note by < t,o, 0, >
where t is the term to reduce. The substitution o stores
the bindings of unified logical variables and updated
suspensions. The valuation o« stores the suspensions
(recall they are bound to u(j} with j < 0). The sub-
stitution [* stores the suspensions of which evaluations
are running. We use the classical notation 2 and &
for reflexive transitive closure of — and for derivations
of length n. We first have two lemmas that say that no
term of the form (z.e).e' is produced and that the term
component of a normal form is a value.

Lemma 1 Leta be o progrom and
<af,8,0,0>5<t, 0,0, >. For all subterms of t of
the formm t'.e, ' is o program.

Lemma 2 Lef a be o program and
< a,0,8,0 >5< t,0,a,T > such that < t,0,&,T >
is o normal form. Then t 15 o value.

We can deduce from these lemmas that all bindings in
o bind a variable with a value, Let us remark now that
if no suspension rule is applied, as we do not reduce
under a) and we impose a strict caleulus we have strong
confluence for our reduction rules.

678

Proposition 1 Let < 0,0, >=< §,01,0,0 =
and < o, 0,0 >=< ta,09, 2,y > two reduction us-
tng respectively rules r1 and v2 with ri not o suspen-
sion rule. Then we have by the application of respec-
ﬂﬂ&fy 2 and rl: < 40,0, > 13,0'3.,#,1-'3 >
and < t3,a2,0, 'y >< t3,03,0,3 >

An important corollary of that result is that if we re-
strict ourselves to the functional subset of MLOG, we
have describe a strong confluent caleulus with explicit
substitutions and named variables. That calculus is
rather simple (all that concerns logical variables and
suspensions is unnecessary) and describes all implemen-
tations of a strict A-calculus, even a parallel one.

Remark that — is not strongly confluent on the whole
language. That is illustrated by the example below
where the choice is hetween UnifT and Susp and the
dizgram cannot be clesed in one step as even if UnifT
is chosen after Susp waking up the suspension remains
to be done.

< ({fune—)] ull), unif u(l) ¢),0,8,0 >

We can see the use of a rule Susp, ASusp or USusp
as the translation of subterm from the term to I, From
a reduction point of view we can say that these rules do
not work. Thus the idea is to define an equivalence be-
tween four_uples < i, o, 2, ' > which is stable for these
suspension rules and then show the strong confluence of
—+ 1p to that equivalence.

Definition 1 < 0,0, >=< ', 6,0, I > iff

1. there erists o permutation P over positive variable
index such that (veaoT)*(t) = P(c’ oo’ o V)" (¥)

2 and for oll w(i) in dom{e) withi > 0, ([soae
I)*(u(i)) =P(o’ oo’ o IV)*(u(P(3)))

3. and for all u(f) tn dom(a)Udom(T") or there exists
J < 0 such that u(j) in dem(a’) U dom(I') and
(roaal)*{uli)) = Pla'ea’el)"(ul(y)), either there
erisis o subterm & aft’ such that (reael’) (u(i)) =
Plo' oo o TV)*(t)

und vice versa for all w(i} in dorn(c') U dom(T")
ort=t" = failwith(s)

Thus we have verified the Church Rosser property (the
proof is in appendix C):

4 MLOG: a conservative extension
of ML

The fact that the type of undef is 'a? ensures that
no logical variable occurs in a non-logical type. That is
not enough to ensure that no suspension of a non-logical
type Is built, Fortunately, we handle type information
when we compile the pattern matching., Thus we have
the following rules for the application:

Let f be = function of type &; — #g: {1) iftype t; is a
non-logical type, then do not do any test to check if the
argument js 2 free variable or a suspension. (2) if type
ty is a logical type, then (21) first, test if the argument
is & bound logical variable or an updated suspension,
and access the bound value. {22) if type f3 is a non-
logical type, test if the argument i= a free varizble or a
suspension. If so, raise failure Unknown. (23) if type ts
is a logical type, test if the argument is a free variable
or & suspension. If so build and return the appropriate

suspension.
Example:

#type logic 'a partial = P of 'a;;
Type partial defined.

(function (F x} —>x) undef;;
uncanght exception Unknown

Theorem 4 Let o be o well-fyped program. The evalu-
ation of o cennot build a logical variable or o suspension
of & non-logical type.

We can now deduce that MLOG iz & conservative ex-
tension of ML as pure ML pragrams need not know for
the extension. However, it is clear that with that rule
of failure, our calculus is no longuer Church Rosser. To
keep that property, we must not use functions frem a
logical type to a non-logical type. Let eall M LOG™ the
subset of MLOG that does not contain such functions.
Thus, we have the following result.

Proposition 2 The relation — 5 confluent on

MLOG*.

Remark: The counterpart of the conservative prop-
erty of MLOG is the need to be cautious with logi-
cal variables and “functional t:.rE:es". First, for any in-
stances of ‘a and 'b the type 'a —' b cannot include a log-
ical variable as it is a “pure ML" type. Anyway, it is cor-
rect to have logical variables of type (int — int}partial
as illustrated below.

funif g (P (fun x -> x*x));;
= : yoid - = woid

fad;;

- ! int partial - =F 4

5 Conclusion

We have defined MLOG 25 an extension of ML. We have
shawn that it verifies 2 Church Rosser property and
then it may be parallelized ar used to simulate parallel
processes. Such processes can communicate with each
other through shared logical variables and the suspen-
sion mechanism allows synchronization. Partial data
are handled by MLOG, for example potentially infinite
lists can be implemented by the use of free logical wari-
ables for the tail of the structure {see example in ap-
pendix}.

MLOGC includes & suspension mechanism, let us now
compaze it to some other proposals of integration that
have made a similar choice. MLOG is cloze to the
language Qute defined by M.Sate and T.Sakurai in
[SatoSakurai 86]. However, it differs from it in the fal-
lewing points: (1) its evaluation strategy emsures that
the evaluation of a suspended expression will be tried
only when needed information is provided; (2) the re-
duction of an application is allowed even if a subexpres-
sion of the arpument is suspended, the only condition is
that pattern matching sueceeds, in that case the binding
of the suspension by = logical variable and the storage
in e avoid duplication of that suspension.

MLOG is also close to GHC of K.Ueda [Ueda 86], the
tnain difference (except for typing point of view) is that
MLOG does not have non-determinism for rule selec-
tion and that we have preferred to keep the functional
formalism in place of the predicate one as selection of
rules is done by pattern matching, However, determin-
ist GHC programs are casily translated in MLOG®.

The use of & suspension mechanism and the cohab-
itation of logical variables and functions are common
ta Le Fun of H.Alt Kaci[Ait Kaci 89] and MLOG. Here
the main differences are that Le Fun provides a resolu-
tion mechanism based on backtracks and that MLOG
is strongly typed.

Perhaps the main difference between MLOG and
these related works is that MLOG is a conservative ex-
tension of ML. We demonstrate that the type system
of ML can be extended to MLOG and we gave a safety
property for well typed programs. As a side effect, we
have described an operational semantics for strict A-
calculus which uses names for parameters and verifies
the Church Rosser property. Therefore it can be used to

*The author has traduced all programs given by G.Hust in
[Huet 88], he foand that the vse of types and of a functional for-
malism lead to more clear programs.

679

describe any interpreter of strict A-caleulus, even par-
allel ene. If it seems desirable, further work can be
done to provide a resolution mechanism in MLOG. Note
that the exhaustive scarch transformation described by

K.Ueda in [Ueda 86] ia applicable.

We hope that MLOG is an attractive extension of ML
as from a “logical paradigm” peint of view it allows han-
dling incomplete data structures and controlled parallel
evaluation with the improvement of the ML type sys-
tem. And from a “functional paradigm” point of view,
it respects functional programs with the improvement
of partial data and a fair control mechanism.,
Acknowledgments: We would like to thanks all members
of LIENS-INREIA Formel project for helpful dizcussions. In
particular Therese Hardin for her accurate sugpestions to im-
prove our formalism and demonstration.

A Appendix: MLOG programs

The progeam below is the classical functional quicksort pro-
gram, except that difference Hsts are used instead of lists to
improve the concatenation of sorbed sublists. This is done
by the use of the same variable T in both recursive calls of
gsortrec,

#let partition order x =
let rec partrec = function

§il -» Wil Wil
|2t(h,t) => let infl,sapl = partrac t in

if order(h,x} then St{h,infl),supl else infl,St(h,supld
in partrac ;j
Value partition :
{rakib=3bogl)-»"b=2'a stream->'a stream=’'s stream
#let quicksort order 1 =

let rec qsortrec = functicn

(Wil,result,serted) =-» (anif result sorted); sesult
| (8t (h,t),presult,sorted) -»

lst infl,sopl = partitiom order h t im

let_var r in (qsertrec(sepl,r,sorted);

gqeortrec(infl,presult 5t (h,x)}) .

in gaortrec (1,andef Hil) ;;
Velue guicksort:(*as'a=rbool)->'a strean->'a strean

The following example illustrates the use of potentially infi-
nite lists and demand driven computation. The confluence
property allows to parallelize the evaluation of nested appli-
cations in the definition of the Hamming sequence of integers
of the form 2 + 3 + 5% Dijkstra 76].

#let ault (P x,P %) = Plesyl;:
Value melt : imt partisl = ist partiel -» int partial
#let zec times (u,5t{v,r}) = St{mult(e,v),times{u,=));;
Value timas:
int partiale=int partisl stream->int partial strean
flet rec merge (§t(P x,3),5t(P y,2)) =
if r<y them St(P x,merge (=,5:t(P y,r])) elsa
if x>y them St(? ¥, merge (5t(P x,3),.r}) elae
5t(P x, margeis,z)};;
Valua merge: int partial stresmint partial stream —»
int pertisl stream
#lot rec copy_streem (St(a,blas) (St(h,t)) =
umif a h; copy_stremm b t; aj;
Valus copy_stream : ‘a gtream => "a stream - ‘a stream

680

#let Hemming = let_var r im

copy_stTesn

(5t (P 1,margel(mergo(times(P 2,r),tinea{P 3,r)),

tines(® B,r)))) r;

Ir3i
Valoa Hamming : int partisl stream Hecming = 7
#let ree inerease_stresn st = function

0 => gt
| m =» let_var tail in oni? st St(umdef,tafl);
increase_stream tail (a-1) ;;
Value incresse_stream : 'a? stresm => int => 'a? stream
#Fincreese stream Hamming 9; Homming;;
Teluea = 1 ink Pu.rtial atraam
- wgt(P 1,55(P 2,5t(P 3,5%(P &,5t(P 5,5t (P &,5t(P &,
st(P 2,5t(P 10,7333)3130)

B Reduction rules

<to el >—< foilwithis), s ol >

< (&,t), ;T > failwith(s), o, o >

PairlF -~

<t o, e[»ed failwith(a), o, e, >

Pair2F < (), 0,00, >— failwith(s), o, e, >
{!1Frﬂ‘r>_'{fl:vl1m1r'. =
Pairl .
r () ay o, L g (b, E)Ty o, >
Pair2? <thoola2acf ool >

< (&t), o0, I == {L), o, 00, T

Figure 1: Structural rules

We assume that we have a function gueue such that
qUEUE (1) returns all the suspensions in o waiting for in-
stantiation of w(z). The rule D'Var uses a counter ¢ that is
increased each time a new logical variable s created, e s ini-
tially at 1. The rules Susp and USusp nse an other counter
¢y dedicated to suspensions alse initially at 1, they increase
a with the new suspension. The rules UnifT and AwlUpd
increase o with the new bindings and increass I' with the
suspensions waiting for these instantiations or update. Note
that we remain free to choose the order of evaluation of bi-
nary constructs as for EA (We give in figure 1 the rules
for pairs, rules for unification and application are similar.).
Moreover, the order of evaluation of terms bound in T is also
free {see rule Aw).

C Demonstration of theoreme 3
Let us give preliminary resulls,

Lemma 3 If < i,0,0,I >=< t',¢',a'" T > by application
of a suspension rule then < &,0,0,T >=< ¢, 0" o', " >

Proposition 3 [f < &,0,0:, [>—< e, I >
by application of o rule distined of o suspension rule,
and if < 4,050,000, >=< fp,op,0,T: > then we
have < #0808, 75> such thal < f,00,0:, 02 >—e
‘izsﬂ':;rﬂljapi > ond < f},0y,0,T] >=< t,03,00,T% >

Proof: We carcfully discuss one case, others are similar:

Env
Env0
Const
AEnv
UEnv
PEnv

DVar

Susp

ASusp

Fail

UnifT

Unifl

<zizt)e el >—<tonl >
< zpt) ool >—< e o0l >

< e, gy, I >=< oo, >

< (tt') o0, T > (tete), o0l

< (unif t)0, 0,0, 2= (unif tete),oe, I >
< () o0 D > (Leytle), o0,

< wndefe, o 0l 2 uc), el =
and ¢~ [c+1)

<t @ > is in — pormal form
*(fl=(funp —=a |...| pa = an)es
Boo (L, |,) = dei

- fl,n‘, n:,r' Tl] e, @, rxlr -

< o0, > is in — normal form. ,=k

e (fl={fenp —a ...l pa = anle,

i“""[l!lﬂllt-] = nknown

< fhoel' > “[_n]1 &y f"“‘f_"'L "‘{fJ) e, I'> .
and ¢y = (k4 1)

< for e, [> 85 in -+ normal form. c;=n

a*(f) = uli)

< ftyee, U m— wl—n),r, (u{-n),w) 1) = e, T >
and &, + [+ 1}

< 4,7,0,0 > isin — oormal form, $s. (1, [p],) = fail
a(ft={funp — o |...]pa — an)e,
< f tymo, [>—< fatlwith(Pattern), o0, I' >

<t ool > and < ¢, 0, 0,0 >are ia — sormal form
uni fo (i) = &'

Let L=Ril ¢’ = & ar ' (u}) = uli)

for all u(i) € dom[e"V\domie)

amd L = guene, . (u(i)) in other cases

cunif i, oo >—< veid, o', e\ L2, LUT >

<t > and <, 0,002

are in — normal form

unif-(t.t') = fail

< untf t &', o0, [»—e failwith{Unif), o, e, =

<t ool>and <, 00 b>
are in = normal form

unifs(t, t') = susp{u(i)), ¢, =n

TSusp

Aw

AwlUpd

AwFajl

cunmifid, ool >
< ul=n),7 (u(-n)unif £ ') 5 o' >
and Oy — {:I'I-+ 1]

uli) € dem(T') and T{u(i)) = ¢
<t st o a’ 0>

and < &, ¢, &', > not in normal form

< by, oo, e by, 0, D] —] >

u(f) € dom(I) and Dlufi)) =1

<toa,l ot o 8 T s

and < ', o' o', § > is in normal form

[= guensq o {u(i)}

{fp.ﬂ',&,r —

< doy (u(fh27) = o o\, T U I U T f{uli), 80} =

uli) € dom(T) and T{uli)) = ¢
<o o @ > foiluithis), oo >

<ty @, I el failwith(a), o0, T >

Let < iy,o1,01,01 > be reduced by § applied on a sub-
term of £;. Let note that subterm
{fun py — a1 | ... | pa = @s).e v. By the hypothesis of
= we have (73 o @z o [z)*(tz) = t1, thus the corresponding
subterm of tp s of one of the following forms: w(i}; u(i) w7
(fumpy = a1 | ... | P =+ @a).e w. We examine the first two
forms:
{1): w(i). First as o3 binds variable with values, we have
a3 (u(i)) = u(j} and u(j) ¢ dom{oz). The = hypothesis en-
sures that u(j} ¢ dom{c:) as in that case the application
would be suspended when the rule § applies on &;. Thus we
have: o3{Talu(i))) = (fun pr = a1 | ... | Pa — G)E P,
The = hypothesis ensures that the same pattera matchs in
both reduction and then application of Aw with the rule g
on that term clearly leads to an equivalent fouruple.
(2) (i) w(f). The fact that bindings in o and I'y are
bindings of logical variable to non value terms ensure that
oa(u(i)) = (funps — 81 ... | Pn — an)e and e3{n(j)) = v;
then 7 applies on u(i) u(j) and leads to an equivalent
four_uple.o We have now the result of skreng confluence of
— up to =,
Theavem 5 For afl < teool > such thet
< bao [mea by, 00,09,01 >
< b ool =—< iy, 0a, 003, Iy =
There ezists < t),07,0;,I'] > end < %:5%:“;:-1-4: > such
thet
< ty, 70,0 »He 00,00, >
< by, 02,03, T >0 < th, 00,05, 1% >
< ty,00,0,T] >5< i, 05,05, 13 >

Proof: it is illustrated in figure 3. The cases where at least
one reduction use a suspension rule are: if both ry and vy use
suspension rules, then the lemma 3 is enough to conclude.
If one r; use a suspension rule, then we conclude with the
proposition 3 and the lemma 3.0

y tx e/ \ilr.z ﬂl‘{f‘;\ﬂ
I S N

a3 gl m &2

Two suspensions One suspension Mo suspension

Figure 3: Strong confluence

Proof of the theorem: We show that the diagram of figure
4 holds with the theorem above and by successive inductions
on lengths of dy and dy.0

Bemark that the limitation to & strict calenlus is neces-
sary. If we permit reducing application without reducing the
argument, 28 some unification may occur in that argument
different normal forms are possible. BExample:

< {fun (z,y) = wnif = Trus)f(u(l), wnif u(l) Folse),0,0,0 >
has two normal forms:

< woid, {{v({1), True)}, 8,0 >
and < foilwith(Unif), {(w(1), Palze)}, 0,0 >,

681

Figore 4: Church Rosser property

References

[AbadiCaCuLe 90] M.Abadi, I Cardelli, P.L. Curien, J.1.
Levy, “Explicit substitations”, Proc, Symp. POPL 1920

[Ait Kaci 89] H.Ait-Kaci, R. Nasr, “Integrating Logic
and Functional Programming", Lisp and Symbolic
Computation,?,51-39 (1985)

[DeGrootLindstrom 86) D DeGroot G Lindstrom
{eds),“Logic Programming - Functions, Relations and
Equations”, Prentice-Hall, New-Jersey, 1386

[Dijkstra 76| E.W. Dijkstra, * A Discipline of Program-
ming”, Prentice Hall, New Jersey, 1976.

[HardinLevy 90| T. Hardin, J.J. Levy, “A Confluent Caleu-
lus of Substitutions”, third symposium ([2T) on LA,

[Huet 76] .Huet, "Résolution d'équations dens les langages
d'ordre 1,2,...,w" Thise d’état de "Univ. de Paris 7, 1976

[Huet 828] G. Huet, “Experiments with GHC prototypes”,
may 1988, unpublished

{Laville 88] Alain Laville, “Implementation of Lazy Pattern
Matching Algorithms”, ESOF'88,LNCS 300

[Leroy 90] X.Leroy, “The ZINC experiment: an economical
implementation of the ML language”, INRIA technical
report 117, 19390,

[LeroyWeis 91} X.Leroy P.Weis, “Polymorphic type infer-
ence and assignment” , *Principles of Programming Lan-
punges”, 1991,

(Poirries 91} V.Poirriez, “Intégration de fonctionnalités
logiques dans un langage fonctionnel fortement typé:
MLOG une extension de ML" Theise, Univ. Pads 7, 1991

[Poirriez 92a} Vincent Poirriez, “FLUO: an implementation
of MLOG", Fifth Nordic Workshop on Programming
Langnages in Tampers, 1992

[SatoSakurai 86] M.Sate et T.Sakurai “QUTE: a functional
Language Based on Unification”. In
[DeGrootLindstrom 86] pp 131-155.

[PuelSuares 90] A. Suarez and L.Puel, “Compiling pattern
matching by term decompoesition”, LFF'S0

[Ueda 86] K. Usda, Guarded Heorn Clauses”, Ph.D.Thesis,
Information Engineering Course, Univ. of Tokya, 1986

