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Absiract

In this paper, we propose a parallel computational
model, called PR? (Parallel Resolution and Reduction
with RAT), and its abstract machine for the parallel exe-
cution of Lazy Aflog program. Lazy Aflog together with
its abstract machine FWAM-II was proposed as a cost-
effective functional logic language. Simce the parallel
reduction of the arguments of a function can be regarded
as a parallel evaluation of independent subgoals, only
Independent-And Parallelism is exploited in FR? in
order to simplify the execution control. PR? is an exten-
sion of DeCGroot's RAT, and it isdprnpnsed as a simple
and coherent 1pa1'E|].I13ti.‘&1'r|§; method that can be applied
both of the luncion and logic. A parallel abstract
machine for PR® based on the RAP-WAM is also
devel which is an extension of FWAM-1I equipped
with the run-Hime structures and the primitive instruc-
tions to spawn the parallel executions and gather the
results. Simulation results show that both of the parallel
resclution and parallel lazy reduction can be provided
efficiently in the PR? and abstract machine.

1 Introduction

Curing the last couple of decades, there has been
growing interest in functional lanpuages and logic
languages as potential altermatives Lo conventional
languages, because of their declarabive semantics and no
side-effect. They have been widely used as system pro-

mming as well as application programming
nguages. Functional languages are characterized by
recduction rules which make them procedural, while logic
languages have the declarative flavour owing to their
logical back, nds. However, there exist software com-
ponents which include both procedural and declarative
part. Since defining them in one paradigm, procedurally
or declaratively, would be unnatural and leads to
inefficiency [Bellia and Levi 1986], there have emerged a
lot of research efforts on the combination of two
languages.

Lazy Aflog [Nang ef al. 1991] is an E-Unification
(Equality-Unification) based functional logic language, in
which an E-Unification, called E-Umnification with lazy
evaluation, is developed o combine the lazy reduction of
functional language and two-way argument passing of
logic languages. nks to this E-Unification, the notice-
able functional language features such as infinite data
structures and higher-order function can be expressed
naturally, while the expressiveness of the logic language
such as non-determinism and unification is alse main-
teined in the single framework. FWAM-II [Nang ¢ al.
1991] iz an abstract machine for Lazy Aflog, in which

instructions and run-time structures to support the
suspension and reactivation of functional closure are
incorporated into WAM. We already demonsirated in
[Nang ef al. 1991] that this pair would be a good
compromise between the expressiveness and efficiency of
the combination.

Although FWAM-IL is designed to maximize the
performance on the conventional von-Neumann comput-
ers, it has the speed lmitation because of its sequential
nature. A natural way to improve the performance is to
extend Lazy Aflog and FWAM-II pair in parallel, while
keeping the performance optimizations and storage
efficiency of sequential system. However, parallelizing
Lazy Aflog computation is nat a trivial problem, because
we should deal with two different styles of parallelisms,
one for logic part and the other for functional part. The
simplest way In parallelization is to adopt already
developed parallelizing schemes for each part, for exam-

le, Conery model [Conery 1983] for logic part and paral-

| graph reduction model such as GRIP [Peyton Jones
al. 1987] for funchonal part. It, howewver, requires a come-
plex contrel mechanism to switch between the parallel
execution of logic and functional part. Hence, instead of
having two different schemes, it is highly desirable to
develop & coherent one that could be applied to both
fogic and functional part.

- Since the main parallelism in the functional part of
Lazy Aflog program is the parallel reduction of argu-
ments and it can be viewed as an Independent-AND
Parallelism in the view polnt of logic language, the paral-
lelismms in both parts can be exploited easily if there is a
parallelizing method for Independent-AND Parallelism.
The RAT Model [DeGroot 1984] is such a parallelizing
method to spawn the parallel executions when there are
independent subgoals in a clause. In this paper, we pro-
pose a parallel execution model for Lazy Aflog, called
PR3 {(Parallel Resolution and Reduction with RAP),
which is an extension of RAP. In PR3, only independent
subgoals in & clause and all the arguments of a strict
function are resolved and reduced in parallel. Although
this approach overlooks some available parallelisms in a
Lazy Aflog program such as OR-Parallelism in logic part,
it helps to aveid the complex run-time support,

Ins addition, this paper proposes an absiract machine
for PR, called PFWAM-II (Farallel FWAM-II). It is an
extension of FWAM-II equipped with the run-time struc-
tures and primitive instructions to spawn the parallel
execution and gather the results. These run-time struc-
tures and instructions are inherited from the RAP-WAM
[Mermenegilde 1986] with some medifications for the
parallel lazy reduction of functional terms. Simulation
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gim:ults to show the p-processor speed-up ratio over sin-
rocessor are also presented to show the efficiency of
FRF and PFWAM-IL "

This paper is structured as follows, Section 2 briefly
recalls our previous works on the Lazy Aflog and
FWAM-IL A parallel computational model based on RAFP
for Lazy Aflog is nted in Section 3, while a paralle]
extension of FWAM-II for the model is followed
in Section 4. The simulation results that show the perfor-
mance of the parallel extensions and a comparison with
the related works are presented in Seclion 5. Finally, a
summmary of paper is presented in Section 6.

2 Lazy Aflog and FWAM-II

Lazy Aflog [Nang ef al. 1991] is a successor of Aflog
[Shin ef. al 1987, Shin ef al. 1988], to which the capability
lo process infinite data structures and higher-order func-
Hom are added. FWAM-II is also a successor of the
abstract machine for Aflog [Shin & al. 1992] with the
primitives to suspend and reactive the functional closure
at the machine instruction level. Larzy Aflog and
FWAM-II pair was proposed as an effective mechanism
to incorporate the funchional features into logic. Now, let
us explain Lazy Aflog and FWAM-IT in more detail.

A Lazy Aflog program consists of a set of Prolo
clauses and a set of Function definitions (or rewrite rules
written in a constructor based functional language. The
hunctional symbols in Lazy Aflog programs are classified
into two disjoint sets : a set of consiructors and a set of
defined funchions. A symbol f is a defined function if it
appears at the left hand side of a rewrite rule, otherwise
it 15 ireated as a constructor symbol. In a Lazy Aflog
program, a funchon application occurs as an argument of
Prolog subgoal, which 5 reduced to its WHNF (Weak
Head Mormal Form) [Peyton Jones 1986] when the
subgoal is resolved. This is the way in Lazy Aflog to
incorporate functional programming into logic program-
ming. Lazy Aflog imposes a restriclion that all the argu-
ments of a function should be ground before the function
is reduced. Ewven though it prevents Lazy Aflog from
having the powerful inferencing mechanism such as nar-
rowing, it greatly contributes to the efficlency of the
underlying E-Unification algorithm, because it assures
that the E-unifier of two terms is unitary.

Let us explain the programming style and opera-
tional semantics of Lazy Aflog. Example 1 is the famous
Sieve of Eratosthenes program which generates the list of
all the prime numbers infinitely using lazy evaluation
technique.

Example 1 Sieve-of-Erafosthencs

Cy: test(X) = truncate(X, sievelfrom(Z)).
Ca 1 truncate(0,L).
Ca: truncate(X [HI T]) ==
print_era((H), Y is X - 1, truncate(Y, T).
Cy ¢ print_era( H} :- write(X), tab(2), write(H), nl.

Fy: from(N) === [N | from{N+1]].

F3:sieve([PI L]} ==> [Plsieve(filterp{F.L1].

Fy: filterpl(P, [XIL]) ==> ((X%PF}==10 | flerp{P,L})
Fy: [X| filterp(P,L)].

In Example 1, a query "- test{100)." generates 100
consecutive prime numbers as iks result. In the course of
the refutation of the query, the unification of truncaie(100,

sieve(from(2)} in C1 and truncate(X, [H1T]) in Cs is tried as
follows :

call E-Unify (sieveltromi(2), [H 111}
— eall E-Unify(from{2}, [PIL]} /*by Fa*/
— extt B-Unify([2 | from(2+1)},
(2] fram{(2+1)]) /by Fy %/
= oall E-Unify(sieve([2| from(2+1)], [H | TT)
- exit E-Unify([2| sieve(filterp(2, from(2+1)))],
[2] sievelfilterp(2 from{2+1))]) /* by Fa*/

In this E-Unificationt process, the reduction of a func-
tional term is initiated when a head pattern of a clause or
rewrite rule is a non-variable term and the cormespond-
ing argument of the caller is a functional term. Note that
the functional term is not completely reduced to its nor-
mal form, but to WHNF, which makes it ible to han-
dle the infinite data structures. The complete descri
of the E-Unification algorithm, called E-Unification with
Lazy Evalwation, is presented in [Nang ef al. 19911,
FWAM-II, an abstract machine for Lazy Aflog, is an
extension of WAM augmented with the manipulation of
functional closure. It is characterized by that ;

» it adds the reduction mechanism to the WAM architec-
tuire, and

+ it employs an environiment-based reduction rather than
graph reduction,

Since WAM uses an environment for the variables in the
body of a clause, the conventional enviromment-based
reduction scheme is more suilable to WAM than the
graph reducton is in the combination. Therefore,
FWAM-II behaves similarly to the WAM in the execution
of a clause, whereas it works similarly to an
enviromment-based reduction machine in the reduction of
functional term. This WAM-based approach has been
also adopted in other abstract machines for the functional
logic language, such as K-WAM [Bosco ef al. 1989] for K-
LEAF and a WAM model [Nadathur and Jayaraman
1989] for A-Prolog. The E-unification of Lazy Aflog is
realized in FWAM-TI via the reducibility checking in the
unification instructions, which immediately calls the
reduction process if the passed arpument is a functional
term and correspondi ern i3 not a non-variable
term. To implement the suspension and reactivation of
functional closure, a run-time structure (called, Reduction
Sinck) is added to WAM struchure. Figure 1 shows a
compiled FWAM-II code for the filterp function in Bxam-
ple 1, where mode and eqg are predefined strict functions.

Upon the benchmark testing [Nang et al. 1991], the
reduction mechanism of FWAM-I is relatively less
efficient than WAM executing pure Prolog programs
because of its overhead to conmstruct and reference the
functional closure, but it can suppert lazy evaluation in
logic in the abstract machine level. Consequently, it is
argued that FWAM-II can support not only all the
features of h%;; language but also the essential features

1

of functiona e with the performance comparable
to WAM. Bhae ad pas
3 A Paraliel Computational Model
for Lazy Aflog
Although FWAM-TT would be an efficient ential
abstract machine for Lazy Aflog, it has the speed limila-

ten because of its sequential nature. A natural way o
overcome this obstacle i5 to extend it In parallel. This



Fy: filterp(P, [XIL}) == ((X%P)==0 | filterp(P,L}}

Fa: [X | filterp(P,L)].

Fy: allocate 3
% Pattern Matching
fget_value P, X1
fet_list xz
match_value K
match_value ‘L’
% Guard Checking
try_me_plse L Fa
put_value X, X1
put_wvalue P, X2
call P_Arity N modef2, 2
put_integer 0, x2
call_P_Arity N eqf2; 2
% Committing
comtait
% Construct WHNF
write_function ‘filterp/2’, X1
write_value i
write_valie T.”
rewrite_value X1
% Returning
return

Fa trust_me_else_fuil
write_function ‘filkerp/ 2’ X1
write_value i
write_value T
write_list x2
write_value Y
write_value X1
rewrite_value X2
return

Figure 1 A Compilation Example

section addresses our point of view that adopts the RAP
as our slarting point, and presents a parallel compula-
tional model for Lazy Aflog.

3.1 Parallelisms in Lazy Aflog Programs
Lazy Aflog has various kinds of parallelisms inher-
imdﬁumbot%lﬂmmmnandlogic,sudlasﬁlﬂb-

Parallelisn, OR-Parallelism, and Argument-Parallellsm.

Among these parallelisms, we ado%t' the Independent

AND-Farallelism as the primary parallelism owing that :

* Ideally, all parallelisms in the Lazy Aflog program can
be exploited in the parallel extension. However, it may
require a complex control mechanism that may
degrade the performance gains obtained through the
parallel execution.

* Since the Argument-Parallelism in the functional
languape part can be viewed as a kind of
Independent-AMND Parallelism in the logic language
part, we can exploit parallelisms in both of the func-
tional and the logic parts in a simple and coherent
manner if there is a parallelizing method for it.

* There have emerged an efficient and powerful compu-
tational model and an  abstract machine for
Independent-AND  Parallelism of lo programs.
DeGroot’s RAP Model and RAP-WAM [Hermenegildo
1985) are such a computational model and an abstract
machine, respectively.
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3.2 A Farallel Computational Model : PR3

A parallel computational model for Lazy Aflog,

called PR? [MNang 19592], is a parallel model which can
support both of the parallel resolution and parallel lazy
reduction simultanecusly. The basic principle to spawn a
parallel task is as follows ;

Rule 1) the subgoals in a clause are executed in parallel

when their arpuments are indeperdent or ground

Rule 2) the arguments of a functional term are reduced in

parallel when their WHNFs are demanded and
the functiom is a strict one

Fule 3) the alternative clauses and rewrite rules are tried

sequentially using the top-down sirategy

the ones del

The algorithm of indeperndent and ground are same as
E‘:\ed in [DeGroot 1964]. This principle can be

expressed with an intermediate code, called CGE*
(Conditional Graph Expression*), which is an extension of
DeGroot's CGE [DeGroot 1984). 1t is used tor express the
necessary conditions to spawn the subgoals or function
reductions in parallel. The body of a clause and right-
hand side of a rewrile rule are expressed by the CGE*,
which is informail}r defined as follows;

1
2

3

5)

]

&)

G : a simple goal {or subgoal) whose argument can be
a functional term.

(SEQ Eq--: Ey): execute expressions Ey through £,
secuentially

(PAR Eq---Ey): execule expressions £ through E.
in parallel

(GPAR (Vy---Vy) Ey--- Eg):if all the variables 17y
through Vi are ground, then execute expressions £y
through E, in parallel ; otherwise, execute them
sequentially

(IPAR (V- Vi) Eq+++ Ey) :if all the variables 1y
through V, are mutually independent, then execute
expression Eq through E, in parallel; otherwise, exe-
cute them sequentially

(fF B Ey Eg) : if the expression B is evaluated Lo
true, execute expression Eq  otherwise, execute
expression E;

F(SEQ Fq :++ F,) : if F is a consiruel symbol or
non-strict function symbol, then construct WHNF
F( Fy --- F;) sequentially ; otherwise (1e. F is a

strict function symbol) evaluate expressions F
through F, sequentially and eventually evaluate
F(Fy - F)

F(PAR Fy --- Fa) :if F is a construct symbol or
nc(m-smctiﬁ.umtion symbal, then construct WHNF
F{ Fy -+ F,) sequentially ; otherwise {ie. F is a

t function symbol) evaluate expressions F1
E:;uﬁh F, in }!;r;nmllel and eventually evaluate

FCFy - F)

‘The expressions 1) through &) are the same as the

DeGroct's CGE for the clause (actually they are
improved CGE defined in [Hermenegilde 1988]), while
expressions 7} and 8) are new expressions for rewrite
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rules. Note that there are no conditions to check the
groundness of function arguments in the essions 7}
and 8), since they are automatically r:heck:rdp;:y pattern
matching semantics of the rewrite rules. That is, the
arguments of a rewrite rule are always ground, hence,
they can be always evaluated in parailel. In expression
8), the arguments are reduced in parallel only if the func-
Hom is strict, which resuits in jts WHNF. Otherwise, it is
rewritlen b the term in the right-hand side, which is
retwrned as the result. In this case, as it is not WHNE, it
induces another reduction process. The reason Lo adopt
this reduction strategy rather than directly call the non-
strict function, is in order to keep the storage optimiza-
tion based on @il-recursion. )

Example 2 is a CGE* for a Lazy Aflog program, It

can be automatically generated from the Lazy Aﬁog pro-

cgimrn by the paralielizing compiler, or programmed
irectly by the programmer,

Example 2 A CGE* for the Lazy Aflog program

Co o test(X,Yh - (IPAR 0O Y) pUX,Z) qUY, W), r{f(Z), g(W)).
Ca e bestDd Y

Ca:plad) Cs:gle,3),
Ca:plb2) Co:qld4).
C;' 1 r(2.5)
Cg: r{d,72),
Fi:fX)==>X==0)10,

+{PAR fb(X) fib{2*X)).

Fa:gl¥h==>*{PAR factorial(Y¥), Sb{Y)).

In Example 2, as the subgoals p(X,Z) and g(Y,W)
would generate the values of Z and W that are taken
into the terms f(Z} and g(W), the goal r(f (Z heg(Wh
should be executed after the evaluation of them. Fi 2
is the snapshots of the parallel execution of the CGE* in
Example 2 when "0 :- test(b,d)" is given. In Figure 2, the
rectangle, crcle and rounded-rectangle represent OR
node, AND node and reduction node, respectively. The
number attached to each node represents the order of
execution, while the filled nedes represent the activated
nodes at that time. Note that, since the Unificafion  Paral-
[elism is not exploited in PR?, the functional terms f (1)
and g(3} in the step (o) are reduced sequentially,
although they can be evaluated in parallel if the
innermost-like reduction strategy i5 used. The backward
execution of the PR is the same as the one presented in
[Hermenegildo 1986] because there are no backtracking
in the reduction phases after a functional term is eventu-
ally reduced to WHNF. For example, in the step (d), the
subgoal g (Y, W) which generate the arguments W would
search alternative solutions for ¥ and W when a fail is
occurred, rather than to generate another WHNF for g (3)
ar f(1), -

4 A Parallel Extension of FWAM-II for PR?

The desirable characteristics of parallel abstract
machine is to support the parallel execution while retain-
ing the performance optimizations offered by the current

sequential systems. To achieve this geal, a parallel
abstract machine for PR3, called PFWAM-TI rallel
FWAM-II), is designed as an extension of the sequential

abstract machine FWAM-TL 1t is equipped with the run-
timne structures and instruction set to fork and join the
parallel executions, We adopted the rn-time structures

L {d) Since these are no clavse unified with 1(2,12),

a 'fuil’ message i3 sent 10 (Y W), and now C6 is tired.

Figure 2 The Parallel Execution Snapshots of the
Lazy Aflog Program in Example 2

and instructions of the RAP-WAM for the extension of
FWAM-II because it is also an extension of WAM for
AND-Paraliel execution of Prolog and has a general
primitive to fork and join the parallel tasks, Figure 3
shows the relationships bebween WAM, FWAM-II, RAP-
WAM, and PFW AM-IL,

WAM

(Reduction §

FWAM-II

Figure 3 The Relationships Between WAM, FWAM-I,
RAP-WAM and PFWAM-II




4.1 Run-Time Structures for Parallel Execution

The run-time structure of PFWAM-IT s an extension
of FWAM-TI for parallel executions as shown in Figure 4.
It consists of three parts ; First, the Heap, Trail, Environ-
ment, and Cholce Point are structures for the execution of
the logic part, and inherited from WAM ; Secondly, RS
{Reduction Stack) is the structure only for the function
reduction, and inherited from FWAM-II ; Finally, G5
{Goal Stack), ParCall Frame, Local Goal Marker, Input
Goal Marker, and Wait Marker are run-time structures
for the parallel executions of subgeal or function

reduction, that are inherited from RAP-WAM with slight
modifications.

CFA —m
CF —
P o=t

TR ===

ME -
Figure 4 Data Areas and Registers for One PFWAM-II

In fact the run-time structures of the | execu-
Hon is almost the same as that of RAP-WAM except that
a parallel task in PFWAM-II can be a reduction of a func-
tional term as well as the evaluation of subgoal, whereas
in RAP-WAM, only the evaluation of a subgoal can be a
parallel task. The run-time structure for parallel execu-
tion are the Goal Frame, ParCall Frame, Input Goal Marker,
Local Goal Marker, and Wait Marker. Let us explain them
focusing on the extensions which allow them to be also
used for function reduction.

* The Goal Frame :
The subgoals or the functional terms which are ready
to be executed in parallel are pushed onto the Goal
Stack. Each entry in the G5 is also called a Goal Frame
as in RAP-WAM. A Geal Frame contains all the neces-
sary information for the remete execution of tasks
There are two kinds of Goal Frame in PFWAM-1I; one is
for a subgoal, and the other is for a function reduction,
They are distinguished by the spedal tag in the Goal
Frame. When a Goal Frame s the one [or the subgoal,
the structure of Goel Frame is the same as in RAP-
WAM ; otherwise (i.e. it is one for the function reduc-
Hon), it contains the extra pointer to the functional
term: to be reduced. In both cases, they are stolen from
Goal Stack by a remote processor, and executed
remotely in the same way.

* The ParCall Frame :
It is used to keep rack of the parallel tasks during for-
ward and backward executions of PR The entries
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and meanings of the ParCall Frame that is created for
each parallel task are the same as in RAP-WAM. 1fa
ParCall Frame is the one for the parallel function reduc-
tione, it immediately disappears from the Local Siack
when the parallel reductions are completed because
there is no backtracking in the reduction process. It is
different from the case of parallel subgoal calls, in
which it remains in the Local Stack in order to select the
appropriate actions during backiracking.

» The entries and meanings of the Imput Goal Marker,
Local Goal Marker, and Wait Marker are the same as in
RAP-WAM. However, they also immediately disap-
pears when the task is a function reduction and it is
reduced to WHNE.

The general execution scenaric of PFFWAMII is as
Follows. As soon as a processor steals a task from another
processor's Goal Stack, it creates an Input Goal Marker on
its top of Local Stack, and checks whether it is a subgoal
or a function reduction. If it is a subgoal, the processor
starts working on the stolen subgoal by loading its argu-
ment registers from the parameter register fields in the
Goal Frame and fetching instructions starting at the loca-
tion {procedure address) received. If the stolen task is a
function reduction, the processor leads the arguments
and finds the starting address of the corresponding
rewrite rule by referencing the functonal term stored in
the Heap of the parent processor. It was recorded on the
Goal Frame by the parent processor. At any case, the local
stacks of the processor will then grow {(and shrink) as
indicated by the sermantics of FWAM-IL

When a parallel call is reached, a ParCall frame is
created on the top of the Local Stack and tasks are pushed
on to the Goal Stack. 1f there are no idle processors in the
system at that time, the processor itself gets the goal from
ifs Goal Stack again, makes a Local Goal Marker, and exe-
cutes the task locally. If the parallel call is one for the
subgoals, an Wait Marker is created on the top of the Loeal
Stack as soon as all subgoals succeed. [t is used for the
backward execution of PFWAM-IL However, if the
parallel call is for the function reduction, the ParCall
Frame, Local Goal Marker, or Input Geal Marker, created on
the Jocal Stack ean be removed since there is mo back-
tracking in the reduction process. After the parallel call
is finished, the execution can continue normally beyond
the parallel call.

4.2 Instruction Set

The instruction set of PFWAM-Il consists of the
FWAM-II instructions and the new instructions imple-
menting RAP as shown in Table-1. Since the FWAM-II
instructions were explained in [Nang e al. 1991] and the
instructions to fork and join the parallel call when tasks
are subgoals are almost the same as the RAP-WAM, we
only explain the instructions to control the parallel reduc-
tion. To fork and join the parallel executions are actually
the same as the RAP-W when the parallel call is a
determinate one. However, some attentions are required
since the tasks to be forked can be functional terms.

e push_reduce Vi, Slot_Num
It makes a new goal frame on the Gowl Stack with the
Slet_Mum for the Amctonal term pointed by Vn.
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<Table-1> The PFWAM-II Instruction Set

. The PEWAM-IT Instruction Sef ]
I
Frocedure Control - exing i Clause Confrol
try L switch_on_term Al vels call F/arly
retry L switch_on_constant  n, Ff executbe
trusk L switch_on_structure  n, §f proceed
Lr].r_rne_elsi“ % Ellnizlzlte
Te e_ge eallocate
r__mugg-ﬂe else fail
Get Put
get_variable Vi, Al put_variable Vi, Al ify_wvariable Vi
get_value Vi, Al put_value Vi, Ai _wvalue Wi
put_unsafe_value ¥i, Ad unify_unsafe_walue Yi
get_constant C, Al put_constant C, Al _constant C
get_list COAl put_list Ai _list
get_structure 5, Al put_structure 5 Al ify_structure 5
get_nil A put_nil Ad
. oid
— . 1 OLEl -
Fget ﬁa%in Writing
feet_wvalue Vi, Al match_value %i write_wvalue Al
IE _constank C, AL match_constant C write_constant C
;ﬁ_ﬁst Al match_structure 5 write_structure ]
get_structure 5, Ai makeh_list write_list Ai
fget_nil Al write_function F, Ai
write_structure_value 5, Ai
Reduction Conirol ] Rewrlting . educing
comumit ’ rewrite_value Vi reduce_vahie Al
return
check_me_else_label
check Ti i, te_peall
allocate_peall # of slot, M check independent  Vn, Vmm
pop_pending_goal waiting_on_siblings
e deallocate_peall ; - ¥ i
It is used to join the parallel reductions. [t waits until Fa: g(¥)==>*PAR factorial(Y), fib(¥)).
the number of goals to wait on in current ParCall Frame Fa:  allocate
is 0; then, removes the eurrent ParCall Frame from the % Pattern Matching
local Stack. fget_value ¥1, X1
%o Spawn Parallel Reduction for factorial(Y)
Figure 5 shows the simplified PEWAM-IT codes for allocate_pcall 2,2
Fy of the CGE* in Example 2, in which since ‘4" and '+ put_value ¥1, X1
are strict functions, their arguments are reduced directly write_function factorial/1, ¥2
rather than constructing the functional closure. write_value X1
: %ush_reduce YZ 2
5 Analysis Spa'-lvn Parallel Reduetion for ﬁﬂm
value ¥1,
5.1 Performance Evaluation ﬁﬁt-e_mmﬁm fib/1, ¥3
In order to estimate the performance of our parallel write_value x1
extension, a simulator for Plg:il'l.'ﬁ..'hll-ﬂ is developed. In push_reduce ¥3,1
this simulation, we assumed that there is a common % Gather the Results
shared memory for the run-time structures of each pro- pop_pendin 1
cessor which are interconnected by a network. Each pro- deallocate_pca
cessor can access the run-time structures of other proces- % Construct WHNF
sors without additional overheads. The performance of put_value Y2, X1
FFWAM-I is estimated by counting the number of put_value ¥3, X2
memory and register references, where the time for call_P_Arity_IN "2, 2.1
referencing data stored in the shared memory (whether it rewrite_value X1
is local or not} s assumed 3 times longer than the time % Returning
for register referencing, and the times for other opera- return
bons such as arithmetic are ignored for the sake of sim- Figure 5 An Compilation Example
plicity. for CGE™ in Example 2

We use three benchmark programs : the first one is
Fibonacci10 that is to compute the 10th fibonacei number,
the second is CheckSl) [Hermenegildo 1986] in which
there are 10 parallel tasks each of which calls jtself 50

Hmes, and the third is Symbolic Derfvation [Hermenegildo
1986] which is to find the derivative with respect to a
variable. There are 176 parallel tasks in the Fi 10,



10 parallel tasks in the CheckS0, and 152 parallel tasks in
the Symbolic Derfvation. These benchmarks are pro-
grammed in both of logic and functional pro ming.
In the simulation of functon reduction, the efect of dif-
ferent reduction strategies is also measured. The simu-
fated reduction strategies are Immermost Reduction in
which the innermost functional terms are reduced first
before the outer is tried, Semi-Lazy in which only the
strict functions are reduced in the innermost fashion, and
Lazy Reduction in which all functions are reduced in the
outermost fashion.

Upon the simulation results, the parallelizing over-
head, which is defined as the extra execution time for
parallel code running on the single processor, Is meas-
ured as about 30760 % when the grain size is relatively
small {for examnple, Frbonaccil0 angmslymbaﬁc Derivation),
whereas aboul less than 1 % when the grain size of paral-
lel task is large enough to ignore the overhead (for exam-
ple, Check50). Figure 6 graphically shows the speedup of
the execution time of all benchmark programs as a func-
tion of the number of processors. In this figure, since
Checi50 has only 10 parallel tasks, the speedup doest not
increase when the number of processors is larger than 10.
The speedup of other benchmark programs are not linear
because they have too fine-grained parallelism. The most
important fact which ean be identified from Figure 5 is
that, whether are programmed in the logic or functional
style, and whether the reduction strategy is innermost or outer-
most, the speedup behaviour is almost same. The speedup
ratio is not dependent on the execution mechanisms, but
the availability and grain size of parallelism in the bench-
mark programs. In other words, PFWAM-II can support
both of the parallel resolution and parallel reduction with
the almost same efficiency.

Figure 7 shows the Working, Waiting, and Idle
Hmes fiﬁruﬂwbaﬁc Derivation as a function of the number
of processors. It is from identified from Figure 7 that the
processor utilization ratio &5 reduced proportional to the
niumber of processors, and the reduction mechan-
ismn permits higher utilization ratio than parallel resolu-
ton Pl'vecause there is nio restriction to steal a task from
other processors when the task is a function reduction
{ie, there is mo "garbage slot problem [Hermenegildo
1986]" when executing the function reduction}.

5.2 Comparizon with Related Work

One of the most related works is the CSELT's work
centering around K-LEAF, K-LEAF [Levi and Bosco 1987]
is a functional logic | ge based on the transforma-
tion. A rewrite rule in K-LEAF program Is transformed
into Prolog clause with an extra argument for the return
value, and the nested function is flattened with prodiced
mariable for the outermost search strategy. K-WAM is an
abstract machine to support outermost-5LD resclution
which is the inference rule of K-LEAF. A.ncurd.i'?l%.
there is no real reduction mechanism in K-LEAF and K-
WAM.

A parallel extension of K-WAM on a distributed
memory multi is also developed [Bosco et al.
1990]. In this work, K-WAM is extended to :.;:1;:;]%
OR-parallel execution of K-LEAF

i -sﬁ;h'm.

parallelism is restricted to be onme The major
difference between the llel extension of K-WAM and
PFWAM-II is that the is designed for exploiting

only OR-parallelism in the flattened K-LEAF programs,
while the later is designed for exploiting only AND-
parallelism of Lazy Aflog programs.
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6 Summary

This presents a pair of a parallel computa-
tonal mog; and its abstract machine for a functional
logic lan , called Lazy Aflog, which wasmposed
as a cost-effecive mechanism te incorporate tiomal
language features inte logic language. The proposed
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computational model underlies DeGroot's RAP model
because the Restricted-AND Parallelism could be easily
exploited in both of the function and logic. However,
some extensions are required since there is a parallel
function reduction in the functional part of Lazy Aflog

programs. Since RAP-WAM includes the general struc-
tures to fork and join the parallel tasks, t.l'nzs“'ﬁ..-rl 1 fune-
tion reductions can be also supported efficiently with

shight extension. A el abstract machine based on
the RAP-WAM and extension of FWAM-II, called
PFWAM-II, iz alsa as an Implementation
method on 2 mul r. Several simulation results
show that PFWAM-II can su not only the parallel
resolution, but also parallel reduction with the almost
same efficiency.
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