PROCEETMMNGS OF THE INTERMNATIOMAL CONFERENCE
O FIFTH GENERATION COMPLUTER SYSTEMS 1992,
edited by ICOT. € 1COT, 1992

843

Parallel Constraint Solving in Andorra-I

Steve Gregnr}r and Rong Yang

Department of Computer Science
University of Bristol
Bristol BS8 1TR, England

steve/ronglcs.bris.ac.uk

Abstract

The subject of this paper is the integration of two
active areas of research: a parallel implementation of a
constraint logic programming language. Specifically,
we report on some experiments with the and/or-
parallel logic programming system Andorra-I
extended with support for finite domain constraint
solving.

We describe how the language supported by
Andorra-I can be extended with finite domain
consiraints, and show that the computational model
underlying Andorra-I is well suited to execute such
programs. For example, most constraints are
automatically executed eagerly so as to reduce the
search space; moreover, they are executed
concurrently, using dependent and-parallelism.

We have compared the performance of some
constrained search programs on Andorra-I with that
of conventional generate-and-test programs. The
results show that the use of constraints not only
reduces the sequential execution time, but also
significantly increases the and-parallel speedup.

1 Introduction

Much of the success of Prolog has been due to its
suitability for applications involving search: the.
language provides a relational notation which is very
convenient for expressing non-deterministic problems
and it can be implemented with impressive efficiency.
However, the search strategy built into Prolog is a
rather naive one, which tends to perform an
unnecessary amount of search for problems that are
stated in a simple manner. To solve realistic search
problems in Prolog, it is often necessary to perform
additional forward computation in order to reduce
the search space to a manageable size. However,
since this extra computation must be programmed in
Prolog itself, it may be an expensive overhead which
partly offsets the speed benefits of the reduced search.
Moreover, the resulting program is more opaque ancd
difficult to write than a natural solution in Prolog.

To improve on the search strategy of Prolog while
retaining its advantages is the motivation for the
development of constraint logic programming (CLF)
systems. Most of the CLP languages that have been
proposed are based on Prolog, extended with the
ability to solve constraints in one or more domains.
CLP languages use knowledge specific to their
domain to execute certain goals (“constraints”) earlier
than would be possible in Prolog, thus potentially
reducing the search space. Provided that the
constraint solving mechanism is implemented
efficiently and that the language is simple to use, the
search time can be reduced at little cost in either
forward computation time or increased program
complexity. One type of CLF language, which has
proved particularly useful for combinatorial search
problems, is that based on finite domains; this is
described in a little more detail in Section 2.

There have been many projects in recent years to
develop parallel implementations of Prolog. Most of
these systems incorporate either or-parallelism,
independent and-parallelism, or both. In contrast, the
Andorra-I system is an implementation of Prolog that
exploits or-parallelism together with dependent and-
parallelism, which is the sole form of parallelism
exploited in most implementations of concurrent logic
programming languages such as Parlog and GHC,
Andorra-I has proved effective in obtaining speedups
in programs that have potential or-parallelism and
those with potential and-parallelism, while in some
programs both forms of parallelism can be exploited.
Andorra-l, and the Basic Andorra model on which it
is based, are described briefly in Section 3.

The subject of this paper is the integration of the
above strands of research: a parallel implementation
of a constraint logic programming language.
Specifically, we report on our experiences with
extending the Prolog-like language supported by
Andorra-I to support finite domain constraint solving.
There are two main reasons why this is of interest:

1. Language. To investigate how easily the required
language extensions can be supported by the Basic
Andorra model.

844

2. Performance. To ensure that the finite domain
extensions can be implemented efficiently in
Andorra-I and that the efficiency is retained in
parallel execution.

Although a prototype or-parallel implementation
of the Chip language has been developed [Van
Hentenryck 1989b], we are not aware of any previous
investigation of and-parallelism with finite domain
constraints. By adding these extensions to Andorra-1
we can experiment with both forms of parallelism and
compare them.

It is particularly interesting to compare the
performance of constrained search programs on the
Basic Andorra model with that of conventional
generate-and-test programs (apart from the expected
reduction in overall execution time). The constraint
solving represents additional forward computation,
s0 — provided that the constraints can be effectively
solved in parallel — we would expect and-parallelism
to be Increased. At the same Hme, since the search
space is reduced, there may be less scope for or-
parallelism. The performance results obtained with
Andorra-1 confirm these expectations.

The next two sectons describe the background to
the paper. Section 4 discusses the implementation of
finite domain constraints on the Basic Andorra model.
It describes in detail the language extensions that we
have implemented and the struchure of programs that
use them. Section 5 presents some results of running
constrained search problems on Andorra-l. Section 6
concludes the paper.

2 Finite domain constraints

The idea of adding finite domain constraints to logic
programming originated with the work of Van
Hentenryck and his colleagues, and was first
implemented in the language Chip [Van Hentenryck
and Dincbas 1986; Dincbas ef al. 1988; Van Hentenryck
1989a). Chip extends Prolog in several ways to
handle constraints; the principal extensions relevant
to finite domains are outlined below. ’

21 Domain variables

Some variables in a program may be designated
domain variables, ranging over any specified finite
domain. Dromain variables appear to the programmer
like normal logical wvariables but are treated
differently by unification and by constraints.

2.2 Constraints on finite domains

Goals for certain conséraint relations behave in a
spe:ia,l way when they have domain wvariables as
arguments. For example, if ¥ is a domain variable, the
goal ¥ = 5 can be executed by removing from the
domain of X all items greater than 5. This in turm may

reduce the search space that the program explores. A
user-defined predicate may be made a constraint by
using a ‘forward’ or ‘lookahead’ declaration, while
some primitives (e.g., inequality) have such
declarations implicitly. (Unification can have a
similar effect: unifying two domain variables reduces
the domain of both to the intersection of their original
domains, while unifying a domain variable and a
constant may fail.}

23 Coroutining

Constraints should be executed as early as possible in
order to reduce the search space, For example, X £ ¥
could be executed as soon as either ¥ or ¥ has a value
and the other is a domain variable. In general, a
coroutining mechanism ensures that control switches
to a constraint goal as soon as it can be executed. The
simplest such control rule is forward checking, used for
forward-declared constraints, whereby a constraint is
executed as soon as its arguments contain at most ona
domain variable and are otherwise ground. The
constraint goal is then effectively executed for each
member of its argument’s domain and values that
cause failure are removed from the domain.

The lookahead rule, often used for inequality
relations such as ‘<", can even execute constraints
whose arguments contain more than one domain
variable; we shall not consider this further in this

paper.

3 The Basic Andorra model

The Basic Andorra model is a computational model
for logic programs which exploits both or-parallelism
and dependent (siream) and-parallelism. The model
waorks by alternating between two phases:

1. Determinate phase. Determinate goals are
executed in preference to non-determinate goals.
While determinate goals exist they are executed in
parallel, giving dependent and-parallelism. (A
goal is comsidered deferminate if the system can
detect that it can match at most one clause.) This
phase ends when no determinate goals are
available or when some goal fails.

2. Non-determinate phase. When no determinate
goals remain, one goal — namely, the leftmost one
thatis not det_only (see below) — is selected and
a choicepoint created for it. Or-parallelism can be
obtained by exploring choicepoints in parallel.

The model and its prototype implementation,
Andorra-l, are described in [Santos Costa et al. 1991].

Andorra-I supports the Prolog language
augmented with a few features specific to the model.
For example, det_only declarations allow the
programmer fo specify that goals for some predicate

can only be executed in the determinate phase; if such
a goal remains in the non-determinate phase it cannot
be used to create a choicepoint, even if it is the
leftmost goal. Conversely, non_det _only
declarations can be used to prevent goals from
executing in the determinate phase even if they are
determinate.

Performance results for Andorra-I show that the
system -obtains good speedups from both or-
parallelism and and-parallelism. The best and-
parallel speedups are obtained for programs that are
completely determinate (and therefore have no or-
parallelism to exploit). The best or-parallel speedups
come from search programs, especially when
searching for all solutions.

Unfortunately, very little and-parallel speedup has
typically been observed in running standard Prolog
search programs on Andorra-1. One reason for this is
the sequential bottleneck inherent in the Basic
Andorra model: the periods (both during the non-
determinate phases and while backtracking) when no
and-parallel execution is performed.

This suggests that the key to obtaining greater
and-parallel speedup is to increase the “granularity”
of the and-parallelism. That is, it is important to
minimize the number of choicepoints created and the
number of goal faflures, relative to the total number of
inferences. One way to achieve this in search
programs is by the use of constraint satisfaction
techniques,

4 Implementing finite domains
in Andorra-I

In order to experiment with finite domain constraint
solving on Andorra-I, we have defined and
implemented finite domains and a few simple
primitives to operate on them. Qur system defines a
new data type, a domain, which exists alongside
numbers, structures, etc. Domains can only be used
as arguments to the domain primitives and have no
meaning elsewhere in a program; for example, they
cannot be printed. A domain is created with a set of
possible values that it may take; eventually it may
become instantiated to one of those values, at which
Hme we call it an instantiated domain. In contrast with
the Chip concept of domain variables, a domain
instantiated to ¢ is not identical to f. We write a
domain as a set {£,... 4y}, where &,... 1 are its current
possible values; {f} represents an instantiated domain.

Our domains are easier to implement than domain
variables because there is no need to change many
basic operations of the system such as unification,
suspension on variables, etc. At the same Hme, the
efficiency of implementation should be comparable
with that of domain variables, while our primitives
are still quite convenient to use.

845

We describe our primitives first and then oulline
their use and implementation.

4.1 Finite domain primitives

Domains can be created by the primitives
make_domain and make_domains. The latter is
potentially more efficient when creating many
domains ranging over the same values since the table
of values can be shared.

All of the other primitives operate on existing
domains; they can only be executed when their first
argument is instantiated and will fail if this is not a
domain. domain_var performs the mapping
between a domain and its ultimate walue, while
domain_remove allows the removal of values from a
domain. Either of these may cause the domain to be
instantiated: the first in a positive way, the second by
removing all but one of the values. domain_guessis
the only non-determinate primitive. The last two,
domain_size and domain_values, may yield
different resulis depending on when they are called
and should therefore be used with care,

make demain (D, Set)

Can be executed when Set is instantiated to a
non-empty list of distinct atomic terms, [f1,...,6].
1, which should be an unbound variable, is bound
to a new domain, [f,....bd.

make_domains (Dg, Set)

Can be executed when Set is instanbated to a
non-empty list of distinct atomic terms, [#1,....44],

and D= is a list of variables. Each variable in D= is
bound to a new domain, [t,....5).

demain_war (D, Var)

Unifies var with the valye variable (a2 normal
logical variable) of domain D. Subsequently, if D
becomes an instantiated domain {t], ¢ is unified
with var. Alternatively, if Vvar becomes
instantiated to ¢, if ¢ is currently in the domain D, »
becomes an instantiated domain {#}, otherwise
failure oecurs.

demain remove (D, Valua)

Can be executed when Value is ground. If Value
is not currently in the domain b, there is no effect.
If 0 is the instantiated domain [value] the
primitive fails. Otherwise Value is removed from
the domain; if only one value, {, remains in the
domain D becomes instantiated to [#).
domain_guess (D)
Instantiates D non-determinately to one of its
possible values. If D is the domain [t1,...,t), D is
instantiated successively to {t1), ..., {tn).

Note that domain guess (D) Is non-
determinate (unless D is already instantiated) and
can therefore be executed, only if there are no
determinate goals to execute.

846

domain siza (D, Siza)
Size is unified with a positive integer which
indicates the number of values currently in
domain D.

domain_values (D, Values)

Values is unified with a list of the values
currently in domain n.

42 Finite domain programming

Like Chip, our aim is to provide the programmer with
a language as close as possible to Prolog but with the
extensions necessary for constraint programming,
However, the “Prolog” language supported by the
Basic Andorra model differs in behaviour from that of
regular Prolog, and this affects how the language is
used. In this section we outline how our primitives
can be employed in the context of Prolog on
Andorra-l to solve constraint problems.

Program 1 is our solution to the familiar N-queens
problem. This program is almost identical to the Chip
one on pl23 of [Van Hentenryck 1989a), except that
the result of the goal four_ gueens (Qs) is a list of
domains (which can be converted to a numeric value
by domain_wvar). However, it executes differently.
The execution order in Chip is the same as in Prolog,
repeatedly executing a domain_guess goal for one
domain followed by a noattack goal to remove
inconsistent values from the other demains. On
Andorra-I the program executes all of the queens and
noattack goals first, since they are determinate, and
sets up all ‘#" constraints before domain_guess is
called to non-determinately generate domain values,

four gueens{Qs) :-
Qs L [Qliquqafﬂ'q']r
make_domains (Qs, [1,2Z,3,4]),
gueans (Qs) .

queens{[]}.

gqueens([Q10s])) :-
domain_guess (0},
noattack {Q, Qs, 1),
gueens (Qs) .

1,).
noattack(Ql, [02TgQs]l, W} :-
Q1 # Q2,
01 = Q2 - N,
0l # 02 + N,
Kl is N + 1,
noattack (Q1,

noattack(,

Qs, MN1l).

Program 1: N-queens

At the end of the first determinate phase, the
resclvent contains only the following goals, for
domain_guess and the inequality predicate '#',
where each of 91, 02, 03, and 04 is an uninstantiated
demain:

domain_guess{Q1),

0L #02, Q1 #02 -1, QL # 02 + 1,

Q91 # Q3, 01 # Q3 - 2, Q1 » Q3 + 2,

QL =+ 04, Q1 # Q4 - 3, Q1 = Q4 + 3,
domain_guess (2],

QE¢Q3,Q21¢Q3—1,Q2#Q3+1,

Q2 % Q4, Q02 +# 04 - 2, 02 2 04 + 2,
demain_guess (03},

Q3 # 04, 03 = 04 - 1, Q3 = Q4 + 1,

domain_ guess (Q4) .

The only goals that can be executed in the non-
determinate phase are for domain_guess, since the
‘#" goals are treated as det_only (see Section 3).
Selecting the leftmost goal, domain_guess (Q1), Q1 is
instantiated non-determinately to the domain {1} and
a new determinate phase begins, in which all nine ‘»'
goals containing Q1 can be executed in parallel.

This example illustrates a difference between our
language and Chip, which follows from the Basic
Andorra model: that the order of goals in a clause is
irrelevant. Constraints and generators can appear in
any order, but the constraints will always be set up
before any non-determinate bindings are made. This
is important, since it results in a smaller search space.
In order to get the same effect (called “generalized
forward checking”) in Chip, the structure of the
program has to be changed. However, we do have to
make sure that constraints can be executed
determinately, so that they execute first, whereas
constraints need not be determinate in Chip.

The inequality predicate “#' used above is an
example of a constraint that is to be executed by
forward checking. Such predicates can be
programmed using the primitives of Section 4.1. As
an example, Program 2 defines a constraint
plusorminus (¥, ¥, C), which means X=Y-C or
¥=Y+C. This can be executed in a forward checking
way when either of domains X and ¥ is instantiated
and the third argument is ground; it then leaves only
{at most) the two values ¥-C and ¥+C (resp. X-C and
¥+C) in the domain of ¥ (resp. ¥).

In Program 2 we use Pandora syntax [Bahgat and
Gregory 1989]. The plusorminus procedure is a
“don’t-care procedure” in the style of Parlog: the first
clause removes the appropriate values from the
domain of ¥ if domain ¥ is instantated, while the
second does the converse. This procedure uses the
data primitive to wait for the domain to be
instantiated and the operator “:' to commit to the
appropriate clause. A sequential conjunction operator
‘&" is used in the pm procedure, so that the values
currently in domain ¥ are found (by a call to
domain_values) only after the other arguments are
instantated. It then filters these values to find
which ones must be removed from the domain, and
removes them by calling demain_remove.

In addition to primitive constraints such as
inequality, Chip allows user-defined constraints,
These are conventional Prolog procedures augmented
with a ‘forward’ declaration indicating which

arguments should be ground and which should be
domain variables. For example, plusorminus is
defined [Van Hentenryck 198%a: p134] as follows:

forward plusorminus (d,d,q).
plusorminus (¥,¥,C) :— X is ¥ - C.
plusorminus (¥, ¥,C) :— X is ¥ + C.

The problem with allowing user-defined
constraints in Andorra-1is that the procedures may in
general be non-determinate and, in any case, a search
is required through the elements of a domain. One
way to handle such constraints is by transforming the
procedure to a determinate, forward checking,
equivalent, as we did with pluscrminus in
Program 2. Another way would be to use a
“determinate bagof” primitive which is currently
being implemented in Andorra-I. This is similar to
the bagof of Prolog but it executes as part of the
determinate phase as a new subcomputation, even if it
has to create internal choicepoints.

mede plusorminus(?, 7, 7).
plusorminus (X, ¥, C) <-
domain wvar (X, Xv), data(Xv)
pmiXe, ¥, ©).
pPlusorminus (X, ¥, C) <-
domain wvar(Y, ¥v), data(¥v) :
pm{¥v, X, C).

mode pm{?, 7, 7).

pm{Xv, ¥, C) <=
¥Yvl 12 Xv - C,
¥v2 is Xv + C &
domain wvaluss(¥, Yvs),
filter{Ywvs, ¥vl, ¥YvZ, Remove),
remove all (¥, Remowve).

mode filter(?, 2, 7, ™).
filterd[]l, _, _, [1).
filter(f[Vl|Vs], V1, V2, R) =-
filter(Vs, V1, V2, R}).
filter([V2|Vs], V1, V2, R) =<-
Filter{Vs, V1, V2, R).
Filtar([V|Vvs], V1, V2, [V|Vsl]) <-
VA== V1, V \== V2,
filter(vs, V1, VZ, Vsl).

mode remove all(?, 7).

remove all(. []).

remove all (D, [V]|vVs]) <-
domaln remowve(D, V),
remove_all (D, Vs).

Program 2: Pandora program for the
plusorminus constraint

The deleteff predicate of Chip, which is used to
implement the first-fail heuristic, can easily be
programmed using another of our primitives,
domain size. deleteff (Best,Dsz,Rest) finds
Best as the domain in list D= that has the smallest
current size; Rest contains the remaining elements of
Ds. Program 3 is a program for N-queens which

847

implements the first-fail heuristic {the noattack
procedure is the same as in Program 1), and illustrates
the general structure of such programs. Note that the
"guessing” and “checking” components (the
guess_gueens and check_gueens procedures)
must be separated, though their order is unimportant.

four queens (Qs) :-
Qs = [QL,0Q2,03,Q04],
make domains(Qs, [1,2,3,4]},
guess_queens (0s) ,
check gqueens (Qs) .

guess qgqueens ([]).

guess gueens([Ql0s]) :=
deleteff (Best, [Q1Qs], Rest),
domain_guess (Best),
guess gueens (Rest) .

check queens([]}.

check gqueens ([Q|0s]) :-
noattack (Q, 0s, 1),
check gueens (s} .

Program 3: Changes to N-queens to implement first-
fail heuristic

The main issue in using deleteff in an Andorra-I
program is to ensure that it is called at the right time,
i.e., immediately before a choicepoint is created. By
default, Andorra-1 would execute all the deleteff
goals Immediately, since they are determinate. This
would just choose the domains to guess in a fixed
order. The easiest way to avoid this problem is to
declare deleteff to be non_det _only (see
Section 3).

During the first determinate phase, the
check queens goal executes to completion,
spawning the same inequality (*#') goals as in
Program 1, while quess queens ([Q1,Q2%,03,047)
reduces to the following:

deleteff (Best, [QLl,02,03,04],
domain_guess (Best),
guess_gueens (Rest)

Rest),

Now the leftimost goal, deleteff, runs and finds the
smallest domain from [Q1, 02,03, 04]. In the next
non-determinate phase domain_guess is called for
the chosen domain, allowing some of the constraints
to execute; when no more constraints can be executed,
the next deleteff goal can execute, and so on.

4.3

There are several ways to represent domains and to
implement the predicates listed in Section 41. The
predicates could be implemented by logic programs,
provided we design a suitable representation of
domains. Two of them, domain_var and
domain_ remove, modify the state of a domain but,
happily, domains have the property that their size
monotonically decreases. This enables us to represent

Implementation

848

each domain by a tuple of logical variables, one for
each possible domain value; the variable is bound to 0
when the value is removed, or 1 when the domain is
instantiated to that value.

Given such a representation, the properties of a
domain (e.g., it must not be empty, it cannot be
instantiated to a value that has been removed, and so
on) must be preserved. One way to do this is for each
operation to check the state of the domain before
modifying it. This works well in a sequential logic
programming system, but is extremely complex to
implement correctly in an and-parallel context
because of contention by several operations
modifying the same domain in parallel. A better
method in the presence of and-parallelism is to spawm
a process network to maintain the properties of a
domain at the time it is ereated. This technique was
described in [Bahgat and Gregory 1989],

Both of the above techniques were used to
prototype our domain operations. However, to get
more meaningful performance results, we wished to
implement them as efficiently as possible, so a lower-
level implementation was developed. A domain is
represented by a structure containing the following
fields:

1. A term (initially an unbound wvariable)
representing the ultimate value of the domain,
This term can be accessed by the domain_var

primitive.

2 A boolean array with one bit for each potential
member of the domain.

3. The number of elements currently in the domain.
This field is accessed by the domain_size
primitive,

4. The position of the last element guessed non-
determinately.

5. A reference to a table mapping between domain
values and posiiions in the domain.

The key implementation issues concern how to
update the domains. Conditional modifications to
domains (fields 2, 3, 4) need to be trailed. Fortunately,
this can be achieved using the “updatable variables”
which are already implemented in Andorra-I and
used for many other purposes.

Each domain may be concurrently accessed by
many constraints. To implement the required mutual
exclusion, the value variable of a domain (field 1) is
locked while the domain is modified, using the
normal variable locking mechanism of Andorra-I.
Each constraint locks only one domain at a Hme, so
there is no danger of deadlock. Starvation is avoided
because a domain is locked only when values are to
be removed, and the size of domains is finite.

Both the updatable variables and variable locking
features of Andorra-I are described in [Santos Costa ef
al, 1991].

5 Performance results

In this section we present some results obtained on
the Andorra-I system running on a Sequent
Symmetry. Each of the tables gives the results of
running a particular program on different problem
sizes. The respective columns show:

BT the number of backirackings,

Time the execution time (in seconds) on one
PrOCessor,

And-f/ the and-parallel speedup when run on 10
PTOCESSOTS,

Or-ll the or-parallel speedup when run on 10

PrOCessors.

(The speedup figures are simply the ratio of execution
time on one processor to that on 10 processors.)

Table 1 shows the results of a standard Prolog
program for N-queens. The structure of this program
is similar to that of Program 1, but it makes no use of
forward checking: it simply places a queen on each
row non-deterministically and tests each time that the
resulting configuration is safe with respect to
previously-placed queens. The top part of the table
gives results of a search for all selubions, while the
bottom part shows a search for the first solution.

N | BT Time | And-//| Or-//

All 4 18 022 1.05 1.57
solns & 208 292 1.11 423
8 3544 54.32 117 8.83

10) 75120 125041 1.21 9.82

First 4 7 0.11 1.00 092
soln (i1 46 0.65 112 241
8 223 3.27 1.16 3.85

10 276 3n 1.16 1.98

12 873 11.94 119 1.51

16| 42885 633,78 1.26 1.10

Table 1: Standard backtracking program for
N-queens

Table 1 confirms that the search space and
execution time increase dramatically as the problem
size increases. It also shows that the or-paralle]
speedup for the first solution is very variable. This is
usual, since an or-parallel search for one solution
explores a different part of the search tree than a
sequential search, so the backtrack count will differ

from that shown in the BT column and indeed will
vary between runs. (We give the best or-parallel
speedup obtained from several runs.) The consistent
results are that a large or-parallel speedup is seen
when searching for all solutions, while there is a very
small and-parallel speedup in all cases. Both of these
increase as the problem size increases. In every case,
the or-parallel speedup observed is better than the
and-parallel one.

Table 2 gives the same results for the forward
checking program (Program 1). As expected, the
search space is much reduced. The fact that the total
execution time Is also much smaller indicates that our
implementation of finite domains is efficlent enough
that the cost of constraint solving pays off. The and-
parallel speedup for this program is substantially
larger than for the standard backiracking program
(though it is still rather small), while the or-parallel
speedup is generally less. In contrast to Table 1, for
the first-solution search, the and-parallel speedup

always exceeds the or-parallel one.

N BT Time | And-// | Or-//

All 4 7 0.09 1.50 1.00
solns [41 0.64 1.78 2.91
B 417 8.34 1.86 6.95

10 BoaT 142 .54 1.99 9.37

First 4 2 0.05 1.67 1.00
soln (3] 8 0,19 1.73 1.4A
B 24 0.52 2.08 2.00

10 24 .61 218 149

12 54 1.42 222 1.34

16 1833 5356 244 212

Table 2: Forward checking program for N-queens

We carried out similar experiments for the graph
colouring problem: to colour a graph so that
neighbouring nodes have distinct colours, and so that
the number of colours used (the chromatic number) is
minimized. The programs for this problem perform a
depth-first branch-and-bound search by first finding
an approximate solution with chromatic number C,
then restarting the search with the added constraint
that no node can be given a colour greater than C-1;
this is repeated until no better solution is found.

Two programs for this problem were tested. The
standard backtracking program colours nodes in
descending order of degree; each time a node is
coloured, each possible colour (from 1 to the current
upper bound, C-1) is compared against the colour of
each coloured neighbour. The forward checking
program uses a domain of size C=1 for the colour of
each node; when a node is coloured, the chosen colour
is removed from its neighbours’ domains. The latter
program uses the first-fail heuristic to decide the
order in which to colour nodes; when more than one

840

node has the smallest domain, the one with the
greatest degree is chosen.

Tables 3 and 4 give the resulls of our two graph
celouring programs run on several randomly

erated, constant density, graphs. N is the number
of nodes and D is the density (the probability that any
two nodes are connected). CN is the chromatic
number of the graph. In the top half of each table we
keep the size constant and vary the density; below we
keep the density constant and vary the size.

N | D |CN BT Time | And-//
0] o1 3 82 8.04 462
| 03 5 1768 29.20 247
0| 05 7 2891 4953 2.50
0 07 10 5567 8L.47 223
30 09 16 3610 87.72 3.10
10| 05 4 26 1.26 371
200 05) =& 372 12.86 3.75
30| 05 7 2891 49.53 250
40| 05 & | 256888 | 1557.59 1.09
Table 3: Standard backtracking program for

graph colouring

N D | CN BT Time | And-//
an| o1 3 1 10.68 3.63
30| 03 5 2| 2309 5.30
{05 7 3 3572 6.01
30| 07| 10 5| 5898 616
30| 09| 1s 1 60.55 6.89
10| 05 4 1 167 341
201 05 6 1 11.56 3.28

- 30 05 7 3 3572 - 6.01
40| 0.5 B 9 97,96 6.35

Table 4: Forward checking program for
graph colouring

The results show that the use of forward checking
dramatically reduces the search space, and also
reduces the sequential execution time, especially for
larger graphs. Moreover, the and-parallel speedup is
much greater for the forward checking program.

6 Conclusions

We have described some extensions to Andorra-I that
allow us to experiment with finite domain constraint
logic programming in a parallel context. These
extensions were implemented with very little effort,
thanks to the existing features of the Andorra-I
systern, such as its coroutining mechanism, updatable
variables, variable locking, etc. We have also shown

850

how easily constraint programs can be written in the
Prolog variant supported by Andorra-1. For example,
provided that constrainls are determinate — a very
common case — they are automatically executed
"actively”, in preference to non-determinate guessing.

Owur experiments have confirmed that programs
which use constraints are much faster than similar
generate-and-test programs, demonstrating that our
implementation of forward checking has no
substantial overhead.

The results of parallel execution are particularly
interesting. Constraint programs exhibit greater and-
parallelism than generate-and-test programs, because
the extra computation involved in forward checking
can be parallelized by solving constraints in parallel.
Evidence of this is the difference between Tables 1
and 2, and between Tables 3 and 4. For example, on
one processor, forward checking solves the 16-queens
problem 12 times faster than standard backtracking,
and colours the 40-node graph 16 times faster. On 10
processors, the speed improvement due to forward
checking increases to 24 Hmes and 92 times,
respectively.

Or-parallelism is usually measured for all-
solutions search, mainly because this gives more
consistent results than a search for one solution since
the whole search tree is explored. The or-parallel
speedup for a first-solution search is very variable and
depends heavily upon the nature of the or-parallel
scheduler built into the system. However, in many
combinatorial search problems it is impractical to
search for all {or many) solutions, so it is arguably
more realistic to measure performance for first-
solution search. Our resulls always give a much
smaller or-paralle]l speedup for the first solution than
for all solutions.

For the generate-and-test program of Table 1, the
or-parallel speedup does exceed the and-parallel one,
which is negligible. However, for the forward
checking program of Table 2, the opposite is true.
Although the and-parallel speedup in Table 2 is not
large, it is enough to tip the balance in favour of
exploiting and-parallelism, given a choice.

Finally, we should mention that all of our results
concerning and-parallelism are specific to the Basic
Andorra model, This is because Andorra-1is the only
serivus Prolog implementation that features
dependent and-parallelism. (It seems unlikely that a
system with independent and-parallelism could give
similar results, since forward checking involves the
solution of constraints that are mutually dependent.)
As we noted in Section 3, the Basic Andorra model
has a sequential bottleneck with respect to and-
parallelism, which is ameliorated by the use of
constraint solving. It would be interesting to see
whether our results extend to other computational
models combining dependent and-parallelism and
search. An example of such a model, not yet
implemented, is the Extended Andorra model

[Warren 1990], which can execute even non-
determinate dependent goals in parallel and therefore
should not have such a bottlenack.

Acknowledgements

This work would not have been possible without the
work of colleagues who implemented various
components of the Andorra-I system, in particular
Tony Beaumont, Inés Dutra, and Vitor Santos Costa.
We are grateful to Reem Bahgat and the referees
for helpful comments on a draft of this paper.
Rong Yang is supported by ESPEIT contract 2471,

References

[Bahgat and Gregory 1989] R. Bahgat and 5. Gregory.
Pandora: non-deterministic parallel logic
programming. In Proc. 6th Intl. Cﬂ:r:f. on Logie
Programming (Lisbon, June). MIT Press, 1989, pp.
471-486.

[Dincbas &f al. 1988] M. Dincbas, H. Simonis, and P.
Van Hentenryck. Solving a cutting-stock problem
in constraint logic programming. In Proc. 5th Inti.
Conf. on Logic Programming (Seattle, August). MIT
Press, 1988, pp. 42-58.

[Santos Costa ef al. 1991] V. Santos Costa, DUH.D.
Warren, and R. Yang. The Andorra-I engine: a
parallel implementation of the Basic Andorra
model. In Proc. 8th Inil. Conf. on Logic Programming
(Paris, June). MIT Press, 1991.

[Van Hentenryck 1989%a] P. Van Hentenryck.
Constraint Satisfaction in Logic Programming. MIT
Fress, 1989.

[Van Hentenryck 1989b] P. Van Hentenryck. Parallel
constraint satisfaction in logic programming. In
Proc. 6th Intl. Conf. on Logic Programming (Lisbon,
June). MIT Press, 1989, pp. 164-180.

[Van Hentenryck and Dincbas 1986] P. Van
Hentenryck and M. Dincbas. Domains in logic
programming. In Proc. AAAI-86 (Philadelphia,
August 1986).

[Warren 1990] D.H.D. Warren. The Extended
Andorra model with implicit control. ICLPS0
Waorkshop on Parallel Logic Programming (Eilat,
Israel, June 1990).

