PROCEEDINGS OF THE INTERMATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by [COT, £ 1COT, 1992

897

Less Abstract Semantics
for Abstract Interpretation of FGHC Programs

Kenji Horiuchi

Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN

horiuchi@icot.or jp

Abstract

In this paper we present a denotational semantics for
Flat GHC. In the semantics, the reactive behavior of a
goal 18 represented by a sequence of substitutions, which
are annotated with 4+ or — depending on whether the
bindings are given from, or posted to the environment of
the goal. Our objective in investigating the semanties
is to develop a framework for abstract interpretation.
So, the semantics is less abstract enough to allow an
analysia of various properties closely related to program
sources, we also demonstrate maoded type inferepnce of
FGHC programs using abstract interpretation based on
the semantics,

1 Introduction

Various work on the semantics for concurrent logic
languages has been investigated by many researchers
[Gerth et al. 1988][Murakami 1988][Gaifman et al, 19589]
[Gabbrielli and Levi 1990][de Boer and Palamidessi
1990]. Omne of their main purposes is to identify one
program with another syntactically different program,
or distinguish between syntactically similar programs.
And, since some researchers are interested in properties
like fully absiraciness, they may want to hide iniernal
communications from the semantics or want to abstract
even observable behaviors much further.

Since our main cbjective 15 to analyze 2 program
unlike the above researchers, we want to have a fix-
point semantics suitable to the collecting semantics, on
which sur framework of abetract interpretation is based.
But once we try to introduce one of their semantics to
a framework of abstract interpretation, the semantics
may be too abstract to obtzin some of the properties
we require.

In this paper we present a denotational fixpoint se-
mantics for Flat GHC. In the semantics the reactive
hehavior of a goal is represented by a sequence of sub-
stitutions which are annotated with + or — depending
on whether the bindings are given from, or posted to the
environment of the goal. The semantics presented here
is less ebstract enough to allow an analysis of various
properties closely related to PrOgram sources, e.5., On
oceurrences of symbols in programs or internal commu-
nications. We also demonstrate moded type inference

of FGHC programs using abstract interpretation.

We briefly explain the concurrent logic programming
language Flat GHC and its operational semantics in
Section 3 after we introduce the preliminary notions in
the next section. Next we present the fixpoint approach
to the semantics of Flat GHC in Section 4, and then in
Section § we show the relationship between the fixpoint
semantics and the operational semantics. After review-
ing a general framework for abstract interpretation, we
ghow examples of analyzing FGHOU programs,

2 Preliminaries

In this section, we introduce the following basic notions
uged in this paper, many of which are defined as usual
[Lloyd 1987][Palamidessi 1990].

Definition 2.1 (Funetor, Term, Atom, Predicate
and Expression)

Let Var be a non-empty set of variables, Fune be a st
of funciors, Term be a set of all Zerms defined on Var
and on Funec, Pred be & set of all predicetes and diom
be & set of all afems defined on Term and Pred.

An ezpression is a term, an atom, a tuple of expres-
sions or a (multi)set of expressions, and we denote a set
of all expressions by Ezp. We also denote the set of all

variables appearing in an expression E by var{ E).

Definition 2.2 (Substitution)

A substitution 8 is & mapping from Var o Term such
that the domain of # iz Bnite, where the domain of , de-
noted by dom(6), is defined by {V € Var | 8(V) 2 V].
The substitution # is also represented by a set of assign-
ments such that {Vt | V e dom{6) A 8(V) = t}. The
identity mapping on Var, called an idendity substitution,
is denoted by 8. The range of 8, denoted by ran(f), is a
set of all variables appearing in terms at the right hand
side of each assignment of 8, i.e., Jygiamea) vor(8(V)).
var(f) also denotes the sct of variables dom(8)U ran(#@)

When E is an expression, E# (or (E)f) denotes an
expression obtained by replacing each variable V in E
with #(V). The compesition of two substitution # and
o, denoted by #r, is defined as usual [Lassez et al
IQ‘BT][PaIamidessi -lggﬂ]. A substitution ¢ is assumed
to be always idempoient [Lassez ef ol 1987]. (ie.,

598

dem(#) N ran{f) = §, where @ denotes an empty set.)
And the result of compesing substitutions is also as-
sumed to be idempotent. The set of all idempotent
substitutions 13 denoted by Subst and the set of all re-
namings is denoted by Ren. A restriction of § onte
var(E) is denoted by 6| g.

Definition 2.3 (Equivalente Class and Partial
Ordering)
A pre-ordering = on Subst, called an insfaniiation or-
dering, is defined as follows: 6 =< 8; iff 3o(f;0 = 4;),
where 1, 83,7 € Subsi. The eguivalence relation w.r.t,
an instantiation ordering =, denofed by ~, is defined
as follows: & ~ 8 iff In(dn = 83), where g Ren.
And substitutions &, and #, are said to be in an equiv-
alence class when) ~ 8. A set of the eguivalence
classes of Subst is denoted by Subst;.. A partial order-
ing on Subst .., also denoted by =, is naturally induced
from a pre-ordering = an Ezp. We denote the equiv-
alence class of a substitution § by ., or simply by
#. Given T as the greatest element on = of Subst ..,
Subst;.. can be naturally extended to Subst] . Then

{Suba!}m, =) forms a complete lattice.

Definition 2.4 (Most General Unifier)

A most general wnifier ('mgu) @ of expressions B, By,
denoted by mg‘ﬂ(E]_:Ez:l, iff E]_Ig = FEof and E;E’ =
Eq6' 28 < & for all 8. Let U be a set of equations
{s1=t1,..., w=tn}. Then mgu((oyy. - ,suls s+ ta])
is also denoted by mgu(l/). A substitution & can also
be represented by a set of equations, denoted by Eg(#),
such that Eg(f) = {X=t | (X «t)ed}.

Definition 2.5 (Directed)

Let f1, 82 be substitutions. Then &, and & are said to
be directed, denoted by &) s 8y, Hf var(f)) N var(fy) =
dam (8} N dom{).

Example 2.1 Consider two substitutions §; = { X
UY+U}, f; = {X ¥} in an equivalence class and &
substitution ¢ = {X = f(V), ¥« f(a)}. Then §; and «
are direcied, but # and o are not directed,

As (Subst)., =) forms a complete lattice, every sub-
set of Subst) hes the lub {least wpper bound) and
the glb (greatest lower bound) wori. <. Several al-
gorithms for computing the fb and the glb have al-
ready been presented [Lassez ef ol 1987][Palamidessi
1990]. In [Palamidessi 1990], two operations: Subst ;.. x
Substy.. -+ Subsi;.. are provided, which are called a
parallel compositionand a paralle! factorization] This
has shown &, 162 = lub(8y,8;) and 6, 182 = glb(81,8,).

We now review the two operations in [Palamidessi
1990] briefly. Let 8, 82 be (equivalence classes) of idem-
potent substitutions. & 78, is defined mgu(Eg(6;) U
Ey(8:)). And 6 |8 is defined by using the facter-
izeiion algorithm which repeatedly replaces the differ-
ent symbal at the same position in the bindings by a
variable and finally generates (an equivalence class of)

a substitution 5 as the gib{d,8) with two addenda
71,0, Then, the following property is also shown be-
tween these substitutions: noy = & and gos = 6y,
where oy, 07 are called side substitutions, Here we call
7 (or o3) a most general difference mgd) of 8y (or
6,) from 8, (or 8;), and denote it by mgd(#,,8;) (ar
mgd(fy, 6,).)

Definition 2.6 (Compatibility and Complement)
#; and f; are said to be compatible, denoted by 6, = 8y,
iff lub(8),8:) # T. And they are said to be incom-
patible, denoted by &, # 8, iff lub(d), &) = T. A
complement of a substitution 8. € Subst;.., denoted
by . or 8, is a set of all (equivalence classes of)
substitutions incompatible with 8, which is defined by
{6 € Subst,.. | 6.. 5% 6.}

Example 2.2 Consider substitutions §; = {X ~
£(2),Y—f(Z2)} and 6, = {Xef(a), Ye—f(b)}. Since the
parallel composition & {8y i3 T, they are incompatible,
And the parallel factorization &), |6 is the substitution
{X—fU)Y + f(V)}, and the most general difference
mgd(8y,82) is {Us—V} and mgd(8y,8,) is {Uea, Ve-b).

3 Flat Guarded Horn Clauses

Now, we briefly recall a concurrent programming lan-
guage Flat Guarded Horn Clauses (FGHC), and then
define the operational semantics of Flat QHC in terms
of a transition system [Ueda 1990b)].

3.1 Syntax of FGHC

An FGHC program is a set of flat guarded clauses. A
flat puarded clause {(simply, clouse) is of the form:

Ffil,-..,,fﬂ =G, Gm |Bl,...,Bn.
(k,m,n = 0),

where pis a k-ary predicate symbol, 1;,.. . , 1, are terms,
and G,..., Gm, B1,..., By are atoms. The atom
plts, ..., 1) is called a head, the head and G4,..., 5,
are called a guard and By, ..., B, is called a body. One
binary predicate *=" for unifying two terms is prede-
fined by the language, a goal of which is called a unifi-
cation goal Each guard goal &; must be a unification
goal.

3.2 Operational Semantics of Flat GHC

In [Ueda 1990b], Ueda has defined the operational se-
mantics of FGHC in the style of Plotkin, Here we
present it by following his definition.

Drefinition 3.1 (Transition System of FGHC)

A transition system of an FGHC program P is defined
by using a configuration and a tronsition relation. A
configuration is a pair of the form (B, E} where Bis a
multiset of goals and E is 2 binding environment of B.
A binding environment E is a multiset of equations
with a set of variables V such that var{ B)Uver(C) C V,
denoted by C: V,

A transition relation under P, denoted by Transp,
is the smallest set of binary relations on configurations,
denoted by - — -, such that:

{B1, Ci: W1} = (By, Ci: W)
(Bs U Bs, Ci:VA) — (BY U By, CL: V)

(1)

({A=H}UG, C:V Uvar((H,G)} = (B, CUC: V")
AT, C:-V) = (B, CUC,: V' U var(B))

if dec PEnc Ren((H -G |B) = en AV Nuar(cy) = 0)

and =Y{C 2 3(var{C,) Y var{4)).C;) {2}

{s=t, C: V) = (B, C U {s=t}: V))

When oy — oo € Transp, £y — oo 18 88id to be in the
transition system of P or oy is said to be reduced fo o
under & program P, Then, a computation of a program
P with an initial goal B is represented by a (possibly
infinite) sequence of transitions in Trensp; o) — g —
<o. =+ ¢ —+ ... such that ¢ iz {B, B:var(B)}. Bach
configuration ¢;{f = 1) is called a possible configuration
from B,

We may use alternative denotations E}, 5 and S
corresponding to transition rules (1),(2) and (3) respec-
tively if it is necessary to identify them. The reflexive
and transitive closure of —, by applying = {or 5
once only, is denoted by = {or '—:'J, respectively,) or by
= simply.

4 Fixpoint Approach to the Semantics

In this section, we show that a computation of a multi-
set of goals & is modeled as interleaving computations
of each goal in & and the model can be computed as
the fixpoint of the semantic function defined here.

4.1 Atom Reaction

We are intereated in reactive behaviors between a given
initial goal and a (possibly altered) environment which
may be implemented by other goals, rather than the
fixed behavior and the final result induced from the ini-
tial goal and the initial environment. In such a case the
environment (i.e., the other goals) may also be (mono-
tonically) altered by reacting against the initial goal
and for its subgoals during the computation of the ini-
tial goal.

Here possible reactive behaviors of a initial goal cor-
responding to various environments are denotationally
modeled by using sequences of substitutions.

Definition 4.1 {Unit Reaction)

A unit reaction is a substitution with an annotation ‘+’
or ‘=', denoted by #* or 8~ where # is a substitution.
#* is called an input unit reaction and 8~ is called an
outpul unit reaction. We may denote a wunit reaction
without an annotation when we do not need to distin-
guish input or owiput from each other, A substitution
& obtained from a unit reaction § = #* by removing
an annotation a is denoted by |6]. A set of all input

200

unit reactions {8% | 8 & Jubst) is denoted by reaet™,
a set of all output unit reactions {f~ | # € Subst}
iz denofed by Uresct™, and a sef of all unit reaction
Ureact™ U Ureact™ is denoted by Ufreact.

Next we intreduce special symbols, called lermina-
fion symbals, which represent special states in reactive
behaviors,

Definition 4.2 (Terminal Symbol)

A terminetion symbolis Leye, Lo, Lyr or Lgy, {or sim-
ply by 1), which represent finite success, reduction
failure, unification fatlure and deadlock respectively.
Then Ureacl® denotes Ureact U {Lowe, Lety Lot £}
|Lanel = |Letl = |Lar] = 8, and [L[=T.

Now we define various operations on unit reactions
by extending operations on the substitutions defined
above,

Definition 4.3 {Operations on Unit Reactions)
Let o be a substitution, & be & unit reaction and «
be an annotation of 4. Then demein and range of
unit reaction are defined by dom(d) = dom(|§]) amnd
ran{d) = ran{[d]). mge and mgd of a substitution
a and a unit reaction & are defined by mgu(s, &) =
mgu(d, o) = mgu{|8], ¢)*, mgd(d, o) = mgd(|8],)* and
mgd(e,§) = mgd(e, |6]). e=ad and S iff 7 oa 5] or
|€] bt e

For a unit reaction §; and a sequence of unit reac-
tions A, 6; i said to be in A iff 6L < i < n)(A =
830s...8,), and denoted by §; € A, An empty sequence
of unit reactions is denoted by O,

Definition 4.4 (Reaction Sequence)

A resclion sequence is an emply sequence 0, a sequence
of one unit reaction §, or a sequence of more than two
unit reactions A such that Vi, 5 e A{l <i < j <
n A dom(f;)Ndom(6;) = B A dom(§;)Nran(f;) = B). A
set of all reaction sequences 1z denoted by Rseq.

& domein of A€ Rseq 15 a set of variables such that
{V | 36 € AV € dom(S))A V&' € A(V ¢ ran(8")) }.
var(A) also denotes the set of variables | J;. . var(é).
A substitution o and & reaction sequence A are said to
be directed, denoted by oo A, iff var(o) N var(A) =
domie) N dem{A). Reaction sequences &; and As
are said to be direcied, also denoted by 4y g Qg iff
var{dg) N var{dg) = dom{A) N dom{Ag).

When A = §; ... 6, € Rseq and § € Urenct, a concate-
nation of A and § 15 denoted by A8 or §-A, defined
by Ad =48 ... 0,0 or §-4 = 86 ...8,. A sequence of
umit reaction &8 such that A€ Rseg and § € Ureact™
is also a reaction sequence. A set of all such reaction
sequences is denoted by Rsegt.

Definition 4.7 (Atom Reaction)

An atom reaetion is a pair of an atem A € Adom and
a reaction sequence A £ Raeg™, denoted by (4, A),
such that dem{A) C war(A). Here a set of all atom

900

reactions is denoted by Areact, i.e., Areact = {(4, A) |
A€ Atom A AE Rseqt].

A substitution § and an atom reaction (A, A) are also
said to be directed, denoted by Bpa (A4, A), iff s A
Atom reactions {4y, Ay) and {Az, &;) are said to be
directed, dencted by (A;, Aj)ea(ds, Az) if Ay sa g,

An equivalence class of E, ie.,, F., may be repre-
sented by F, as mentioned in Section 2. When we say
“Ey and By such that &y 0a Ey™ where E;, E, are substi-
tutions, reaction sequences or atom reactions, we mean
that each Ey or E; is restricted to a subset of Ey.. or
Ej.-.- such that .E], EE:_.-.-, EgEE}_.—, and E]_ =] Ez-

Let (4,8 ...8,),(A4,8 ...6) be atom reactions that
are directed. Then (4, §...5,) is said to be more
general than (A, & ... 487) when the following condition
hold:

(1)if d, €L or 6, €L, then &, = &, and
(Z)foralli(l<i<n),

(a) & € Ureact™ iff £ Ureact™,

(b) ;€ Ureact™ iff &) € Ureaet ™,

(e} if &, 8! € Ureact™, then I1§; < I1§, and

(d) if &;, 8] € Ureact™, then I18] ~ lub(TI8_,, I15;),

where I1§; is a composition of substitutions |§ ... |&].
Here we want to explain intuitively what is the notion
that (4, A) is more general than (4, A'). (4, A")
represents a reactive behavior such that a goal 4 gets
more instantiated bindings from, and posts not more
instantiated bindings to the environment of the goal A,
than the reactive behavior represented by (4, A).

Definition 4.6 (Atom on a Program)

Given a FGHC program P, an afom on & program P
is an atom A such that the predicate symbol of 4 ap-
pears in P (not necessarily at head parts.) A set of all
atoms on P is denoted by Afemp, and a set of all atom
reactions (A, A} such that A€ Atomp and A€ Raeq is
denoted by Areactp.

MNow we define the relation between atom reactions
and operational behaviors more formally.

Definition 4.7 (Correct Atom Reaction)

When a program P and an atom (3 € Afomp are
given, an atom reaction (Gy, & ...4,) is called a cor-
rect atom reaction werd, 8 program P, when the fol-
lowing conditions held, where By = {Gy}, Cp = 0 and
Vo = var((y), and, for all {1 <i < n), let Cf, be a set
of equations such that mgu(Cy,) ~ |4;).

(1)IEn=0ie, &8 ...6;, = O, then (Gy, & ...8a) is
always correct,

(2) if §; € Ureact™, there exists a transition
{Bic1, Cicy U G52 Vi) = (By, Ci: Viey U var(ep))
such that var(Cs,) 1 V; C var(Gy8) and
By =(Bi-a \ {H})U B, where (H :- G| B) = o,
n& Ben and @ = mgu(Ci_,),

(3)if &; € Ureact™, there exists & transition
{Bi-1, Cioa: Vica) 5 (By, Ci: Viey Unar(s=t)) such
that Oy = C;_, U 5 and B; = By Y, {t=s}, ox

(4)if 6, € {L}, at least one of the conditions (1)-(3)
holds for all i (1 <i < n - 1), and

(a)if 8y is Laue, then By is @,

(b)if &, is Ly, then there exists A€ B,—; such that
mgi(Cy_y) 8 mou({A=H} U &) for all clauses
such that (H :- G| B) = en,n€ Ren and ¢ P,

(c)if 8, i8 Luf, then there exists (t=s)€ B,_, such
that mgu{Cn_) 5 meu(t, s)), or

(d)if &, is Lgy, then there exists the same transition
as in case (2) unless the condition var(Cs,_,) N
Vi € var{GyO) exists, where © = mgu(Ci_;).

In the following we define the most important atom
reaction in correct atom reactions.

Definition 4.8 (Most General Correct Atom Re-
action)

Let (A, A) be a correct atom reaction w.r.t. a program
P, Then, (4, A) is called a moat general correct atom
resclion w.r.t a program P, dencted by (A4, A)ap,
when (4, &) is more general than any other correct
atom reactions (A, A"y w.r.t. P,

Example 4.1 Suppose that (A, §; 8,63~ p such that
81,82 € Ureact™ and §; € Ureact™. Intuitively we can
explain the notion of a correct atom reaction by consid-
ering a chain of the following transitions:
(G, 0)
(G,Cs,) =(B,,C1)

{B1,Ci UCy,) =(Ba, Ca) .

) {th!} ;{BH-G'Z Ucﬁ}

where G = {A}] and mgu(Cs,) ~ [§] (1 <i < 3).
Example 4.2 Let P be a program
{p(4, B, C):-A=f(D),C=g(a, E) | B=f(a)},
&y be { X f(U), Ze—gla, VI}H{Y = f(a)}~,
ﬁg 'JE {X*—.ﬂUJ-3*9{51V]1Yhf{“}]'++ and
&g be {X — f(U)H{Z+g(a, V), Y —f(a)} .
Then the following two atem reactions (p(X, Y, Z),4;)
and (p(X, ¥, Z), A;) are correct atom reaction w.r.t, P.
(p(X,Y, Z), A;) is 2 most general correct reaction, i.e.,
(B(X,Y, &), &y orp. But (p(X, Y, Z), As) is not correct
because the configuration ({p(X,Y,Z)}, {X =Ff(IN}
can not be reduced to any configuration under the pro-
gram P.

4.2 Fixpoint Semantics

In this section, we present the semantic function after
defining some operations on reaction sequences and the
semantic domain. Next we show the least Sxpoint of the
function gives the semantics of the programs in the same
way a8 used in an ordinary fixpoint semantics theory.
Firstly, we define an applieation of a substitution
to an atom reaction when they are directed. Let
#e Smﬁafl,r,_ and A = §if... 6, € Ra:ng' such that
fra A, Then an spplication of a substitution & o a re-
action sequence A, denoted by A8, is & sequence of unit
reactions 814, ... &, such that §; = mgd(o;, o:_;) for all
i{l<i<n) wheregy =fand o; = Tub(e_y, 5).

Example 4.3 Let 8 be a substitution
{X MY M Z—g(N, b},
and &1 8y be the reactive sequence Ay same as in Exam-
ple 4.2. Then, # and A; are directed because
var(B)Nwer{A;) = dom(f) N dom(dy) = {X, V. Z]}.
Let oy be lub(8, 8], i.c.,
{X—flU)L Y f(U), Ze—gla, b), Vb
M f(U),N—a),
and let oy be b(ay, 83), Lo,
{ X—fla), ¥~ fla) Z+—gl(a,b),V=bTU+a
M+—f(a),Ne—al,
Therefore, the application of & to Ay 15
(M — F(U), N -6} {U —a}~(= 88)), where & =
mygd(ey, 8) and 8, = mgd{og, o).

If §; € Ureaet™ and §; £ o;_, for some i, then such
an application is not defined, that is, we can ignore
the result and remove it from our system. Becanse,
although such a reduction can neot be done by the clause
{corresponding to the input unit reaction §;), # may
be done by another allernative clause. That is, it is
not necessary thal a redwetion faslure i@ immediately
induced by this application. On the other hand, in the
case that & £ Ureaet™ and & # o4y for some i, &AF
15 5145"2 oo fj—gLyp. This is because such an application
induees a unification failure immediately.

Definition 4.9 {Application to Atom Reaction)
Let (4, A) be an atom reaction. Then an application of
a substitution § to an atom reaction (A, A) is (A8, Ad),
which is also an atom reaction.

Example 4.4 Let P be the same program and
(p(X,Y, 2),41) be the same atom reaction as in Exam-
ple 4.2, and let # be the same substitution as in Example
£.3. Then, the application of § to (p(X, ¥, Z), A1), ie.,
(p(X,Y, Z)8, A.6), is
(B(M, M, 9(V, b)), {M —F(U), Ne—a}{T —a}").

MNow the application of & to it, (p(X,Y,2)8, M 8),
intuitively represents a reactive behavior of a goal
p(M,M,g(N,b)) under the program P. In fact, the
atom reactions (p(X, Y,), Ay) and (p{X, Y 238, Ay 0)

i both correct w.r.t. P.

Next we define possible interleavings of reaction se-
qUENCEs,

Definition 4.10 (Interleaving}

Possible inderleavings of a set of reaction sequences

{81,...,A,} on a set of vanables V, denoted by

int(Ag,..., An)y, is a set of all reaction sequences §-A

defined m-ductlvely az follows, where A is Sp00 for each
i (1 =i = n)such that Ay is not O:

(1)if §i € Urenct™ and V Cdom(;) forall i (1 <i < n),
then A=0and §= Ly, or
(2) otherwise, for some i (1 <4 < n),
{&] if A; =0,
fhen &-A = mt(Ay,. .., 81, Bigaye e, '&"‘}IV'
I:h:l if ;& '[J.ﬂ,Lﬂ,J.,ﬂ]', then A =0 and § = §;,

501

(c)if &y = A Ly for all j (1 < j < n), then
A = int(AVS, ... AL AS) wer(visi]) * Lone
and § = &, or

(d) otherwise,
Fa N LT LY. TR,
§=4§.

o3 8l)jwar((vy|s |y and

. Definition 4.11 (Semantic Funetion)

Given a program F, we denote a power set of Areactp
by Denp, and let it be a domaein of the following se-
mantic function, Given a program P and a goal Gy, we
define a semantic function TP'GU : Denp — ﬂ‘:'n_p as
follows:

Trg,(1)
{{GmD:I]'U
{(s=t,67) | (s=£,0)€T A8 = mgu(s, t}}U
{(Bib,,0) | HA,O)eIAI(H -G | B)eP(B; € B)}U
{{4,674) | (4,0)eln
IH -G |B)ePVE;, B;eB
B{Biﬂsrai}l I:EJEI!&J;}EI
(B, Ae) 4 (B, A
A Eint(A, Ao, ... :ﬁm}[uﬁ'[ﬂ}}]u
{{A4,6% Ly) | (A, O)eIAV(H -G | B)eP(6c8,)}

= mgu({A=H}UG)and 8, = {8 | 6 # 4,}

The set Denp forms a complete lattice under the or-
dering of set inclusion C with a bottom element § and
a top element Areactp.

The Tp e, (1) is recursively defined by using I as the
union of four sets of atom reactions each of which rep-
resents the following situation:

{1) when a unification gosl s=t is called, the binding
myti(s,) s posted to the environment,

{2) when a goal A exists, each goal B;f, is generated as
a sub-goal of A and may invoke the new process,

(3) and a goal A affects the environment as 8} followed
by a sequence of reactive behaviors represented by A
which is obtained from interleaving reactive behav-
1ors generated by all sub-goals of 4, that is, A may
perform the computation represented by A after 4
gets the binding 8;, or

{4) when A meets with the binding # incompatible with
all bindings to solve the guard {A=H}U G for all
clauses, 4 will suspend. This situation is called &
reduction fatlure,

Lemma 4.1 Let P be an FGHC program and &
be a goal. The function Tp is confinuous, ie,
Tpa{lub{ X)) = lub({Tpa(X)) for any directed subset
X of Denp

Proof: It is proved in & similar way to the proof of
continuity of the semantic function of a standard logic
program. (See pp.37-38 [Lloyd 1987).) 1

From Lemma 4.1, Tpg has the least fixpoint,
ip(Tr), and lfp(Tra) = glb{X|Tpe(X) C X}. For-
thermore, ifp(Tpa) = Tralw.

where 8,

802

Definition 4.12 (Topdown Semantics)

Let P be a FGHC program and @ be a goal. Then
f#(Trc) is called a topdown semantics of P with G,
and denated by [F]g.

5 Relation between Operational Sernan-
tics and Fixpoint Semantics

In ihiz section, we shew that the topdown semantics
defined in Section 4 is closely related to the operational
semantics of FGHC introduced in Section 3.

Theorem 5.1 (Soundness) Let P be an FGHC pro-
gram and Gy be a goal. If (Gy, A)op, then (Gy, A) e
[Pla, '

Proof (A Sketch of the Proof):

Let k be a length of A, denoted by |A|. The proof is
by induction on the length k.

If £ =0, then the theorem is trivial since (@,0) is
always correct,

Otherwise, ie., k > 0, suppose A = A’ § such that
&' =3 0.

If &y is & unification goal, then the theorem is trivial,

Otherwise, Gy is a non-unification goal. Now, since
(Go, &} p hold, (Gy, A’} p holds. By the induction
hypothesis, since |A'| < k and (Gg, A)p, (G, A) €
[F rﬁ'n'

Hence, from the definition of Tp,q,, 36} (A' = 6} -
A") such that (H:~ G | B)e P and ;= mgu{{A=
H} U G) and VB; € B3(B,8,,4;) € [Plg, and A" €
(A1, An)jpar{c,). Now we have (Go, 8 -A" pap
and A" £ mi(A,,., v) jwarige). Then we can Eet
& such that (B8, A} p by selecting a unit reaction
from the emly i-th argument (i.e., A;) in the definition
of int.

Suppose that the last transition of (Gy, A8}~ p is a
transition on a sub-goal of Byf,. Then (Bf,, Aif) p.

Since k > |A'] > [A"] = |Aq], k > |AY] = [Ag).

By induction hypothesis again, since (B, A6 p,
(B, 5:8) €[Plo,.

Therefore, from the definition of Tpg,, since A'S =
iﬂifﬂl,...:ﬂ;r..,ﬂn], {GuTﬂrE}E[P]gG. [|

In Theorem 5.1 we show that any most general cor-
rect atom reaction (G, &) wort. a program P is in the
topdown semantics [Plg,. In general it is necessary
to prove the only-if part of the theorem (usually called
Completeness Theorem), and we think this is possible
by introducing a kind of downward closure of (4, A)
by using the ‘more general than’ relation in Section 4.1,
as subsumption relation in [Falaschi ef al. 1990]. This,
however, is beyond the scope of this paper. Becauss
Theorem 5.1 is sufficient to guarantee the correctness of
the framework of abstract interpretation based on the
topdown semantics since we want to use this semantics
as a collecting semantics,

6 General Framework for Abstract In-
terpretation

In this section we briefly review a general framework of
abstract interpretation for programs whose semantics
can be defined from a fixpoint approach, and some con-
ditiems to guarantee that the abstract interpretation is
‘safe’ for the semantics,

When a standard semantics is given by the least fix-
point of some semantic function, an abstract semantics
is given by another semantic function cbtained by di-
rectly abstracting the concrete semantic function such
that the safe relation exists between their two seman-
tics,

6.1 Concrete Fixpoint Semantics

Suppose that the meaning of a program P is given by
the least fixpoint of a (conerete) semantic function Tp,
denoted by Ifp(Tp), where Ts : Den — Den is & con-
tinuous function and Den is a powerset of D, called a
concrete domain, such that each element of D expresses
aconcrete computation state of the program. For exam-
ple, in an ordinary logic program, is an Herbrand Base,
And Den forms a complete lattice with regard to the set
inclusion ordering C on Den. Then, the least fiepoint
of Tp exists and we can get it by [fp(Te) = Trjw.

Definition 6.1 {Concrete Semantics)

[F] = ifp(Tr) is called the lcast fizpoint semanties of a
program P. Especially, we call it the concrete semantics
of a program P since the semantics is obtained from the
concrete semantie function Tp

6.2 Abstract Fixpoint Semanties

We define an abstract fixpoint semantics by abstracting
the concrete domain and the concrete semantic function
introduced in 6.1.

Definition 6.2 (Abstract Domain)

Given a concrete domain D, an abstract domain D is a
finite set of denotations satisfying the following condi-
tions: ‘

{1} every element of I represents a subset of D,

(2) D forms a complete lattice with respect to an order
relation C defined on D, and

(3) there exist two monotonic mappings, that is, ab-
straction o : D — D and concrefization v: D — D
defined as follows: Yde D (d = a(+(d))) A Vd e
D (d € 1(a(d)))

In order to define the abstract semantics of a program
F, we should define (or design) a monstenic and contin-
uous mepping of a program P, Tp : Den — Den, called
the abstract semantic function, as well as the abstract
domain D, corresponding to the concrete domain I and
the concrete semantic function Tp of P, Then we have
to define the abstract versions of various operations,
e.£., & composition or an application of substitutions,
used in the definition of T,

Definition 6.3 (Abstract Semantics)

Then the least fixpoint semantics [F] = ifp(Ip), ob-
tauned from the abstract semantic function T p, is called
the ebstreet semantics of a program P.

Now we claim the termination property with respect
to the abstract fixpoint semantics.

Lemma 6.1 There exists the least fixpoint [fp(Tp)
of Tp such that ifp(Lp) = TpTk for some fnite &

Lastly, we attach the following acceptable relation be-
tween the abstract semantics and the concrete seman-
tics:

Definition 6.5 {Safeness Condition)
A safeness condifion for the absiract semaontics is as

follows: [P] C +([P])-

Lemma 6.2 If Tp(v(d)) € v(Ip(d)) for all d € D,
then the abstract semaniics is safe, i.e., a safeness con-
dition holds, where Te(v(d)) = {Tre(d) | dey(d)}.

7 Applications for Analysis of FGHC
Programs

In this section we show some examples of analyzing
FGHC programs by using abstract interpretation based
on the topdewn semantics in Section 4, which is an in-
stance of the general framework in Section 6

7.1 Moded Type Graph

The abstract domain presented here is se similar to the
one basad on type graphs in [Bruynooghe and Janssens
1988], that most necessary operations on the abstract
domain will be well-defined similazly to [Bruynooghe
and Janssens 1988][Janssens and Bruynooghe 1989),

Here we introduce & moded type graph, and show
briefly that a reaction sequence and an atom reaction
can be abstracted by a moded type graph.

Definition 7.1 (Moded Tvpe Constructor and
Generic Types)

A(n n-ary) moded {ype constructor is aln n-ary) func-
tion symbol f/n & Fune with & mode annotation + (or
=), denoted by _f;'“ {or f},.) or simply f+ (or £~), which
represents a(n n-ary) function symbol f appearing in
input {or output) unit reactions (respectively). Four
generic (moded) iypes are an any fype, & variable fype,
an undefined fype and an empty fype, denoted by any,
V., — and 0 respectively. An any fype represents the sct
of all moded terms, both Voand — represent the set of
variables, and @ represents the empty set of terms.

Definition 7.2 (Moded Term and Moded Type)
A moded term is a term constructed from moded type
constructors over a set of variables Var., A moded term
represants the same term without all mode annotations
such that a moded type constructor with + {or =) cor-
responds to a function symbol appearing in an input
{or an output) unit reaction. A moded fype is a set of
moded terms.

o3

Definition 7.3 (Moded Type Graph)
A moded fype graph is a representation of & moded type,
which is & directed graph such that each node is labeled
with either a moded type constructor, & generic type,
or & special label ‘or’,

The relation between a parent node and {posably
no) child nodes in & moded type graph G is defined as
follows:

(1) a node labeled with f; or fia(n = 0) has n ordered
ares to n nodes, e, has n ordered child nodes,

(2) a node labeled with *or’ has n non-erdered arcs to n
nodes (n = 2), Le., has n non-ordered child nodes,

(3) a node labeled with a generic type has no child node,

(1) there exizsts at least one node, called a root node,
such that there are paths from the reot node to any
other nodes in &, and

(&) the number of cocurrences of nodes with the same la-
bel on each path from the root node of & is bounded
by & constant d, called a moded type depth.

Suppose that a node IV tries to be newly added as
a child node of N, in a moded type graph G, Then, if
the creation of the node IV violates the condition (5) in
the above definition, that is, if there exist more than 4
numbers of nodes with the same label as & on the path
from the root node to NV, then the new node & will not
be added to G as a new child node of N, but will be
shared with the farthest ancestor node of N, with the
same label as V. In such a case, 2 circular path must
be created. (Nodes with the same label aren't shared
with each other when their nodes are on different paths
from root.] The restriction of (3) is the same as the
depth restriction in [Janssens and Bruynooghe 1589].
They call a type graph satisfying the depth restrietion
z resiricted type graph, and they have presented an al-
gorithm for transforming a non-restricted type graph to
restricted one,

A coneretization for a moded type graph with a root
node Ny, denoted by (N}, s defined as follows:

(1) 4(V) is Var if the label of N is V or _,

(2) y(N) is the empty set 9 if the label of N is 0,

(3) V) is {f*(trs. o stn) | i€EF(N)AD S i S m) if
thelabelofﬁiaf;‘ and Ny,..., N, are child nodes
of N,

(4) 9N is {7 (- tn) | 1 €9(NG) AD & < m} i
the label of IV is f;‘ and Ny,..., N, are child nodes
of N, or

(3)4(N) is v N) U .. U5(N,) if the label of N is ‘or’

and Ny,..., Ny are child nodes of N.

A moded type graph represents a set of moded term,
ie, a moded type, defined by 4. A set of all moded
types iz denoted by Term.

A moded type graph § can be also represented by an
expreasion, called a moded type definition, like a context
free grammar with (possibly no) non-terminal aymbols,
called type variebles, and one start symbol, called a roat

504

fype veriable, corresponding to the root node of G, as
in [Janssens and Bruynooghe 1989). A moded type or
a mode type graph represented by a moded type defi-
nition may be referred to the root type variable,

Example 7.1 The following graph G is a meded
+

type graph whose root node is labeled with Ry

(i)
OXD

Then the moded type graph may also be denoted by
the following moded type definition:
T=htV,),
m = fH{n),)
where 7,7 is type variable and 7 is a root type variable.
This moded type definition represents a set of moded
terms:

¥(r) = {RH (W, FE(A)), (A, FHFH (R,)

An abstraction & for a moded term satisfying the
condition (3} in Definition 6.2 is also well-defined in a
similar way to [Janssens and Bruynooghe 1989).

A moded type substitution § is a mapping Var to
Term, and is also represented by a set of assignments
of variables to moded types. A coneretization and an
abstraction for a moded type substitution is defined:

Y(8) = {6 | VX e dom(f) (tey(XE) D (X —1)€f)
a(f) = {X —a(X8) | X € dom(8)}

And an erdering relation C over moded type substitu-
tions is defined as follows: 8, C 8, iff 4{V8,) C 4(V8,)
for all variables V¥ e Var.

A moded type reaction seguence A is a sequence of
moded type substitutions §,8,...6,_ such that

Vi j(1 < < j < n)(§; C 5;A dom(8;) = dom(s;))
and dom(A) is defined dom(d;). A concretization for a
moded type resction sequence, denoted by v(4,...4_),
is defined as follows:

{61 ... 6n | 61... 60 € Reeg A TIG (6},

where IT4; is a composition of substitutions |6 ... |&:]-
And an instantiation ordering C on a moded type re-
action sequence is defined: A; C A, iff y{A;) € 4(A,).

Definition 7.4 (Moded Type Atom Reaction)

A meded type alom recetion is a pair of an atom A and
moded type reaction sequence A such that dom(f) C
var(A). Areact is a set of all moded type atom reac-
tions.

Example 7.2 Let A be a reaction sequence {X —
FY)PH{Yeg(2)} ™. Then a({Xe—f(¥)} {Yeo(Z)}~)
is {X e H{X+—m}, where 7, and r; is defined by the
following type definitions:

= f-'.{E];

T2 = fH(g~(¥)).

An application of a moded type substitution § to =
meded type reaction sequence §, ... §, is & moded type
reaction sequence & ... 4§, such that & = fub(&-,,46;)
for all ¢ (0 < { < n) where § = 6.

A possible interleaving of moded type reaction se-
quences int can be well-defined by using the definition
of possible interleaving on a conerete domain in Section
4.2, And Den is a power set of dreact,

Now we can define the abstract semantic function
TpgiDen — Den for a program P and a goal G by us-
ing abstract eperations and denctations defined above,

7.2 An Example of Detecting Multiple
Writers

Consider that two goals try to instantiate a shared
variable to & (possibly different) symbol(s). In such
& case, the goals may cause inconsistent assignments
to the same variable, which are called multiple writers.
Recently, in the family of concurrent logic languages,
several languages have been proposed that do not al-
low multiple writers, and many advantages have been
discussed [Saraswat 1990][Ueda 1990a][Kleinman et ol
1991}[Foster and Taylor 1083]. For examples, maded
FGHC presented in [Ueda 1990a] has the following ad-
vantages: (1) an efficient implementation based cn &
message-oriented technique, (2) unification failure free,
and (3) easy mode analysis. So moded FOHC seems
to lead FGHC programmers into a good style of FGHC
Programming.

Although you can write most programs without using
multiple writers, you may want to use them in a few
cases. Stop signal may be one of these examples.

Jtop signal is a programming technique such that,
when some goal find the answer to a searching prob-
lem, the goal broadcasts a stop signal to any other poals
which are solving the same searching problem (or its
sub-problems) and the goal forces any other goals to
terminate their process by instantiating a flag symbol
to a variable shared by all goals. Several flaggings may
oceur on different goals at the same time, or some goal
may broadeast a flag at any stage if a flag is not received
but has been sent from other goals. In such cases, mul-
tiple writing problems may occur,

Now we show a method of detecting multiple writers
as an application of the moded type inference in the pre-
vious section. The following program implements a very
simple example of ‘stop signal’. A subseript number of
each function symbel is used to distinguish occurrences.
main(T,F) :- true | generate(T),search(T, F).
search(ty(.,a;,-).F) :- true | F=f;.
search(.,fz) :- trus | true.
search{tz(L,by,R),F} :- true |

search(L,F) ,search(®,F).

generate(T) :- true | T=t3(L,N,R),genNode (N},
generate(L) ,ganerate(R).
genNede(N) :- true | N=a;.

gnnHodﬂ{H}‘ - true | H=hg.

A goal generate(T) generates a binary tree with
each node labeled with a or b, and a goal search(T,F)
searches a node labeled with a. Body goals of search/2
share the second argument as a ‘stop signal’. Now we
try to analyze the moded type of a goal main(T,F) by
computing ﬂma.inﬂ',?} on the abstract domain for
the maoded tvpe. Here each moded type constructor
has & subscript number. When we apply # = {lv-a'll']-
to d = {X+—a3}, we can get a moded type substitu-
tion ()8 = {K+agp}. This represents a moded type
{X+=a"} by engaging a; to a;. When goals try to en-
page & moded type constructor with — to a moded type
constructor with =, the goals are multiple writers.

In the sbove program, we can compute the following
moded type atom resction in ﬂnni.n (T,F)

(main(T,F), ... {F = £5;)} ...).
Then we can get information such that

(1) the goal main(T,F) may cause multiple writes, and
(2) the problematic goal is a unification goal writing £,,
i.e. in the body of the first clause of search.

8 Discussions

Much research has been presented on the fixpoint ap-
proaches to the semantics for concurrent logic lan-
guages.

Atom reactions are essentizlly the same as reactive
clawses introduced in reactive behavior semantics [Gaif-
man ef al. 1989). Since reactive behavier semantics 13
defined by the self-unfolding of reactive clauses, we can-
not always define some reasonable abstraction of the se-
mantics when the semantics is applied to abstract inter-
pretation. That is, the same non-terminating problem
may cecur as in the example below. While using our
semnantics, since we define by computing all possible re-
action sequences corresponding to atoms in a body at
one time by ind, such a problem does not cccur,

Our semantics distinguishes reducdion failure from
deadlock as well as wnification failure, although the op-
erational semantics of FGHC say nothing w.r.t. reduc-
tion failure, that is, reduction failure is regarded as aus-
pension. Then the case that a goal is reduced by no
clause is distinguished from failure (unification failure),
but not distingnished from deadlock. But we introduee
reducticn failure as a termination symbaol. In a practi-
czl system of FGHC, reduction failure may be reported
as a system service to users if the system foriuneiely
detects it at run time. It is helpful to users if redue-
tion failure can be detected since such failure causes
deadlock. So, we will want to detect the possibility of
reduction fatlure at analysis time toc. This is why we
must introduce reduction failure to the semantics.

In [de Boer ef.al 1988], they have presented a de-
notational and a fixpoint approach to the semantics for
{non-flat) GHC. They have presented the declarative se-
mantics based on a fixpeint approach over the semantic
domain similar te our atem reaction. They have men-

205

tioned that the fixpoint semantics iz sound and com-
plete w.r.t. the operational semantics giving only the
results of finite success computations. Whereas, since
ear approach keeps more information by using the com-
plement of all correct input unit reactions and 1., if
can be correctly related to the operational semantics
including the cases of deadlock and finite failure,

A few works on abstract interpretation for concurrent
logie programs have been presented. The approaches of
[Codognet et al, 1990] and [Codish et al. 1891] are based
on the operational semantics.

In [Codognet et al. 1980], they have presented a meta-
algorithm for FCP(:) and an abstracted version of 1t
They also show the correctness relation of the algorithm
to the operational semantics, which is defined by a tran-
sition system similar to this paper.

In [Codish et ol 1001), they directly abstracted a
standard transition system semantics, where a set of
configurations is approximated to an abstract configu-
ration. One of the advantages of their approach is that
the analysis is simple and easy to prove correct.

These two are essemtially the same approaches and it
is easy to understand the correspondence to the opera-
tional semantics in both approaches.

In the approach of [Codish et el 1991], the termi-
nation of abstract interpretation may not be guaran-
teed for some programs such that a goal may infinitely
generate more and more sub-goals. For example, the
following program is taken from [Codish ef al 1581].
They must abstract the domain (i.e., configuration) too
much (called star abstraciion) in order to solve such a
problem. The star abstraction is enough and not too ab-
stract to analyze suspension. But it may not be suitable
to call and/or success pattern analysis. These problems
may be solved by adopting some abstraction on goals
other than the star abstraction [Codish 19932).

producer(X) :- true |

E=f{X1,X2), preducer(Xl), producer(X2).
consumer(X} :- X=£(%1.X2) |

consumer (X1}, consumer(X2).

But aur abitract interpretation can analyze call pat-
tern of the program, and return the following moded
type atom reaction when the moded type depth is 1:

{producer (X}, {Re—nHE—mHX—m})

13 = £4(r3,73)

Although our pessible inferleavings may be a little
difficult to define and understand, these problems can
be solved by the abstraction only on the domain, i.e.,
reaction sequences.

906

9 Conclusions

We have presented a denotational semanties for FGHO
which is less abstract semantics and is suitable az a ba-
sis for abstract interpretation. Since the semantics is
defined by a fixpoint approach on atom reactions which
represent the reactive behaviors of atoms, we can easily
develop a program analysis system only to abstract a
(possibly infinite) domain to a finite domain. We have
also demonstrated moded type inference of FGHC pro-
grems,

Acknowledgments

I thank Kasunori Ueda and Michasl Codish for valu-
able comments and suggestions and the referees for their
helpful comments,

References

iBruynooghe and Janssens 1988] Bruynooghe, M. and
G. Janssens, “An Instance of Abstract Interpreta-
tion Integrating Type and Mode Inferencing”, Proc.
of the 5th International Conference and Symposium
on Logic Programming, R .A. Kowalski and K. 4.
Bowen (eds.), pp.G69-683, 1988,

[Codish and Gallagher 1986) Codish, M., J. Gallagher,
"A Semantic Basis for the Abstract Interpretation
of Conecurrent Logic Programs®, Technical Report
C589-26, November, 1689 :

[Codish et al. 1891] Codish, M., M. Falaschi and K.
Marriott, “Suspension Analysis for Concurrent Logic
Programs”, Proc. of the 8th International Conference
on Legic Programming, Furukawa, K. {ed.), pp.331-
545, 1991

[Codish 1992] Codish, M., personal communication,
Feh, 1992

[Codognet et al 1990] Codognet, C., P. Codognet and
M. M. Corsini, “Abstract Interpretation for Concur-
rent Logie Languages”, Proc, of the North American
Conference on Logic Programming, S. Debray and M.
Hermenegildo (eds.), pp.215-232, 1990.

[de Boer et.al 1989] de Boer, F. 8., J. N. Kok and
C. Palamidessi, “Contral Flow versus Logie: a de-
notational and declarative model for Guarded Horn
Clauses”, Proc. of Mathematical Foundations of
Computer Science, A. Kreczmar and G. Mirkowsks
(eds.}, pp.165-176, LNCS-379, Springer-Verlag, 1989.

[de Boer and Palamidessi 1990] de Boer, F. 8., and C.
Palamidessi, “Concurrent Logic Programming: Asyn-
chronism and Language Comparison”, Proc. of the
North American Conference on Logic P ing,
5. Debray and M. Hermenegildo (eds.), pp-175-194,
1990.

[Falaschi et al. 1989] Falaschi, M., G. Levi, M. Martelli,
C. Palamidessi, “A Model-theoretic Reconstruction
of the Operational Semantics of Logic Programs®™,
Universit di Pisa, Technical Report TR-32/89, 1989,

[Falaschi et al 1990] Falaschi, M., M. Gabbrielli, G.
Levi and M. Murakami, “Nested Guarded Horn
Clauses”, International Journal of Foundations of
Computer Science, Vol.1, no. 3, pp.249-263, 1990,

[Foster and Taylor 1989] Foster, I and S. Tayler,
“Strand: A Practical Paralle]l Programming Tool”,

Proc. of the North American Conference on Logic
Programming, E. L. Lusk and R. A. Overbeek (eds.),
Pp.497-512, 1588,

(Gabbrielli and Levi 1990] Gabbrielli, M. and G. Levi,
“Unfolding and Fixpoint Semanties for Concurrent
Constraint Legic Programs”, Proc. of the 2nd In-
ternational Conference on Algebraic and Logic Pro-
grams, LNCS, Nancy, France, 1990,

[Gaifman ef al. 1989) Gaifman, H., M. J. Maher and E.
Shapiro, “Reactive Behavior Semantics for Concur-
rent Constraint Logic Programs”, Proe. of the Nerth
American Conference on Logic Programming, E. L.
Lusk and R. A, Overbeek (eds.), pp.551-569, 1989,

[Gerth et al 1988] Gerth, R., M. Codish, Y. Licht-
enstein and E., Shapire “Fully Abstract Denota-
tional Semantics for Concurrent Prolog”, Proe. of 3rd
Anmaal Conference on Logic in Computer Science,
IEEE, pp.320-335, 1988.

[Janssens and Bruynooghe 1989] Janssens, G. and M.
Bruynooghe, “An Application of Abstract Interpreta-
tion: Integrated Type and Mode Inferencing”, Report
CWa6, Katholieke Universiteit Leuven, April, 1080,

[Kleinman et al 1991] Kleinman, A., Y, Moscowits,
A, Poueli and E. Shapiro, *Communication with Dj-
rected Logic Variables”, Proc. of the 8th Annual
ACM Symposium on Principles of Programming Lan-
puages, pp.221--232, 1991,

[Lassez et al 1987] Lassez, J. L., M. J. Maher, and
K. Mardott, “Unification Revised”, Foundations
of Deductive Databases and Logic Programming,
Minker, J. (ed.), Morgan Kaufmann, pp. 587-625,
1987,

[levi 1988 Levi, G., “A New Declarative Semantics
of Flat Guarded Horn Clauses”, Technical Report,
ICOT, 1988,

[Lloyd 1987) Lloyd, J.W., “Foundation of Logic Pro-
gramming”, Second, Extended Edition, Springer-
Verlag, 1087.

[Murakami 1988] Murakami, M., “A Declarative Se-
mantics of Parallel Logic Programs with Perpetual
Processes”, Proc. of the International Conference on
FGCS'88, pp.374-388, Tokyo, 1088,

[Palamidessi 1090] Palamidessi, C., “Algebraic Propes-
ties of [dempotent Substitutions”, Proc. of the 17th
ICALP, pp 386-399, 1980,

[Saraswat 1990] Saraswat, V. A K. Kahn and J. Levy,
“Janus: A Step Towards Distributed Constraint Pro-
gramming”, Proe, of the North American Confer-
ence on Logic Programming, S. Debray and M.
Hermenegildo (eds.), 1990,

[Ueda 1990a] Ueda, K. and M. Morita, “New Imple-
mentation Technique for Flat GHC”, Proc. of the Tth
International Conference on Logic Programming, D.
H. D. Warren and P. Szeredi (eda.), pp.3-17, 1990

[Ueda 1990b] Ueda, K., “Designing a Concurrent Pro-
gramming Language”, Proc. of an International Con-
ference organized by the IPSJ to Commemorate the
30th Anniversary: InfoJapan’®0, pp.87-94, Tokyo,
1490,

