PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by 1COT, @ 1COT, 1952

B&7

CHARM:
Concurrency and Hiding in an Abstract Rewriting Machine*

Andrea Corradini

Ugo Montanari

Francesca Rossi

University of Pisa
Computer Science Department
Corso [talia 40, 56100 Pisa, Italy
{andrea,ugo,rossi}@dipisa.di.unipi.it

Abstract

CHARM (for Concurrency and Hiding in an Ab-
stract Rewriting Machine) is an abstract machine
which allows to naturally model the behaviour of
distributed systems consisting of a collection of pro-
cesses sharing variables, CHARM is equipped with
a clean operational semantics based on term rewrit-
ing over a suitable algebra, and it exhibits a so-
phisticated treatment of concurrency and modular-
ity, which is obtained through the partition of each
state into a global and a local part. To show the ex-
pressiviess and generality of this abstract machine,
two relevant computational formalisms, graph gram.
mars and concurrent constraint programiming, ave
mapped onto the CHARM framewoml:,

1 Introduction

Various formalisms have been proposed in the last
decades for deseribing and specifying concurrent pro-
gramming and distributed systems. Among them we
recall Petri nets [Reisig 1985], CCS [Milner 1989).
CSP [Hoare 1985], the Chemical Abstract Ma-
chine [Berry and Boudol 1990], Graph Granumars
{Ehrig 1979}, and Concurrent Constraint Program-
ming [Saraswat 1989]. However, the high number of
such formalisms shows the need for a unifying frame-
work, which should be able to eapture the essence of
concurrent computations. Such a framework should
be general enough, so that most of the formalisms
already proposed could be embedded in i, but it
should be also expressive enough. so to be able to
prove interesting properties about it. We have found
that a reasonable balance of generality and expres-
siveness can he enjoved by a formalism able to ex-

*Research partially supported by ihe GRAGRA Basic He-
search Esprit Working Group n.3200 and by Alenian S.p.A.

press in s simple way both concurrency and medu-
larity. In fact, such notions are fundamental in or-
der to descrile how concurrent systems interact and
svnchronize, evolve, compose, or embed in other sys-
tems.

In this paper we propose an abstract machine,
called CHARM (for Concurrency aned Hiding in an
Abstract Rewriting Machine), which iz intended to
satisfy the above need for a unifying framework for
concurrent programming. Such a machine exhibits
a sophisticated treatment of the above cited issues
of concurrency and modularity, which subsumes and
surpasses the corvesponding treatment of many other
formalisms.

States of a CHARM arve collections of processes
interacting through shared variables. The issue of
modularity is addressed basically by partitioning the
states into a plobal (i.e. visible) and a local (ie.,
hidden) part. In fact, the global items of a system
are those which allow the interaction with other sys-
tems, and thus are used to compose them in a non-
trivial way., Transitions of the machine ave rewrite
rules deseribed by pairs of systemns with an identical
elobal part, which expresses the part being preserved
by the application of the rule {i.e.. the part that
the rule, being local to the rewritten state, cannot
change). The presence of a global and a Iocal part
allows also a degree of coneurrency higher than the
one provided, for example, by the Chemical Abstract
Machine [Berry and Boudel 1990] or by Petri nets
[Reisig 1985]. In fact. two transitions may be ap-
plied in parallel not only when the subsystems they
affect are disjoint, but also when their intersection
15 preserved by both of them.

The technigue used for the formal defiuition of the
CHARM follows the algebraic approach introduced
in [Meseguer and Montanari 1990] for Petri nets,
and further developed for structured transition sys-

BER

tems in [Corradini 1990,Corradini et al. 1990] and
for concurrent rewriting systems in [Mezeguer 1990].
This approach 1s characterized by the fact that states
and transitions of a system have the same algebraic
slructure, which can also e consistently extended to
computations. This algebraic construction equips a
systern with a caleulus of computations, which pro-
vides a rich modular proof system.

To show the expressiveness and generality of the
CHARM computational model, we describe how
the elassical algebraic approach to praph grammars
[Ehrig 1979], which has heen widely used for al-
gebraic system specification. can be implemented
in our framework. Also, the CHARM provides
wvery natural interpretation of concurrent con-
straint programming [Saraswat and Rinard 1090]
[Saraswat et al. 1991], since the sharing of varialiles
and the possibility of “asking™ (i.e.. testing while
preserving) a constraint are the two main notions
in such a paradigm. Notice that the ability of
EXPrEsSing CONCUITent constraing programming in
the CHARM framework is very significant, sinee
such a paradigm is already verv general and sub-
sumes many widely used programming paradigns
like logie programuning [Lloyd 1987], constraint logie
programming [Jaffar and Lassez 1987], and conenr-
rent logic programming [Shapiro 1989].

Although thiz issue is not addressed in this pa-
per, we are confident that alse process deserip-
tion languages, like CCS [Miluer 1989] and CSP
{Hoare 1985], can be modelled within the CHARM
framework. This hope is supported by the fact that
we use an algebraic approach. where some basic
operators of such langusges (he. porallel composi-
tion, hiding, and relabelling) are alveady present,
while other meclianisims (hke synchronization and
non-deterministic choice) may be coded via suitalle
techniques, as we will hint in Section 2.

We first give an informal cdescription of the
CHARM in Section 2, and then we present the for-
mal theory underlying our approach by presenting,
in Section 3, an algebra for the states of the machine
and also for the rewriting rules. We then address the
relationship between the CHARM and graph gra-
mars and eoncurrent constraint prograoumning in Sec-
tions 4 and Section 3 respectively,

2 An informal description of
the abstract machine
[this section we informally give the main ideas un.

derlying the design of the abstract machine we pro-
pose (called CHARM in the vest of the paper). and

we also enlighten some of its advantages w.r.t. other
transition systems and/or machines which have al-
ready been proposed in the literature for describing
concurrent systems.

Each state of a CHARM is a (distributed) system,
ie., a collection of processes and a set of |possibly
shared) variables, where each process is connected to
a subsel of the variables. This notion of state is very
general. In fact, we do not sssume any requirement
en the structure of processes and variables, which
thus may be interpreted in various way. For exam-
ple, processes may also be though of as predicates or
constraints or relations, and variables may represent
communication channels or shared data structures.
[t is important to notice that many of the approaches
proposed to represent the evolution of eoncurrent
systems [Berry and Boudol 1990] [Reisig 1985] can-
not model directly the sharing of variahles. since a
state is simply a multised of processes,

Each state is partitioned into a local part and a
global part, and thus will be informally indicated in
the rest of this section by the pair § = (&, L), where
& stands for the global part and L for the local part.
In terms of distributed systems, we may think of
the local {resp., global} part as the hidden (resp.,
visible) set of variables and processes. Intuitively,
the local items are those whese identity is known
only to the system under consideration, while the
global ones are the interface of the system with the
vest of the world and thus may be known by other
systems as well. For example, such an interface may
contain common data structures, as well as processes
implementing services of global usility.

States can be built from smaller states. For ex-
ample, the parallel composition of two states (given
later by the operator *") is defined as the state
whose global part is the set union of their global
paris, and whose local part is the disjoint union of
their local parts. This reflects the fact that, as we
said above, the identity of the items in the global
parts of the two states are known by both of them, 2o
that items with the same name should be identifiad,
In the state resulting from the composition, it is pos-
sible to force some items, which were global in both
the composing sub-states, to become local. This can
be done by using a suitable hiding operator, which
will be denoted by ~\". Parallel composition and
hiding, together with a renaming operator (denoted
by “[®]") define an algebra (introduced in the next
section) whose terms are the states of a CHARM.

The dynamic behaviour of a CHARM is given
by a collection of rewrite rules, Every rewrite rule
R:5— 5 maps its left-hand side 5= (G, L) to its
vight-hand side §' = {G. L'}, hoth having the same

global part &, which is also called the global part
of B. The graphical representation of a rewrite rule
can be seen in Figure 1. The idea is that I can be
cancelled and L' can be generated provided that &
is present. Thus our notion of rewriting is context-
dependent, the global part of a rule playing the role
of the context. It is worth stressing that the global
part 7 is not affected by the application of R, but
it is simply tested for existence. Although this goes
beyond the scope of this paper, this fact should allow
us to define a satisfactory truly concurrent semantics
for CHARM's, since it mininizes the causal depen-
dencies among rewrite rules.

GDEICD

Figure 1: A rewrite rule,

Intuitively, the global part G of R contains those
items (processes and variabies) which are needed for
the transformation of the state to take place, but
which are not changed by the rewrite rule. For ex-
ample, we may want to do some operation only if
some daba structure contains some given informa-
tion. In this case, the data structure is considered to
be global and thus it is not affected by the rewnte
rule, It is important at this point to notice that,
unlike our approach, many transition systems or ab-
stract machines proposed in the hiterature (hke Petr
nets [Reisig 1985] and the Chemical Abstract Ma-
chine [Berry and Boudol 1990]) cannot distinguish
between the situation where somme item is preserved
by a rewrite rule, and the one where the same item
is cancelled and then generated again, For example,
the rule “a rewrites to bonly if ¢ is present” must he
represented in those formalisms as {o.c} — {b.c],
which also represents the rule "o and ¢ rewrite to b
and £".

On the other hand, some other formaliams explic-
itly consider the issue of context-dependent rewrit-
ing, and allow one to formally indicate which items
should be present for the application of a rule, but
are not affected by it. For example, in the al-
gebraic approach to graph grammars [Ehvig 1979],
the role of the context is played by the so-called
“gluing graph” of a graph production, while n
concurrent constraint programming [Saraswat 1989]
[Saraswat and Rinard 1990] [Saraswat et al. 1591,
the items the presence of which must be tested are
explicitly mentioned by the use of the “ask” prim-
itive. The relationship between the CHARM and

889

these two formalisms will be explored deeply in later
sections of this paper.

A rewrite rule R from § = (7, L) ta 5 = (G, L)
can be thought of as modelling the evolution of a
{small) subsystem, represented by its left hand side
5. To apply this rule to & given state § = (Gg, Lo,
one first has to find an occurrence of § in @, i.e.,
a subsystem of @ “isomorphic” to § (as we shall
see later, this requirement will be relaxed in the for-
mal definitions). Following the usual intuition about
structured systems, it 1= evident that all the items
whiech are local for a part of a system are loeal for the
whole system as well, while items which ave global
for a subsystem can be either global or local for any
enclosing system. In the application of a rule like
the one above, this observation iz formalized by re-
quiting that the sccurrence of L in () is contained in
its local part Lg.

The application of R to a system @ yvields a new
svstem @' = (Ggr, Lgr), where Gg = G, ie., the
global part remains unchanged, and Lo = (Lg
LYyU L' In words, the local part of the new state
coincides with the local part of the old one, except
that the occurrence of L has been replaced by an
occurrence of L. Thus, the part of the state (J which
iz prezerved by the application of i is partitioned in
two parts; the occurrence of &, which is necessary
to apply i, and the rest, which does not take part
in the rewnting. The graphical representation of the
application of i to @ can be seen in Figure 2,

The fact that the application of a rewrite rule pre-
serves the global part of the state can be justified by
interpreting the items contained in the global part
as an interface for a possible composition with other
states. Thus, such an interface cannot be modified
by any rewrite rule, since a rewrite rule is local to
the rewritten state, NMotice that, as a consequence of
the above considerations, a closed system, 1.e., & sys-
termn which iz not supposed to be composed further,
is vepresented by a state with no global pact.

¢

;

D—(

GQ LQ!

Figure 2: The application of & rewrite rule.

The above construction describes the application
of a single rewrite rule of a CHARM to a state. How-
ever, this mechanism is intrinsically coneurrent, in
the sense that many rewrite rules mav be applied in

890

parallel to a state, provided that thenr occurrences
do not interfere. In particular, if the occurrences
of the rules are pairwise disjoint, we have a de-
gree of parallelism which i1s supported also by many
other models of concurrent computation, like Petrl
nets [Reisig 1985], the Chemical Abstract Machine
[Berry and Boudel 1990], and the concurrent rewrit-
ing of [Meseguer 1990). However. owr approach pro-
vides a finer perception of the causal dependen-
cies among rewrite rules, becanse rules whose oconr-
rences in & state are not digjoint but intersect only on
their global parts can be considered not to depend
on each other, and thus can be applied concurrently.
This fact reflects the intuition, since such rules inter-
act only on items which are preserved by all of them.
This corresponds to what is called “parallel indepen-
dence” of production applications in the algebraic
theory of graph gramomars [Ehrig 1979]. which can in
fact be faithfully implemented within the CHARM
[ramework, as we will see in Section 4.

From a technical point of view. the appl-
cation of one or more rules of & CHARM s
modelled by extending the algebra of states 1o
the rules (for similar approaches in the case
of Petri nets or structuwred transition systems
see [Meseguer 1990, [Corradini et al. 1990} and
[Meseguer and Montanari 1990]), As we shall ses in
Section 3, this is possible because eanch rule has an
associated global part, just like states. The resulting
algebra, called the alpebre of fransitions, contains,
ax elements, all the rewrite rules of the abstract ma-
chine, an identity rule § : § — 5 for each state
5, and it is closed w.r.t. paralle] composition, hid-
ing, and substitution operations, The left and the
right-hand sides of a transition {i.e., of an element
of the algebra of transitions) are easily obtained by
structural induetion from its syutax. For example,
fRH: 8 — Qand R : 8 — ¢ are vwo rewrite rules,
then B| R : S| 8§ —+ @ | @ is a new parallel tran-
sition, Like rewrite rules. transitions preserve the
global part of the state they are applied to.

In this paper we will assume that the algebra of
transitions is freely generated by the set of rewrite
rules defining a CHARM, and by the identity rules
for all states, As a consequence of this fact, if a
transition can be applied to a state 5. then it can be
applied to any state containing § as well. Informally,
this can be considered-as a meta-rule governing the
behaviour of a CHARM, and directly corresponds
to the so-called “membrane law” of the Chemical
Abstract Machine [Berry and Boudol 1990].

Although the choice of a free algebra of transitions
is satisfactory for the formalisms treated in this pa-
per, more general kinds of algehras would he needer

in order to deal with other formalisme, like for ex-
ample process description langnages [Milner 1989]
[Hoare 1985]. In fact, some features of those lan-
guages (e.g., the parallel composition of agents
with synchronization in the presence of restric-
tion, and the description of atomic sequences of
actions, useful to provide a low-level implementa-
tion of the non-deterministic choice operator “47
[Gorrieri et al. 1990]

[Gorrieri and Montanari 1990]}) cannot be mad-
elled adequately within a free algebra of transi-
tions. Nevertheless, as shown in [Ferrari 1990] and
[Gorrieri and Montanari 1990] respectively, both
those aspects can be faithfully modelled in an alge-
braic framework by labelling transitions with obser-
vations which include an error label and by specify-
ing suitable algebraic theories of computations where
the atomic sequences are basic operators. Thus we
are confident that. although this goes beyond the
scope of this paper, these topics could he fruit-
fully addressed in the algebraie framework intre-
tluced here, by slightly generalizing the construction
of the algebra of transitions of CHARM's presented
in the next section,

A computation of a CHARM is a sequence of tran-
sitions, starting from a given initial state. Since each
transition preserves the global part of its left-hand
side state, the final state of a computation has the
sane global part as the initial state. Thus every
computation is naturally associated with a global
part as well. As for transitions, this will allow us to
define an algebra of computations, having the same
operations of the algelwa of states, plus a sequen-
tial composition operation denoted by *; ", The ele-
ments of the algebra of computations are subject to
the same axioms as for states, plus some axioms stat-
ing that all the operations distribute aver sequential
composition. Thus we have a rich language of com-
putations, where some computations can be proved
to be equivalent by using the axioms.

The interesting fact is that the algebra of compu-
tations allows one to relate the global evolution of
a closed system to the local hehaviour of its subsys-
tems. For example, suppose to consider the closed
system P = (5§ | §'}\z, where the two subsystems §
and S’ cooperate through the common global vari-
able & which is hidden by the use of the \x operator.
Furthermore, consider the computations p: 5§ = @
and p' : § = Q' for 5§ and 5’ respectively. Then,
by using the algebra of computations it is possible
to construct the computation o = (p | p')\r which
maodels the evolution of the closed svstem P, ie.,
7: P = P, where P'=(Q | @)\

The algebra of computations provides alse some

basic mechanizms which should aliow to model pro-
cess synchronization. In fact, consider for example
the two computations ¢ = (g | o'\« and ¢’ = (p\a) |
(o"\z). Now, ¢ # &', since p and p' can synchronize
through the common variable r in o, but not in ¢".

Another relevant advantage of the definition of the
algebra of computations of a CHARM consists of the
possibility of providing a truly concurrent semantics
in a natural way. In fact, computations differing only
in the order in which independent rewrite rules are
applied fall within the same equivalence class. For
example, considering again the computation o' in-
troduced above, we have that o' = (p\z) | (p"\2) =
((A\z) | §); (@ | (p"\a}), where &' and Q stand
for the identity computations on such states. This
means that, since p\r and p’\r are independent,
they can be performed either in parallel or sequen-
tially, and the two resulting commputations are eguiv-
alent. .

With each equivalence class of computations it
iz possible to associate a partial ovdering, record-
ing the causal dependencies among the rewrite rules
used in the computations, For the two formalisms
we shall consider in this paper (i.e., graph gram-
wars and concurrent constraint programming) the
truly concmrent semantics obtained via their trans-
lation to a CHARM is significant. In fact, it is
possible to show that some of the classical results
about concurrency and parallelism un graph gram-
mars directly derive from the axioms of our algelra.
Also, the truly concurrent semantics proposed in
[Montanari and Rossi 1991] for the concurrent con-
stramt programming framework coincides with the
one induced by its compilation into a CHARM. How-
ever, the true concurrency aspects go bevond the
seope of this paper.

3 Formal Definitions

In this section we present the formal dusurlptiﬂn of a
CHARM, following the outline of the informal pre-
sentation given in the previous section. After n-
troducing the algebra of states. a CHARM will be
defined as a collection of rewrite rules over this alge-
bra which preserve the global part of a term. Next
we will introduce the algebra of transitions and the
algebra of computations of a CHARM, respectively.

The states of a CHARM are going to be repre-
sented by the terms of an algebra &, which is para-
metric w.r.t. a fixed pair of disjoint infinite collee-
tions (P, V), called process snatances and variables
respectively. The terms of this algebra are subject
to the axioms presented below in Defiuition 3.

B9I

Definition 1 Let P be & et of process instances
{ranged over by p, ¢, ...), and V be @ sed of variables
{ranged over by v, z, ...). Bach x € (PUWV) is
called anitem. The algebre of stotes 5 is the alpebra
having oo elements the eguivalence closses of terms
generated by the following synier, modulo the leasi
equivalence relation snduced by the asiomes hsted in
Definttion §:

Su=0] o] plon...,m) | S|5 | S8] | S\

where ¥, ty, ..., vy & V; p &£ P; * |7 is called
parallel composition; & is a [finite domain) substi-
tufion, i.e., o funciion @ : (PUV) = (PUV) such
that (V) C ¥V, (P} T P, and such that the sel of
ttems for which x &£ ${x) 45 finebe; and r 45 an tlem
Ma 2 called o hiding operator). Term of the form
0, v, o plvy,. .., v} are called atoms.g

Intuitively, 0 is the empty system. v i1s the sys-
tem containing only one varviable, and p{wvy, ... v)
represents oo svstemn with one process which has ac-
cess to n variables. The term 5) | 57 represents the
composition of system 5, and system 53, 5[®] is the
systemn obtained from state 5 by renaming its items,
and 5\x is the system which coincides with system
5 except that item r is local.

Definition 2 Given & fterm 5§ € 85, iis sef of
free items F(5) 15 mductively defined as F(0) =
0, F{ v) = {rr}; Fiploy, ...)l = {p, g - .,l.l,,];
F(5 | §:) = F(&)UF(5:) F(S[B]) = 2(F(S))
= {2(z) | = € F(5)}; and F(S\x) = F(5)\ {=} ¥
v & F(8) and F(5\a) = F|5) otherwise, A term S
is closed iff F{5) = 8. A term is concrete if 1 does
not contain any hiding eperator. A lerm iz open if
no variable appearing in the term is resiricted. For-
mally, all atoms are open; 5 | Sz iz open if both
51 and Sy are open; S[¥] is open if § is open; and
S\x 15 open if 5 is open and @ @ F{5). Clearly, all
concrete (Erms are open.g

The free items of a term 5 are the process in-
stances and the variables of the global part of the
system represented by 5. Thus a closed term rep-
resents a system with no global part, while an open
term corresponds to a system where everything is
global. The above interpretation of the operators of
the algebra of states is supported by the following
axioms, which determine when two terms are equiv-
alent, Le., represent the same svstemm,

Definition 3 The terms of alpebra § introduced in
Definition 1 are subject to the following conditional
GTTOME,

ACL (& | Sl Sy =5 115 Sa): 51 | Sa= 5| 513 5|
=5

892

ABS: plwy,. ...) | wi=plo.. ..,), for 1 <0<
515 =515 is open

COMP: 5[B][P] = 5[¥ o d]

EXC: S\a\y = S\o\=

ElL: Sz = 5,il x is not free in ¥
MAP: plog, oo v J[8] = B{p)(B{m). Ble,))

v|®] = ®{vi; 0[F] =0

DIS: (5 | 5:)[®] = 5i[®] | 5:(®)

FACG: Si\x | 57 = (51 | Sel\=.if = b5 0ot free in 55
SWAP: (Sax)e] = S[EN®Li0 S Ty £
Fi8\z) such that $(y) = ${x)

a-CONV: S0 = 5, if® is bijective amd dir) =2 ¥ e
F5)

Twa terns 5 and S are equivalent [written § =
5') if they are n the least congruence relation (w76
all the aperators of the elgebra) induced by the above
OTIOMS .

In words, axioms ACT and AHS state that the
parallel composition of systems behaves like disjoint
union on the local parts of systems, and like set
union on the global ones, Axioms COMP and M 4P
deal with substitution composition and application
respectively, while axiom DI S states that substitu-
tions distribaite over parallel composition. Axioms
EXC and EL state that the items of a system can
be made local only onece and in any order. Fiually,
axioms FAC and SW AP describe 1n an abvious way
the interplay between the hiding operator and the
operators Tor parallel composition and substitution,
while axiom a-CONV formalizes the intuition that
the names of the hidden items ave not meaningful.

As anticipated in Section 2, the vewrite rules which
define a CHARM must preserve the global part of
the states they can be applied to. Therefore we de-
fine a function G which extracts from each term 2
concrete subterm, corresponding o its global part.
Actually, GF is a partial function on &, because some
term may denote a system whose global part is not
a legal system. This happens when a variabie is
made local, but some process using it is considered
as global. Terms on which GP is defined ave called
well-formed. The function GP is defined by exploit-
ing the existence of a canonical form of terms,

Proposition 4 Every ferm 5 of the algebro of
states S has an equivalent canonical form 5; |
Sahvey oo Nk, where 5y ond Sy ere parallel compo.
stlions of atoms. If 53 = Su | ... | Spe. then Wi =
Lo k. either Sy =0 or F(SN {a... . cag} £ 0
Moreover for each atom af the form glo, ..., U b E
Sa, Wi = L....m, edther vy = x; for some | =
 laner i, IF 50 | Sa\ry. . Vg
and 5} | 53w ... \ye are fwo conomical forms for
ferm S, then 5) = 5].

or o ocenrs in Sy,

Definition 5 Let § be a term and 5y | S3h\aey ... \zp
be ome of s canenical forms. Term 5 i well-
formed if and only if for cach atom of the form
gy o) € 53, ¢ = x; for some & Then, the
global part of a well-formed ferm 5 i defined s
CPIS) = 5.

Definition 8 4 rewrite rule B over § is a pair of
well-formed terms of &, R = (5.5") {alse wrillen
R: 8 — §') such that GP(S) ~ GP(S'). A CHARM
M fover §) is o collection of rewrite rules over 8,

te. M= {R:5 — Stern

Definition 7 Let M = {H; : 5 — 5S}ier be 2
CHABM over & Then the algebra of transitions
of M, T(M), is generated by the following inference
rules, which also give the left and the right-hend side
af ench transition.

il Ses
Ri: 5 — 5! 55— 5

r:5—@. 15 —~¢

T{T: 5|5 =@
T:85=0

The 5 — Q\x

The free mems of o iransition sve the free dems
of ita left (or vight) hand side. A transition iz open
iff it has the form 5 § — 5, with § open. The
terins of T(M) are subjeet to the same aziome as
Definition J.g

Definition 8 Let M = {R; : 5 — S}ies be a
CHARM over 8. and T(M) be 1ts algebra of tran-
sttions, Then the algebra of computations of M,
C{M), is generated by the following inference rules,
where g : § = 5" means that compuiation p starts
frome slate 5 and ends in siate 5

T:5—@Q
TTa] - S[a] — G[%)

5 -G eTIM)
T:85=24

prE=0Q.p: 5 =0

ATEEEXIL]
piy=g

Ar o Sx = Na

The free items of a computaiton are the free ilems
af its sterting {or ending) stote. The terms of C{ M)
are subject to the same azioms a3 m Definition 3§,
plis the following functorislity axioms, valid when-
ever both sides are defined, siating that the opera-
ftons of the alpebra distribule over sequential com-
pasiiion.

prE =8 8= 8"
ppts 5= 8"
pr8=Q
plE®]: S[®] = QiF]

(plpklefe’) = (pia)|{pia)
(p:o){®] = p[2]:o[B]
(el = p\ro\x n

4 Modelling graph grammars

The “theory of graph grammars” studies a variety
of formalisms which extend the theory of formal lan-
guages in order to deal with structures more general
than strings, like graphs and maps. A graph gram-
mar allows one to describe finitely a (poasibly infi-
nite) collection of graphs, i.e., thoze graphs which
can be obtained from an initial graph through re-
peated application of graph productions. In this
section we shortly show how to translate a graph
prammar into a CHARM which faithfully imple-
ments its behaviour., Because of space limitations,
the discussion will be very informal: a more for-
mal presentation of this translation can be found in
[Corradini and Montanari 1991].

Following the so-called algebraic approach to
graph grammars [Ehrig 1979], a graph produetion
p= (L K5 R)is o pair of graph monomor-
phisms having as common source a graph I, the
qluing graph, indicating which edges and nodes have
to be preserved by the application of the produc-
tion, Throughout this section, for graph we mean
unlabelled, directed hypergraph, ie, a tiple G =
{N,E,c), where N is a set of nodes, E is a set of
edges, and ¢ ; E — N® iz the connection funciion
{thus each edge can be connected to a list of nodes).
Production p can be applied to a graph & yielding
H (written & =, H) if there is an ecourrence {i.e.,
a graph morphizm) g : L — &, and H s obtained
as the result of the deuble pushount construction of

Figure 3.

{

I Iy L) fid
ﬂ\ FushDut }ﬁ: PushOut }-’:
G—q b A

Figure 3: Graph rewriting via double pushout con-
struction.

This construction may be interpreted as follows.
In order to delete the ocewrrence of L in G, we con-
struct the “pushout complement” of g and I, Le., we
have to find 2 graph D (with morphism & : &' — D
and d : 1) = &) such that the resulting sguare is 5
“pushout”, Intuitively, graph & in Figure 3 is the
pushout object of morphisms ! and & if it 15 abtained
from the disjoint union of L and D by identifying the
images of A in L and in D. Next, we have to embed
the right-hand side R in DY via a second pushout,
which produces graph . In this caze we say that
there is a direet derivation form & to H via p.

8O3

A graph rewriting system is a set T of graph pro-
ductions. A dertvation from & to H over B (shortly
G =5 H), is a finite sequence of direct derivations
of the form G =, G =, ... =,, G, = H, where
Pla---.Pn arein 7

To define the CHARM which implements a given
graph rewriting system, we have to define the sets
of process instances and of variables (see Definition
1), Quite ebviously, we can regard a graph as a dis-
tributed systemn where the edges ave processes, and
the nodes are variables. Thus we consider a CHARM
over the pair of sets (£, M) which are two collections
including all edges and ail nodes, respectively. The
precise relationship between the algebra of states of
such a CHARM and the graphs introduced above has
been explored in [Corradini and Montanari 1991]. Tt
has been shown there that concrete terms of such
an algebra (i.e., terms without hiding aperators, see
Definition 2), faithifully model finite graphs, e, if
FGrupr 15 the collection of all fnite Emphs and
CS is the sub-algebra of concrete terms of S, there
are injective functions Gv : €& — FGraph and
Tm : FGraph — C§ such that Gr{Tm(G)) = G
for each graph &. Furthermore, well-formed terms
{see Definition 5) medel in a similar way “partially
abstract graphs™, 1.e., suitable equivalence classes of
graph monomorphisms, where the target graph is
defined up to isomorphism,. For our goals, it is suf-
ficient to mntroduce the function W T which asso-
ciates a well-formed term with each graph monomor-
phism,

Definition 9 Led & = (N E,c) be a graph, with
N ={n}icm. E = {e;}izr, ond cle;) =nmi o oooomay
for all 1 <i < r. Then the concreie term represent-
ing ¢ is defined as
T d) = my | oov | B | eligge.... TP I IR |
Mgy e, Mg, 1| D

Let oo G — H be o graph monomorphiam, Then
the well-formed term representing i 13 defined as

WFT(h) = (Tl HN\a \ ..\ J[BY

where {xy,....0,) 18 the set of items of H which are
not in the image of & through h, and h™' improp-
erly denotes the substitution such that A=Y y) =2 if
W) =y, and h~'y) = y otherwise (which s well
defined becansze b ix injective). g

From the last cdefinition it can be checked that
the global part of the well-formed term representing
a monomorphism h : & — H is equivalent to the
concrete term representing G, ie., Tm{G). Using
this observation, and sinee a graph production is &
pair of graph monemorphisms with commeon domain,

594

it is easy to associate a CHARM rewrite rule (in the
sense of Definition G) with each graph production,

Diefinition 10 Let B be a groph rewrifing sysfem,
Far each groph production p= (L PR P Ry R,
its asseciated rewrite rule M{p) is defined as M(p)
WFT() — W FT(r). The CHARM implementing R
is defined o MR} = {M(pi) | o € Rln

In order to correctly relate the operational be-
haviours of a graph rewriting system R and of its
associated CHARM M(R), we have to take care of
the translation of the starting graph of a derivation
intoa term. In fact, if & is such a graph. it would not
he sound to take as starting state of MR} the con-
crete term Tmi). Indeed. we must observe that
the graph derivations informally mtroduced above
are defined up to isomorphism. ie. if &G =+, H. then
G =+, H' for vach ' = ¢ and H' = H. This is due
to the fact that the pushout objects of Figure 3 ape
elefined up te isomorphism. As a consequence, graph
derivations actually define a relation samong eguiv-
alence classes of graphs, rather than among graphs,
Such equivalence classes are faitlifully represented
by closed terius of the algelws of srates: nsing Def-
inition 9. the class of all graphs momorphic o G
is represented as W T{0g). where O s the wnigue
{monojmorphizsm from the empre geaph ro &

The next theorem states that the translation of
B graph rewriting svstem into a CHARM is sound
and complete, This result is nor trivial, and is
based on the fact that every transition of the alge-
bra T{MiT)) (see Definition 7} vepresents a pair of
graph monomorphisms with common souree. which
are the bottom line of & double pushout construe-
tion like the one depicted in Figuve 3. We re
fer to [Corvadini and Montansri 1997] for the forinal
Jroofs,

Theorem 11 Let R be a graph rewriting system
and MR} be the wssocinted CHARM. Soundness:
If G is o graph and p @ W0} = Q i2 o term
of the algebrn of computations of M(R). ie. of
CIM(R)) {see Definmition 8). then there 45 a deriva-
tion G =5 H such that WFT{04) = (. Completr-
ness: If G =3 H. then there isx o computation p
in the algebra of computations of W[R). such thal
p: WET{0q) = WFT(0y).

5 Modelling concurrent con-
straint programming
The concurvent constraint (re} progranuning

paradigm [Saraswat 1989] is o verv elegant frame-
work which caprtures and meneralizes most of the

concepts of logie programming [Lloyd 1087), con-
current logic programming [Shapiro 1989), and con-
straint logic programming [Jaffar and Lassez 1987).
The basic idea i= that a program is a collection of
concurrent agents which share a set of variables, over
which they may pose {“tell™) or check (*ask™) con-
straints. Apgents ave defined by clauses as the par-
allel composition (*]"), or the existential quantifi
eation {“3"), or the nondeterministic choiee {“4+™),
of other agents. A computation refines the initial
constraint on the shaved varables {ie., the store)
through & monotonic addition of information until
& stable configuration (if any] is obtained, which is
the final constraint returned as the result of such a
computation.

The o paradigm is parametric w.r.t. the kind of
constraints that are handled, Any choice of the con-
straint svsterm {i.e.. kind of constraints and solution
algorithim) gives o specific cc language. For exams-
ple, by choosing the Herbrand constraint system we
get concurvent logic programming, and by further
eliminating concurency we get logic programming.
The constraint system is very simply modelled by
a partinl informetion sysiem [Saraswat et al. 1991],
i.e. apair < D>, where D i= the set of the primi-
tive constraints and FC (D) = D is the entaslment
relafion which states which tokens ave entailed by
which sets of other tokens, and which must be re-
Hexive and transitive, Then, a constraint is a set of
primative constraiints, closed mnder entailment.

In this seetion we will informally show how any
co progran csn be modelled by 8 CHARM, The
iclea is to consider each state as the current collec-
tion of constraints (en the shared variables) and of
sctive agents (together with the variables they in-
valve), and then to reprezent each computation step
as the application of a rewrite rule. More precisely,
both agents ane primitive constrainis are going to
be modelled as process nstances, while the shared
variables are the variables of the abstract machine.

Basic computation steps are an ask operation, a
tell operation. the decomposition of an agent into
other agents, but also the generation of new con-
straints by the entailment relation. In the following,
each agent or constraint always comes together with
tlie variables it involves, even though we sometimes
will not say it explicitly.

In astate }, the agent 4 = tell{c) = 41 adds con-
straint ¢ to § and then transforms itzelf into sgent
Al. This can he fajthfully modelled by a rewrite rule
Rfrom §S=(G.L) to § = (. L") where L contains
agent A, L' contains agent A1 and constraint ¢, and
& contains the variables invalved m A (since these
ave the only iteins connecting A to the rest of the

state). This rule may be seen in Figure 4. Note
that the fact that ¢ is present only in the local part
L' of 5" does not mean that ¢ is visible only loecally.
In fact, the mechanism of rule application allows to
treat a local item as & global one (see Figure 2.

5 5

(fo—= b

& L oL

Figure 4: The CHARM rewrite rule for the agent
A=tellle) — Al

In a state @, the agent A = ask(c) — Al trans-
forms itself into ALl if ¢ is in @ and suspends oth-
erwige. The corresponding vewrite rule s B from
S = (G L) 5 = (G.L). where L econtains
agent A, L' contains agenr A1, and G contains ¢
In fact, constraints, once generated. are never can-
celled, since the accumulation of constrains is mono-
tonic. Since the rewrite rule eannet be applied if
there is no-occurrence of the Ihs in . the ask sus-
pension is given for free. This rule may he seen in
Figure 5.

Parallel and nondeterministic composition. as wel]
as existential quantification of agents, are straight-
forwardly modelled by corresponding rewrite rules,
Note that, inan “atomic” interpretation. telland wslk
operations fail if ¢ is inconsistent with the constraines
in €. Our rewrite rules model instead the “eventual”
interpretation [Saraswat 1989, where inconsistency
is discovered sconer or later, but possibly not im-
mediately, Thus immediate failure is not divectly
modelled. However, sinee the difference hetween the
two interpretations basically depends on the way the
nondeterministic choice is implemented. the specifi-
cation of suitable algebraic theories, as suggested in
Section 2, could be of help for the implementation
of the atomic interpretation of the ee framework,

Each pair {C.f) € F may be modelied by a stare
change as well. In fact, in a state Q. (C. 4} van be
interpreted as a tell of ¢ whenever C is in @, awd can

g 5

(o=

G L (G A

Flgure 5 The CHARM vewrite rule for the ngenr
A = ask{e¢) = A1,

895

thus be represented by a rewrite rule & from § =
(G L) to § = (G. L"), where L is empty, G contains
O, and L' contains ¢, Note that L is emply. sinece
nothing has to be cancelled. and all iterns involved
ave elther tested for presence and thus preserved (C7)
of generated (1], This rule may be seen in Figure G.

5 g
(e[) —2~ (¢
G L G L

Figure 6: The CHARM rewrite rule for the pair
{C. 1} of the entailment relation .

In summary, (the eventual mterpretation of) a ec
program. together with the underlying constraint
system, is modefled in 8 sound snd complete way
by o CHARM with ss many rewrite rules as agents
fanc subagents) and pairs of the entailment relation
{note that, while the number of agents is always fi-
nite, in general there may he an infinite number of
padrz in the entailment velation). It is important to
stress the naturality of the CHARM as an abstract
wechine for ec programming. In fact. the global part
of the rules exactly corresponds to the idea that con-
straints are never cancelled. and thus, once gener-
ated locally (by oue of the subsystems). are global
forever. This description of ce programming within
the CHARM framework follows a similar one, given
in [Montanari and Ressi 1991), where the classical
“double-pushout” approach to graph rewriting was
used to model ec programs and to provide them with
a truly coneurrent semantics. Thus, the results of
this section are not surprising, given the results in
[Montanari and Rosst 1991] and those of the previ-
vus section. which show how to model graph gram-
wars through o CHARM.

6 PFuture Work

As peointed our in Section 2. one of the subjects
which seem most interesting ro investigate is the
possibility to provide the CHAEM with a true-
concurrency semantics, Another one is insteacd
the implementation of process description languages
onto the CHARM. As briefly discussed in sections
2 and 3, both these issues seem to he fruitfully ad-
dressable within the algebraic framework we have
depicted in this paper.

In [Laneve and Montanari 1991] it has heen
shown that concurrent constraint programiming may
encode the lazy amd the call-by-valae A-raleulus.

896

This encoding exploits a technique similar to the one
used by Milner to encode A-caloulus in w-calculus
[Milner et al. 1989), sinee the nobility of processes
(which is one of the main features of 7-caleulus) can
be simulated in co programming via & clever use of
the shared logical variables. This result, combined
with our implementation of ce programming in the
CHARM, described in Section 5, suggests that also
higher order aspects of functional languages may be
expressed within the CHARM.

References

[Berry and Boudol 1990] G. Berry and €. Boudol.

Too,Gheqisel fApgiract Machine. In Proc.

[Corradini 1990] A. Corradini. An Algebraic Seman-
tres for Transifion Sysiems and Legic Program-
ming. Ph.D). Thesis TD-5/00. Dipactimento di
Informatica, Universitd i Pisa. Italy. March

19490,
|Corradini et al. 1990] A. Corradini, G. Ferrari, and

U, Montanari. Transition Svstems with Alge-
braic Structure as Models of Computations. In
Semanties of Syslems of Concurrent Processes,
?g%?saﬂan . ed, Springer-Verlag, LINCS 468

[Corradini and Montanari 1891] A, Corradini and
U. Meontanari, An Algebra of Graphs and Graph
Hewriting. In Prac.]ﬁh Conference on Criegory
Theory and Computer Science, Springer-Verlag,
LNCS, 1991,

[De Boer and Palamidessi 19491] F.5. De Boer and
C. Palamidessi, A Fully Abstract Model for
Concurrent Constraint Programming, In Prec.

CAAF, 1991,

[Ehrig 1979] H. Ehrig. Introduction to the Algebraic
Theory of Graph Grammars. In Proc. Interna-
tional Workshap on Graph Gromenars, Springer-
Yerlag, LNCS 73, 1979,

[Ferrari 1990] G. Ferrari. Unifying Models of Con-
currency. Ph.D. Thesis, Computer Seience De-
partment, University of Pisa. [taly, 1990.

|{Gorrieri et al. 1990] R. Gorrieri. 5. Marchetti. and

{,]]1. g_{[o i _ELf.-i.:} rz%?l%g%fomic Actions for OCS.

[Gorrieri and Montanari 1990] R. Gorrieri and 1.
Montanari. A Simple Caleulus Of Nets. In Proe.
CONCURS0, Springer-Verlag, LNCS 458, 1990.

[Hoare 1985] C.A.R. Hoare. Commanicating Se-
quential Processes. Prentice Hall, 1985.

[Jaffar anc Lassez 1987] J. Jaffar and J.L. Lassez.
Constraint Logic Programming, In Proc. POPL.
ACM, 1987

Laneve and Montanari 1991} C. Laneve and [
Montanari. Mobility in the ec paradigm. Sub-
mitted for publication. 1991,

[Lloyd 1987] J.W. Lloyd. Foundations of Logic Pro-
gramming. Springer Verlag, 1987,

[Meseguer 1990] J. Meseguer. Rewriting as a Unified
Medel of Concurrency, In Proc. CONCURSH,
Springer-Verlag, LNCS 458, 1090,

[Meseguer and Montanari 1990] J. Meseguer and U,
Montanari. Petri Nets are Monoids. mformation
and Computation, vol.88, n.2, 1990,

{Milner 1989] R. Milner. Communication and Con-
currency. Prentice Hall, 1989,

[Milner et al. 1989] R. Milner, J.G. Parrow, and
D.J. Walker. 4 calewlus of mobile processes,
LFCS Reports ECS-LFCS-89-85/86, University
of Edinburgh, 1089,

[Montanari and Rossi 1991] U. Montanari and F.
Rossi. True Coneurrency in Concuryent Con-
straint Programming, In Prec. JLPSS, MIT
Press, 1951,

{Reisig 1985] W. Reisig. Petri Nets: An Introduc-
tion. EATCS Monographs on Theoretical Com-
puter Science, Springer Verlag, 1985,

[Shapiro 1989] E. Shapiro. The Family of Concur-
rent Logic Programming Languages. ACM Com-
puting Swrveys, vol.21, n.3, 1989, |

[Saraswat 1989) V.A. Saraswat. Concurrent Com-
straint Programming Langueges. Ph.D. Thesis,
Carnegie-Mellon University, 1989, Also 1959
ACM Ihssertation Award, MIT Press.

[Saraswat and Rinard 1990] V.4A. Saraswat and M.
Rinard. Concurrent Constraint Programming. In
Proe. POPL, ACM., 1990.

[Saraswat et al. 1991] V.A. Saraswat, M. Rinard,
and P. Panangaden. Semantic Foundations of

Coneurrent. Constraint Programming. In Proe,
FOPL, ACM, 1991,

