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Abstract

The meta-level representation of Guarded Horn Clauses
(GHC) is considered and a GHC meta-computation sys-
tem is constructed by enhancing the simple GHC meta-
program. ‘Then the Reflective Guarded Horn Clauses
(RGHC) system is deseribed, where a reflective -tower
can be constructed and collapsed in & dynamic man-
ner, using reflective predicates. The implementation of
RGHC is shown. Finally a simple execution example is
also shown. This paper assumes a basic knowledge of
paraliel logic languages,

1. Introduction

If we lock for an ideal programming language, it must
be simple and, at the same time, powerful language.
Looking back the history of programming language, we
note that the development of the programming language
is generated by the repeated trials which lock for such
languages within a limitation of the available hardware,

Recently, it seems thai the mechanism, called meta
or reflection, s attracting wide spread attention in pro-
gramming language community. Though the concept
of computational reflection goes back to [Weyhrauch 80,
Smith 84], this concept is becoming popular especially
in the object-oriented language community [Maes 88].

In this paper, we assume the parallel logic program-
ming language GHC [Ueda 85, Tanaka 86] as our under-
lying language. The reasons for picking this language
are in its structural simplicity, semantical clearness and
applicability to the system programming.

We bave already proposed reflection mechanism
and shown several application examples [Tanaks 88,
Tanaka 80, Taoaks 91). However, reflection has been in-
troduced in an ad hoc manner. It lacks the generality
seen in 3-Liep [Smith 84]). We would like to propose Re-
flective Guarded Horn Clowses (RGHC), which has the

expressive power comparable to 3-Lisp, in this paper.
The organization of this paper is as follows, In Section
2, we iry to describe the meta-computation system of
GHC. After considering meta-presentation of the object-
level system, we describe GHC meta-computation sys-
tem by enhancing a simple 4-line GHC meta-program.
The language features of RGHC and several reflec
tive programming examples are deseribed in Section 3.
RGHC implementation is described in Section 4. An ac-
tual program execution example is shown in Section 4.
Related works and conclusion are deseribed in Section 6.

2. Meta-computation system in GHC

A meta-aystem can be defined as a computational sys-
tem whose problem domain is another computational
gystem. The latter computational system is called the
object-system. The program of meta-system iz called
meto-program.

2.1. A simple GHC meta-program

In Prolog world, & simple 4-line program is well-known
as Prolog in Prolog or venills interpreter [Bowen 83].
The GHC version of this program can be described as
follows:

exec{true):-true|true.
exec((P,0}):-truelexec(P},exec(q).
exec(P):-user_definad(P}|
reduce(P,Body) , exec(Body) .
exec(P):-system(P) laya_sxe(P).

Using this meta-program, we can execute a goal as an
argument of “exec.” This program tries to execute a
given goal in an interpretive manoer. We can see two
levels, i.e., the meta-level, where the top level execution
is performed, and the object-level, where goal execution
is simulated inside the meta-program.
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The meaning of this meta-interpreter is as follows: If
the given goal is “true,” the execution of the goal suc-
ceeds. If it is a sequence, it is decomposed and executed
separately. In the case of a user-defized goal, the predi-
cate “reduce” finds the clause which satisfies the guard
and the goal is decomposed to the body goals of that
clause, If it is a system-defined goal, it is executed di-
rectly,

Though this 4 line program is very simple, it certainly
works as GHC in GHC. However, this GHC in GHC is
insufficient as a real meta-program because of the follow-
ing reasons.

& There is no distinction between the variables at the
meta-level and those at the object-level. The object-
level variables cannot be manipulated at the meta-
level.

® The predicate “reduce(P,Q)" finds potentially
unifiasble clauses for the given argument “P." The
object-level program must also be defined as a pro-
gram. Therefore, the object-level program cannoet
be manipulated without using assert or retract.

® This program only simulate the top level execution
of the program. The more detailed executing infor-
mation such as current continuation, environment
or erecution result is not explicit in this interpreter.

2.2. Meta-level representation of the
object-level system

We would Iike to have a real meta-computation system
which does not have the disadvantages described in the
previous section. As a first step, we consider the meta-
level representation of the object-system.

2.2.1. Constants, function symbols and
predicate symbols

We assume that constants, function symbols and pred-
icate symbols are expressed by the same symbols, The
other possibility is using guote to distinguish the level.
In this approach, '3 (quote three) corresponds to the 2
at the object-level. 3-Lisp and Godel [Lloyd 88b] adopt
this approach.

However, we do not adopt this approach. Though
quote is usually used to separate the data from the pro-
gram, there exists a clear separation between predicates
and functors in logic programming languages. Though
the implementation of guote is not difficult, our claim is
that there is little merit in using quote in logic program-
ming languages,

2.2,2. Variables and variable bindings
As explained previously, we cannot manipulate object-
level variables well if it is expressed as variables. To

manipulate object-level variables, we need information
about the representation of variables, ie., we need to
know where and how the given variable is realized.

Therefore, we use a special ground term to express an
object-level variable. This special ground term has a one-
to-one correspondence to the object-level term and is
distinguished from the ordinary ground term.

An object-level variables are expressed as “@number”
at the meta-level. A unique number is assigned for each
variable. Though we are afraid that this representation
of variables is not abstract enough, compared to the ap-
proach using quote, we have chosen it for implementation
simplicity. Similarly, we also assume that the object-level
variable is expressed as “0lnumber” at the meta-meta-
level, “0!inumber” at the meta-meta-meta-level, and so
om.
The variable bindings at the object-level can concep-
tually be represented as a list of address-value pairs at
the meta-level, The followings are the examples of such

pairs.

(@1, undf) the value of @1 is undefined
(@2, a) the value of @2 is the constant “g"
(&3, @2) the value of @3 is the reference

pointer to G2

the value of @4 is the structure
whose function symbol is "

the first argument is the reference
pointer to @1, and the second argu-
ment is the reference pointer to @2

(@4,581,82))

We can regard these pair as expressing the memory
cells of the object-level. Similar to the ordinary Prolog
implementation, reference pointers are generated when
two variables are unified. Therefore, we need to derefer
the pointers when the value of a variable is needed.

2.2.3. Terms and object-level programs

Keeping the consistency with the notations explained
before, we denote object-level terms by corresponding
meta-level special ground terms, where every variable is
replaced by its meta-level notation.

For example, the object-level term “p(a, [HIT],
£(T,b))" is expressed as “p(a,[01]|02],£(02,b))" at
the meta-level,

It is also expressed as “p(a, [@11]012],£(012,b))"
at the meta-meta-level,

On the other hand, the program of cbject-level are
expressed a8 a ground term at the meta-level, where all
variables are replaced by “var({number)” notation. Note
that “var(number)” is just a ground ferm and not the
special ground term,

For example, the following “append/3" program

append ([A|B],C,D) :~true|



D=[A|E], append(®,C,E).
append([],A,B):-true|A=B.

18 expressed as

((append,3},

[{append( [var (i) lvar(2)],var(3),var(4))
i=true|var(4)=[var(l) var(5)],
append(var(2) ,var(3) ,var{E))},

(apperd([1,var(i),var(2))
s=true |var{l)=var(2))])

at the meta-level. Note that, this representation also
works at the meta-meta-level, since “var(number)” is
Just a ground ferm,

2.3. An enhanced meta-program

The simple GHC meta-program in Section 2.1 can be
enbanced to fit to the requirements of the real meta-
program using the meta-level representation in Section
2.2, The enhancement can be done by making ezplicit
what is implicit in the simple GHC meta-program.

o There was no distinction between the variable at
the meta-level and the one at the object-level, We
express object-level variables as special ground terms
al the meta-level.

» We manipulaie object-level program as a ground
term at meta-level, “exec” keeps it program as its
argument.

* “exec" also keeps the goal gueue and the environ-
ment in its arguments for expressing continuation
and variable bindings.

The top level deseription of GHC meta-system can be
written as follows:

m_ghc(Goal,Db,0ut) - truel
tranafer{Goal ,GRep,Env),
exec{[GRep] ,Eav,Db,NEnv,Res),
make-result{Res,GRep, NEnv,Out).

For given object-level goal “Goal® and given object-
level program “Db,” “m_ghe" ontputs the computation
result fo “Out.” “transfer” changes given poal “Goal™
to object-level representation “GRep.” In “GRep,” every
variable in “Geal” has been replaced to “8number” form.
The third argument contains the environment of this goal
representation.

For example, if we input “exan{[H|T],T)" to “Goal,”
“tranefer (exam{[H|T],T),GRep,Env)” will be exe-
cuted. The computation result becomes

GRep = exam([@1]02],€2)
Env = (2, [(01,undf), (82,undf)]).
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Note that environmentis expressed as a pair of a number
and a list. The first element of the pair shows how many
variables are allocated in the environment. In this case,
two numbers have already been allocated, The second
element of the pair shows the variable bindings.

The enhanced “exec” executes this goal representation
and the computation result “Out” will be generated by
“make_result” predicate.

The enhanced “exec” has five arguments. These five
arguments, in turn, denote the goal queue, the environ-
ment, the program, the new environment and the execuy-
tion result. The enhanced “exec” can be programmed
as follows: '

exec{[] ,Env,Db,NEnv,R)
= truel
(NEnv,R)=(Env,success).
exec([true|Rest] ,Env,Db,NEnv,R)
i= truel|
exec{Rest ,Env,Db,NEnv R} .
exec([false|Rest] ,Env, Db, MEnv,R)
= true]
(MEnv,R)={Env,failure).
exec( [GRep|Rest] ,Env,Db,NEav,R)
:= user_defined(GRep,Db) |
reduce(GRep, Rest,Env,Db,
NGRep,Envl),
exec{NiRep,Envl Db, NEov,R) .
exec{ [GRep|Rest] ,Env,Db HEnv R}
:= system(GRep) |
sys_exe(GRep, Rest Env NGRep,Envi),
exec{NGRep ,Envl,Db,NEnv,R) .

Though we omit the detailed explanation, the meaning
of this program is self-explanatory. We easily notice that
this is the extension of the simple GHC meta-program
in Section 2.1. Note that the use of kst for expressing
goal queue imposes us inefficiency and some sequentiality.
The difference list is used in the actual implementation.
Also note that the use of shared-variable and short-eirewit
techniques [Hirsch 86, Safra 86] might be effective in the
parallel implementation.

3. Reflective Guarded Horn Clauses

Reflection is the capability to feel or modify the cur-
rent state of the system dynamically. The form of reflec-
tion we are interested in is the computational reflection
propesed by [Smith 84]. A reflective system can be de-
fined as a computational system which takes itzelf as its
problem domain.

In 3-Lisp, an infinite tower of meta is conceptually as-
sumed. A program is not executed directly. Instead,
it s assumed to be executed on the bottom of the infi-
nite tower of meta. A meta-system executes the object-
gystem in an interpretive manner, Similarly, the meta-
meta-systemn executes the meta-system in an interpre-
tive manner. Conceptually, the infinite tower of meta all
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moves in a synchronons manner, A reflective function
can be defined as a mechanism which shift the contral
one level up,

If & computational system has such reflective capabil-
ity, it becomes possible to catch the current state while
executing the program and takes the appropriate action
according to the obtained information.

3.1. Two approaches in implementing
reflection

How should such reflective capability be implemented?
Apparently, implementing an infinite tower of meta di-
rectly is not possible,

There exist two approaches to realizing such reflec-
tive system. One is otilizing a pre-exist layer of meta-
gystems. We can modify the meta-program and add the
means of communication between the levels, namely, we
prepare & set of built-in predicates which can catch or re-
place the current state of the objeet system. If we adopt
this approach, it becomes possible to catch or modify the
internal state of the executing program by using those
built-in predicates,

In |Tanaks 88, Tanaka 90, Tanaka 91), we proposed
several reflective built-in predicates, such as “get_g,”
“put_g” “get_env" and “put_env.” “get_q" gets the
current goal queue of “exec.” “put_q" resets the current
goal queue to the given argument. Similarly, “get_env”
and “put_env"” operate on the variable binding environ-
ment. Though this approach has merit in that the imple-
mentation is relatively straightforward, we should note
that this approach is not an accurate implementation
of reflection. It ie because the infernal state is always
changing, even while processing the obtained informa-
tion at the object-level.

The other way is to create meta-systern dynamically
when needed. If a reflective predicate is called from the
object-system, the meta-system is dynamically created
and the control transfers to the meta-level in order to
perform the necessary computation. The reflective fane-
tion may also be called while executing the meta-system.
In this case, the system creates the meta-meta-system
and the control transfers to that system. Similarly, it
is possible to consider the meta-meta-meta-system, the
meta-meta-meta-meta-system, and so on.  When the
meta-level computation terminates, the contral automat-
ically returns to the one-level-lower computation system.

We adopted the second approach in implementing Re-
flective Guarded Horn Clauses (RGHC). RGHC is the
reflective extension of GHC and can be defined as a su-
perset of GHC. Language features of RGHC are shown
in the following sections.

3.2. Reflective predicate
Reflective predicates are user-defined predicates which
invoke reflection when called. Heflective predicates can

meta-level

Figure 1: Execution of the reflective predicate

be defined quite easily. It can wsed wherever we want,
in the user program or in the initial query, Similar to 3-
Lisp, it is possible to access or modify the internal state
of the computation system by this predicates.

For example, reflective predicate for goal “p(A,B)" can
be defined as follows:

reflect(p{X,Y), (&,Env,Db), (NG,NEnv, NDb))
i= goard | body.

Note that “p(A,B)" is chamged to “p(X,¥)"
and two extra arpuments, ie., “{G,Env,DB)}" and
“(NG,NEnv,NDb)* are added. When the goal “p(A,B)}"
is called at the object-level, we automatically shift one
level up and this goal is executed at the meta-level, (See
Figure 1.} At this level, “p(4,B)" is transformed to
YplX,Y)." where "X" and "Y" are the metalevel rep-
resentation of the arguments.

The computation state of the object-level is also rep-
resented as “{3,Env,Db),” where “6" represents the re-
maining goals which should be executed at the object-
level, “Env" represents the environments and “Db" rep-
resents the object-level program. Note that they are the
representations of the state and we can freely access and
manipulate these arpuments, “(NG,NEnv, NDb)". denotes
the new computation state of the object-level to which
the system should return when the meta-level exeeution
finishes. We assume that (NG,NEnv,NDb) are instanti-
ated while executing mefa-level goals. When the execu-
tion of this reflective goal is finished, we antomatically
shift one level down and “(NG,NEnv,NDb)" becomes to
the new object-level state,

For example, a reflective predicate “var(X,R)," which
checks whether the given argument “X" is unbound or
not, can be defined as follows:

reflect(var(X, R}, (G,Env,Db), (NG, NEnv,NDb))



:= unbound (X,Env) |
add_env((R,unbound) ,Env,NEnv},
(NG ,NDb)={G,Db).

reflect{var(X,R},(G,Env,Db), (NG, NEnv,NDb))
= bound(X,Env) |
add_env({R, bound) ,Env,NEnv) ,
{NG , NDb)=(G,Db) .

Since an object-level variable is handled as a special
ground termn and its value s contained in the enwviron-
ment, we examine the representation of environment to
check whether the variable is bound or not and the result
is added to the environment list as a value of “R."

The “current_load(N}" predicate, which obtains the
number of goals in the goal guewe of the chjeet-system,
can be defined as follows:

reflect{current_load(NJ}, (G,Env,Db},
(NG, HEnv,NDb)):- true |
length(G,X),
add_env{(N,X) ,Env,NEnv),
{NG,NDb)=(G,Db) .

We shift up to the meta-level and computes the length
“X" of “G." This value “X" is contained in the environ-
ment list as a value of “N."

The “add_clanse(CL)" predicate, which adds a given
clanse definiticn to the program of the object-system can
be defined as follows:

reflect(add_clause(CL), (G,Env,Db),
(NG,NEnv,NDb)) :=- true |
add _db(CL,Db,NDb),
(KG,HWEav)=(G,Eav).

The next example is the “interpretive” predicate
which execute a given goal “p" in an interpretive manner.

reflect{interpretive(P), (G,Env,Db),
(NG NEnv,HDh))} :- trae |
exec([P] ,Env,Db,NEnv,_),
(NG,NDb)=(G,Dhb) .

Mote that this interpretive execution can be execubed
in parallel with other execution. Therefore, it is possible
to execute the specific goals in an interpretive manner
and execute others directly. One possibility is modify-
ing this “exec” to keep the debugging information. In
such case, this predicate can be used as a “debugger.”
This kind of modification can be performed in a quite
straightforward maaner.

3.3. Shift-down and shift-up
It has been explained that, when a reflective predicate
is called, the system is automatically shifted one-level

BRI

up. When the execution of the reflective procedure fin-
ishes, the system is automatically shifted one-level down.
In that sense, shift-up and shift-down are automatically
carried out by using reflective predicates and we do not
peed to specify them explicitly.

Howewver, we sometimes need to obtain Lhe information
about the representation, not the information itsalf. This
typically happens when we want to implement a reflec-
tive system. For such purposes, we prepare two built-in
predicates, ie., “shift_down” and “shift_up.”

“ghift_down{Exp,Down_Exp)" transforms the givem
representation “Exp” to the one-level lower represen-
tation “Down_Exp.” ‘“shift_up(Exp,Up_Exp)" trans-
forms the given representation “Exp” to the one-
level higher representation “Up_Exp.” We should note
that “shift_down" and “shift_up" just comverts the
representations.  Therefore, they do not need to
use environment for the conversion. For example,
il we shifi-down “pla,[011€2]1,£(82,b)}" we obtain
“pla, [eii]er2]  £(012,b))."

Though the use of “shift_op" and “shift_down"” is
not recommended for the casual user, we can use these
predicates and obtain the information about the repre-
sentation if we want. For example, “get_g" predicate
which obtains the content of execution goals as its repre-
sentation can be defined as follows:

reflect(get_q{(Q), (G,Env,Db), (NG, NEnv,NDb))
:= true |
shift_down(G,Down_G),
add_env({Q,Down_G) ,Env,NEnv},
(NG ,NDb)=(G,Db).

We need to shift down the erecution goals because we
want to get the content of execudion goals as its repre-
sentation.

On the other hand, “put_q"” predicate, which replaces
the contents of goal gueue to the given expression “Q"
can be defined as follows:

reflect{put_q(Q), (G,Env, Db}, {NG,HEnv HDb))
1= true |
shift_up(Q, NG},
(NEnv,NDb)={Env, Db} .

Mote that we cannot get the expected result, if we
forget to shiff-up “0."

3.4. Meta-level databases

It 15 explained that reflective predicates are executed
at the meta-level. The remaining guestion is how to baild
a meta-level computation svstern dynamically when the
reflective predicate is executed,

Please see Figure 1 again. In general, a computa-
tion system of GHO consists of three elements, i.e., goal
quene, environment and database. We have already ex-
plained how the meta-level goal gueve is created, ie., it
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ouly consists of the reflect goal. The meta-level environ-
ment only contains the binding information of this goal.

How about dotobase? Tt must be different from the
object-level database. If all of guard and bady goals of
the reflective predicate consist of system-defined goals,
no problems oceur. If it includes user-defined goals, they
must be defined in the database at the meta-level,

How can we create meta-level database different from
object-level database? We assume that initially only
object-level database exists,

“meta” and “global” predicates are prepared for such
purpose. For example, if we would like to define a clause

G :- H | B.
at the the meta-level, we define it as
metal(d):- H | B,

at the object-level. When the meta-level is dynamically
created by executing the reflective predicate, all meta
definitions are searched from the object-level definition.
Top level predicate “meta” is removed from those defi-
nitions and they are copied to the meta-level database.
Similarly the meta-meta-level predicates can be defined
as

metalzetald)d:~ H | E.

It is also assumed that reflective definitions are all
copied to the meta-level, since they can be used recur-
sively. The global predicate

global{G):- H | B.

is also prepared to define user-defined predicates which
are common to all levels,

4. RGHC implementation

In implementing RGHC, there exists several possibil-
ities. The most efficient implementation is re-designing
the abstract machine code, which eorresponds to War-
ren code, for RGHC. In this case, the abstract machine
code must have the capability to handle system’s inter-
nal state as data, or, conversely, to convert the given daia
into its internal state,

The other possibility is realizing RGHC system as an
interpreter on top of an ordinary GHC system. Though
Wwe cannot expect too much for the execution efficiency
in this case, this method has a merit that the imple-
mentation is relatively simple. We actually implemented
RGHC using this methad,

4.1. Description of RGHC
The top level deseription of RGHC can be expressed
as follows:

r_ghc{Goal, Db, Out)
= true |
transfer(Goal,GRep,Env},
exac( [GRepl ,Env,Db,NEnv, Res) ,
make_result (Res,GRep,NEnv,Dut).

Note that this code is exactly the same as that of
“m_ghc” in Section 2.3. This means that we realize a
reflective system as a object-level gystem in the meta-
computation system.

However, “exec” must be enhanced to realize reflec-
tion. This can simply be performed by adding one pro-
gram clause to the “exec” program in Section 2.3, as
shown below,

exec([GRep|Rest] ,Env,Id,Db,NEnv,R)
:= reflective(GRep,Db) |
create_meta_db{Db, Meta_Db),
shift_down((GRep,Rest, Env,Db),
(D_GRep,D_Rest,D_Enwv,D_Db)),
exec([reflect(D_GRep, (D_Rest,D_Env,D_Db),
(@1,92,2333],
€3, [(@1,undf), (02, undf) , (83, undf)] )
Meta Db, New_Meta_Env,_ ),
deref_variable((®1,02,03),New_Meta_Env,
(D_BestZ,D_EnvZ,D_Db2)),
shift_up{(D_Rest2,D_Env2,D_Db2),
(N_Rest,N_Env,N_Db)),
exec(N_Rest,N_Env,Id,¥_Db,NEnv,R).

This program definition clause takes care of the cpe-
ation of the reflective tower. “create_meta_db” cre-
ates the meta-database from the object-system database.
“{GRep,Rest,Env,Db)” is shifted dewn and the rap-
resentation “(D_GRep,D_Rest,D_Env,D_Db)" is gener-
ated.

Then “exec” at line 6 starts the meta-level compu-
tation using these arguments. This “exec” essentially
responsible for the creation of the meta-level computa-
tion system. The trick of the program is in using the
same “exec” at the mets-level computation. Note that
variables at the meta-level computation are assigned dif-
ferently from the object-level computation.

Therefore, in our implementation, the meta-level com-
putation is executed at the same speed as its object-level
computation,

When the meta-level execution finishes, “21,02,03"
must be instantiated. We derefer these variables, shift up
this information and get “(N_Re gt,N_Env,N_Db)" which
denotes the new object-level information. Then we re-
turn to the object-level execution using this information.

Figure 2 shows how the reflective tower is constructed
by calling reflective predicates and how it is collapsed by
finishing up their execution.

4.2. RGHC implementation on PSI-IT
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The prototype implementation of RGHC has already
been finished up using PSLII [Nakashima B7] sequen-
tial Prolog machine, We used KL1 [ICOT 89] and
ESP [Chikayama 84] as our implementation program-
ming languages. KL1 is the extension of GHC, running
on PSLII hardware. Various extensions has been made
to GHC, considering the actual program development on
PSI-II1. KL1 is used to describe the core part of the pro-
gram. On the other hand, user interface and ifo part
are written in ESP, the object-oriented dialeet of Prolog.
The total size of the program is 1530 lines, where KL1
part consists of 985 lines.

Though the RGHC system can conceplually be de-
geribed as shown in Section 4.1, this implementation is
very expensive since list is used for expressing enwiron-
ment. It sequentially searches the element and it leads
to the inefficiency when the leagth of the list becomes
long,

Therefore, the vector data type is used instead of list
for internalimplementation. KL1 provides us with sector
data type, where the inder semrch is possible. Figure
3 shows the vector representation which corresponds to
the variable bindings shown in Section 2.2.2. This vector
implementation is initiated by [Koshimura 90] and it has
turned out to be very efficient.

In KL1, a wector can be created by executing
“new_vector(Vector,N)" goal, where “N" iz the in-
put for specifying the vector size and "Vector" is
the cutput keeping the reference pointer to the wvee-
tor. The content of i-th element can be examined by
“gector_element(Vector,l,Element).”
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“gat_vector_element{Vector,Il,0ldElem, NewElem,
NewVector)” is used for setting value “NewElen" to the
i-th element of vector *Vector.” We should note that
the old value of i-th element is given as “0ldElem”
and the new reference pointer to the modified vector
is given as “NewVector.” It cam be seen that this
“pet_vector_element” predicate is defined in a quite
declarative manner. However, at the lanpuage imple-
mentation level, the L1 system is managing the refer-
ence count for the vector and destructive assignment is
performed when no other goals are pointing the vector,

Our policy for RGHC implementation is as follows:
A wertor is used instead of lst for infernal implementa-
tion. However, we still continue to use list structures for
the external representation. Therefore, the reflective pro-
gramming examples shown in the previous sections are
atill effective, On the other hand, erec must be modified
slightly to handle vectors, though we amit the implemen-
tation details because of the space limitation.

Note that the use of the internal database, such as seen
in DEC-10 Proleg [Bowen 83], may also be effective for
the more efficient implementation. If we use the internal
database, fast program look-up becomes possible using
the key. Though we have not used the internal database
in representing programs, these kinds of considerations
become more important, especially when the size of the
object-level program becomes larger,

5. Program execution example

The snapshots of a program execution example are
shown in Figures 4 and 5. When the RGHC sys-
tem is started, “I/0 WINDOW Level 1" is automatically
opened, where “level 1" means the object level The
initial query ean be typed in from this window. In
this example, we have typed in “<- test(Q.4,B).”
The definition of “test” predicate is shown in the
“pmace_window." located to the right side of Figure 4,
for the reference.

As seen in this program, *get_q(Q)" is defined as a
reflective goal. When this “get_q{Q}" goal is executed,
the meta-level computation system is dyrnamically cre-
ated and “I/0 WINDOW Level 2" is opened.

Figure 4 shows the instant when the meta-level compu-
tation has just finished up. “reflect(get_q{...)...)"
in “I/0 WINDOW Level 2" shows the reflective goal to
be executed at the meta-level. This window shows that
the execution of this goal has been finished successfully
by 42 steps. The bindings of variables allocated at the
meta-level are also shown. Variables at the meta-level
are shown by @(1),2(2) ,8(3} and the object-level vari-
ables are shown by 215,87, These representations are
slightly different from those explained in Section 2.2.2,
ginee it ineludes () at the meta-level. The differences
mainly come from the regulations of our GHC system
and are not essential.
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When the meta-level computation terminates, “I/0
WINDOW Lewvel 2" also disappears. Figure 5 shows the
instance when the whole computation terminates, The
final computation result is shown in *I/0 WINDOW Level
1." It shows that the execution has been terminated suc-
cessfully by 57 steps and the variable hindings at that

time are alacu shown.

6. Related works and conclusion
In logic programming field, [Bowen 82] provides us the

starting point for meta-programming research.  There

exists related research, such as [Porto 84, Eshghi 86).
Also some related research was carried out in parallel
logic programming field [Shapiro 84, Clark 84, Hirsch 86,
Safra 86].

Recently, two workshops on meta-programming in logic
programming, i.e., Meta 88 and Meta 90, have been held
[Lloyd 88a, Bruynooghe 90]. It seems that the attention
has been paid to the theoretical foundation of meta-
programming, Several considerations have been done
for the meta-level representation of the object-system
[Lloyd 88b, Lim 80]. Our representation, deseribed in
Section 2, is very close to Lim's approach.

Though we deseribed the GHC meta-computation sys-
tem first in this paper, it seems that our ohject-system
representation is quite straightforward one and that most
peaple agree with our representation scheme.

However, regarding to reflection in logic programming,
there exist few research works so far. The exceptions are
[Costantini 89, Sugano 90, Lamma 91]. They all worked
for reflection in Prolog,

In [Costantini 89, Lamma 91] the interests mainly lie
in controlling the program execution dynamically by re-
defining the solye predicate at the meta-level. In spite of
his claim on computational reflection, their systems have
only & very limited expressive power,

On the other hand, [Sugano 90] assumes the similar
kind of reflective predicate definition as proposed in this
paper. However, his interest is mainly in semantics. Not
much consideration has done for the implementation, the
execution efficiency and the application.

The features of our RGHC system can be summarized
as follows:

1. Reflection mechaniem by reflective predicate defini-
tion, The user can freely define reflective predicates
which invoke reflection when called. We can handle
current continuation, environment and progrom at
the meta-level. This mechanism is the GHC version
of reflective function in 3-Lisp.

2. Dynamic constructing and collapsing of a reflective
tower. In our system, a new level is generated when
a reflective predicate is called. When finished, that
level is collapsed and the system automatically re-
turns to its original level. By calling reflective pred-

B8RS

icate recursively, the arbitrary level of meta can be
created dynamically.

3. Creation of the arbitrary layers of databases. We
can define"the mota-level database, which is different
from the object-level by “meta” predicate. It is also
possible to define the arbitrary layers of databases
by using “reflect,” “meta” and ¥global™ predi-
cates,

It seemns that the unique feature of RGHC is the imple-
mentation simplicity of reflection. As shown in Section
4, the trick is in using the same “exec” at the meta-level
computation. Therefore, the meta-level computation can
be executed at the same speed as its object-level compu-
tation.

This elegance of the implementation mainly comes
from the simplicity of the language, This seems to be
its most critical difference from the implementation of
reflection in Lisp or the one in object-oriented languages.
Though we did not mentioned the semantics of RGHC,
we should note that [Sugano 90] worked out for defining
the semantics of his R-Prolog* by the extended Herbrant
base with ifo pair.

Our final goal exists in building a sophisticated dis
tributed operating system on top of the distributed in-
ference machine such as PIM [Uchida 88]. Some trials
for describing such systems can be seen in [Tanaka 88,
Tanaka 90, Tanaka 91),
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