PROCEEDINGS OF THE INTERNATIONAL COMFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © 1COT, 1992

1012

A Feature-based Constraint System
for Logic Programming with Entailment

Hassan Aijt-Kaci®

Abstract

This paper presents the constraint system FT, which we feel
is an intriguing allernative to Herbrand both theoretically
and practically. As does Herbrand, FT provides a univer-
sal data structure based on trees. However, the trees of FT
(called feature trees) are more general than the trees of Her-
brand (called comstructor trees), and the comstraints of FT
are finer grained and of different expressivity. The basic no-
tion of FT are functional attributes called features, which
provide for record-like descriptions of data awvoiding the owver-
gpecification intrinsic in Herbrand’s constructor-based de-
scriptions. The feature tree structure fixes an algebraic se-
manties for FT. We will also establish a logical semantics,
which is given by three axiom schemes fixing the first-order
theary FT.

FT 15 a constraint system for logic programming, pro-
viding a test for unsatisfiability, and a test for entailment
between constraints, which is needed for advanced control
mechanisms.

The two major technical contributions of this paper are
(1) an incremental entailment simplification system that is
proved to be sound and complete, and (2) a proof show-
ing that FT satisfies the so-called “independence of negative
constraints”.

1 Introduction

An important structural property of many lagic pro-
gramming systems is the fact that they factorize into
a constraint system and an extension facility. Colmer-
aner's Prolog IT [B] is an early language design making
explicit use of this property. CLP (Constraint Logic
Programming [10]), ALPS [16], CCP {Concurrent Con-
straint Programming [21]), and KAP (Kernel Andorra
Prolog [9]) are recent logic programming fFameworks
that exploat this property to its full extent by being
parameterized with respect to an abstract class of con-
straint systems. The basic operation these frameworks

*Digital Equipment Corporation, Paris Hesearch Laboratory
{PRLL 85 avenue Victor Hugs, 92500 Ruaeil-Malmaisen, France
(email: {hak,podelskiléprl.dec.con).

tGerman Research Center for Artificial Intelligence (DFKI)
and Universitil des Saarlandes, Stuhleatzenhanswes 3, 6800 Saar-
briicken 11, Germany (cmail: smolka®dfki.uni-sb.de). Sup-
ported in part by the Bundesminister fiir Forschung ond Tech-
nologie under comtract ITW 9105,

Andreas Podelski*

Gert Smolkal

require of & constraint system is & test for unsatisfahil-
ity, ALPS, CCP, and KAP in addition require a test
for entailment between constrainte, which is needed for
advanced control mechanisms such as delaying, corou-
tining, synchronisation, committed choice, and deep con-
straint propagation. Given this situation, constraint sys-
tems are 2 ceniral issue in research on logic program-
ming,

The constraini systems of most existing logic pro-
gramming langnages are variations and extensions of
Herbrand [14], the constraint system underlying Prolog.
The individvals of Herbrand are trees corresponding to
ground terms, and the alomic consiraints are equations
between ferms. Seen from the perspective of program-
ming, Herbrand provides & universal data structure as a
logical system.

This paper presents a constraint system FT, which we
feel is an intriguing alternative io Herbrand both theo-
retically and practically. As does Herbrand, FT' provides
& universal data structure based on treess. However, the
trees of FT (called feature trees) ase more general than
the trees of Herbrand (called constructor trees), and the
constraints of FT are finer graned and of different ex-
pressivity. The basic notion of FT are funetional at-
tributes called features, which provide for record-like de-
seriptions of data aveiding the overspecification intrinsic
in Herbrand's constructor-based descriptions. For the
special case of constructor trees, features amount to ar-
gument selectors for constructors,

Suppose we want to say that x is & wine whose grape is
riesfing and whese color is white. To do this in Herbrand,
one may write the equation

% = wine(riesling, white, y1,. .., ¥n)

with the implicit assumption that the first argument of
the constructor wine carries the “feature” grape, the sec-
ond argument carries the “feature” color, and the remain-
ing arguments yy, ...,y carry the remaining “features”
of the chosen representation of wines, The obvious diffi-
culty with this description is that it says more than we
want to say, namely, that the constructor wine has n+ 2
arguments and that the “features” grape and color are
represented as the first and the second argument.

The consteaint system FT avoids this overspecification
by allowing the description

x:wine[grape = riesling, color =+ white] (1)

saying that x has sart wine, its feature grape is riesling,
and its feature color is white. Nothing is said about other
features of =, which may or may nol exdst.

The individuals of FT are so-called feature trees, ex-
amples of which are shown in Figure 1. A feature tree
is a possibly infinite tree whose nodes are labeled with
symbols called sorts, and whose edges are labsled with
symbols called features. The labeling with features is
deterministic in that all edges depasting from a node
must be labeled with distinct features. Thus, every di-
rect subtree of a feature tree can be identified by the
feature labeling the edge leading to it. The consiruc-
tor trees of Herbrand can be represented as feature frees
whose edges are labeled with natural numbers indicating
the corresponding argument positions.

All but the second and third feature tree in Figure 1
aatis[y the description {1}

The constraints of FT are ardinary first-order formu-
lae taken over & signature that accommodates sorts as
unary and features as binary predicates. Thus the de-
seription (1) is actually syntactic sugar for the formula

wine(x) A Jy(grape(z, y) A riesling(y)) A
Fy(eolor(z, y) A white(y)).

The set of all rational feature trees is made into a corre-
sponding logical structure T by letting A(z) hold iff the
root of = is labeled with the sort A, and letting flz,y)
hold iff = has y as direct subtrec via the feature f. The
feature kree structure 7 fixes an algebraic semantics for
FT.

We will alsc establish a logical ssmantics, which is
given by three axiom schemes fixing a first-order theory
FT. Backofen and Smolka [6] show that T is a model of
FTand that FTis in fact a complete theory, which means
that FT is exactly the theory induced by T. However,
we will not use the completeness result in the present
paper, but show explicitly that entailment with respect
to T is the same as eptailment with respect to FT.

The two major technical contributions of this paper
are (1) an incremental entailment simplification system
that is proved to be sound and complete, and (2) a proof
showing that F'T satisfies the so-called “independence of
negative constraints” (7, 14, 15]. The incremental entail-
ment simplification system 15 the prerequisite for F1%
use with either of the constraint programming frame-
works ALPS, CCP or KAP mentioned at the beginning
of this section. The indepence property means among
other things that negative constraints can essentially be
hendled through entailment simplification,

One origin of FT is Ait-Kaci's ¢-term caleulus [1],
which is at the hearf of the programming language LO-
GIN [3] and further extended in the language LIFE [5]
with functions over feature structures thanks to a gen-
eralization of the concept of residuation of Le Fun [4].
Other precursors of F'T are the feature descriptions found
in so-called unification grammars [13, 12| developed for

1013

natural language processing, and also the formabisms of
Mukai [17, 18]. These early feature structure formalism
were presented in a nonlogical form. Major steps in the
process of their understanding and logical reformulation
are the articles [20, 23, 11, 23|. Feature trees, the feature
tree structure T, and the axiomatization of T were first
given in [6].

The paper is organized as follows. Section 2 defines
the basic notions and discusses the differences in expres-
sivity between Herbrand and FT. Section 3 gives a basic
simplification system that decides satisfiability of posi-
tive consiraints. Section 4 is not committed to FT but
discusses the notion of incremental entaillment checking
and its connection with the indepence property and nega-
tion. Section 3 gives the entailment simplification sys-
tem, proves it sound, complete and terminating, and also
proves that FT satisfies the independence property.

2 Feature Trees and Constraints

To give a rigorous formalization of feature trees, we first
fix two disjoint alphabets S and F, whose symbols are
called sorts and features, respectively. The letters A,
B, ¢ will always denote sorts, and the letters f, g, k
will always denote features. Words over F are called
paths. The concatenation of two paths v and w resulis
in the path ww. The symbol £ denotes the empty path,
ve = rv = v, and F* denotes the set of all paths.

A tree domainis a nonempty set D C F* that is prefix-
closed, that is, if vw € D, then v € D. Thus, it always
contains the empty path.

A fealure free is a mapping ¢ : D — & from a tree
dornain I? into the set of sarts. The paths in the domain
of a feature tres represent the nodes of ihe tres; the
empty path represents its root. The lefters s and ¢ are
used dencte festure trees.

If convenient, we consider a feature tree t as a relation,
ie,t C F*xS, and write (w, A) € ¢instead of f(w) = A.
As relations, f.e., as subsets of F* % &, feafure trees
are partially ordered by set inclusion. We say that s is
smaller than t if s T 1.

The subtree wt of a feature tree | al one of its nodes
w is the feature tree defined by (as a relation):

wi = {{v, A} | (wv, A) € £}.

If D is the domain of t, then the domain of wi is the set
w='D = {v | wv € D}. Thus, wt is given as the mapping
wit 1w 1D — § defined on its domain by wifv) = #{ww).
A foature tree s is called a subfree of a feature tree ¢ if
it iz & subtres 5 = wi at one of its nodes w, and a direct
subtree if w & F.

A feature tree ¢ with domain D is called rafional if
{1} ¢ has only finitely many subtrees and (2) £ is finitely
branching, which is: for every w € D, wF N D ={uf €
D | f € F} is finite. Assuming (1}, (2) is equivalent to

1014

wine wine wine
grape coler grape gra V\ulur
riesling white riesling riesling red
wine
wine grape colar
grape ymar riesling white
color
riesling white 1988 origin
alsace

Figure 1: Examples of Feature Trees.

saying that there exist finitely many features fi,..., f.
such that D ; {.fl: g r.fn}.'

Constraints over feature trees will be defined as first-
order formulae. We first fix a first-order signature S8 F
by laking sorts as unary and features as binary rela-
tion symbols. Moreover, we fix an infinite alphabet of
variables and adopt the convention that =, y, # always
dencte variables. Under thie signature, every term is a
variable and an atomic formula is either a feature con-
straint zfy (f(zr,y) in standard notation), a sort con-
straints Az (Az) in standard notation), an equation
z =y, L (Malse"), or T (“true”). Compound formu-
lae are oblained as usual by the connectives A, W, —,
++, = and the quantifiers 3 and ¥. We use 3¢ and ¥¢
to denote the existential and universal closure of a for-
mula ¢, respectively. Moreover, V(¢) is taken to denote
the sot of all variables that occur free in a formula .
The letters ¢ and ¢ will always denote formulae, In the
following we won't make a distinction between formu-
lae and constraints, that iz, a consfraind is a formule as
defined above,

S Festructures and validity of formulae in 5 W F-
structures are defined as usual. Since we consider only
&t F-structures in the following, we will simply speak of
structures, A theoryis a set of closed formulaz. A mods!
of a theory is a structure thatl satisfies every formulae of
the theory. A formula ¢ is a conseguence of a theory T
(T |=) if ¥ is valid in every medel of T. A formula
& is salisfiable in a structure A if 34 is valid in A Two
{ormulae ¢, ¢ are equivalent in a siructure A if Wig e 9)
ie valid in 4. We say that a formulas ¢ entails a formula
in a structure A [theory T'] and write ¢ =4 ¥ (¢ =7] if
W¢ —) is valid in A fis a consequence of T']. A theory
T is complete if for every closed formula ¢ either ¢ or -
is a consequence of T

The feature tree structure T is the & W Fostructure
defined as follows:

o the domain of T is the set of all rational feature

trass:
s t€ AT iff t(e) = A (t's root is labeled with A);

o (s,t)e fTiffeD, andt=fs (t is the subiree of
sat f).

Next we discuss the expressivity of our constraints
with respect to feafure trees (that is, with respect to
the feature tree structure T) by means of examples. The

constraint
~Jy(zfy)

says that = has no subtree at §, that is, that there iz no
edge departing from ='s root that is labeled with f. To
say that = has subtree y at path f ... f,,, we can use the
constraint

Hzy - - Hza(zfizs Az faza AL LA Zaca fay).

Now let’s look at stalements we cannot express (more
precisely, statements of whom the authors believe they
cannot be expressed). One simple unexpressible state-
ment is "y is a subtree of 2" (that is, "Sw: y = wa"),
Moreover, we cannot express that = is smaller than y.
Finally, if we assume that the alphabet F of features is
infinite, we cannot say that z has subtrees at features
fiseo o1 fa but no subtree at any other feature. In par-
ticular, we then cannot say that 2 is 2 primitive feature
tree, that is, has no proper subiree.

The theory FTy is given by the following two axiom

schemes:
(Axl) Wz'Wy ¥z (zfynafz —y=2)
{for every feature f)

fAx2) ¥z {Az A Bz — 1)
{for every two distinet sorts A and B).

The first axiom scheme says that features are functional
and the second scheme says that sorts are mutually dis-
joint. Clearly, T is a model of FT,. Moreover, FT, is

incomplete (for instance, 32 Az) is valid in T but invalid
in other models of FTy). We will see in the next section
that FTy plays an important role with respect to basic
constraint simplification.

Mext we introduce some additional notation nesdad in
the rest of the paper. This notation will also allow us to
state & third axiom scheme that, as shown in [§], extends
FT, to a complete axiomatization of T

Throughout the paper we assume that the conjunction
of formulae is an associative and commutative operator
that has T as neutral element, This means that we iden-
tify ¢ (A B) with § A (¢ A $), snd ¢ A T with ¢ (but
not, for example, o fy Az fy with ofy). A conjunction of
atomic formulae can thus be seen as the finite multiset of
these formulae, where conjunction is multiset union, and
T (the “empty conjunetion”) is the empty muliisel. We
will write ¥ C ¢ {or 4 € ¢, if 1 is an atomic formula) if
there exists a formula 4 such that ¢ A ¢ = ¢

We will use an additional atomic formula =f T (*f
undefined on z") that is taken to be eguivalent to
-3y (zfy), for some variable y (other than z).

Only for the formulation of the third axiom we intro-
duce ihe notion of a solved-clawse, which is either T or
& conjunction ¢ of atomic formulee of the form z fy, Az
or T such that the following conditions are satisfied:

1. il Az € ¢ and Bz € §, then 4 = B,
2 ifzfyc gand 2fz € ¢, theny = =
3. if zfy € ¢, then cfT € ¢.

Given a selved-clause ¢, we say that a variable iz depen-
dent in ¢ if ¢ contains a constraint of the form Az, =fy
or zff, and nse DV($) to denote the sel of all variables
that are dependent in g

The theary FT is obtained from FTy by adding the
axiom scheme:

(Ax3) V3IX¢
{for every solved-clause ¢ and X = TV($)).

Theorem 2.1 The feature free siruciurs T i3 a model
of the theory FT.

Proof. We will culy show that FI' is a model of the
third awiom. Let X be the set of dependent varizbles
of the solved-clause ¢, X = DV(#). Let a be any 7-
valeation defined on W(d) — X; we write the tree a(y) as
ty. We will extend @ on X such that T,a |= ¢.

Civen z & X, we define the “punctual” tree {; =
{(e,A)}, where 4 € S is the sort such that Az € ¢,
if it exists, and arbitrary, otherwise, Now we are go-
ing to use the notion of free sum of Nivat [18], where
w't = {{wv, A) | (v, A) € t} (“the tree ¢ translated by
w"), and we define:

a(z) = [H{w't, |24 y for some

yEV(¢), we FL

1>

Here the “leads-to” relation = is given by: = -5 =, and
e yife Sy and y'fy € &, for some 3’ € V(¢) and
some f € F, Since

a(z) = {wa(y} | ... }
);

end, for a node w of a(z), wa(z) = aly
afz) is a rational tree and that 7,2 | ¢

it follows that

o

3 Basic Simplification

A basie constroind iz either | or & possibly empty con-
junction of atomic formulae of the form Az, zfy, and
x = y. The following five basic simplification rules consti-
tute & simplification system for basic constraints, which,
as we will see, decides whether a basic constraint is sat-
isfiable in T.

 Efyhrafzné
“efrhyzag
. .rlzh.lﬁ‘:hq'.- AgH
g Azndzag
T Az A
E=yAG
L — d =
4 zﬁyh@lxi—y] IEV{@]N‘ :'éy
r=xhgd
-

The notalion ¢z — y] is used to denote the formula
that iz obtained from ¢ by replacing every occurrence
of = with 3. We say that a constraint ¢ simplifiss fo a
constraint 9 by a simplification rule p if % is an instance
of p. We say that a constraint ¢ simplifies Lo a constraint
t if cither ¢ = ¢ or ¢ simplifies to ¢ in finitely many
steps each licensed by one of the five simplification rules
given above,

Example 3.1 We have the following basic simplifica-
tion chain, leading to a solved constraint:

sferyfordunAvAhes=cshy==
sfuryfor Aurdvhz=chy =2
sfureforhduAdvh s=zhy=a
efrndundva u=vhz=2Ay==z
sferi Avidvh n=vhAz=ahy==
gferhdvh u=vAhzscAy=so

Lo sdd

Using the same steps up to the last one, the constraint
sfunyfon Aund BuAz =My =z simplifies to L (in
the last step, Rule 2 instead of Rule 3 is applied). |

1016

Proposition 3.2 If the basic constraint ¢ simplifies fo
%, then FTo = ¢ o 9.

Proof. The rules 3, 4 end 5 perform equivalence trans.
formations with respect to every structure, The rules 1
and 2 correspond exactly to the two axiom schemes of
FTy and perform equivalence transformations with re-
spect to every model of FT. 0

We say that a basic constraint ¢ binds a varable = to
yifa =y € ¢ and = occurs only once in ¢ At this
point it is impartant to note that we consider equations
as ordered, that is, sssume that ¢ = y iz different from
v =zif & # y. We say that a variable = is eliminated,
or bound by ¢, if ¢ binds = to some variable y.

Proposition 3.3 The basic simplificaiion rules are fer-
minating.

Proof. First cbserve that the simplification rules don’t
add new variables and preserve eliminated variables.
Furthermeore, rule 4 increases the number of eliminated
variables by one. Hence we know that if an infinite sim-
plification chain exists, we can assume withomt loss of
generality that it only employs the rules 1, 3 and 5. Since
rule 1 decreases the number of feature constraints “z fy™,
which is nof increased by rules § and 5, we know that
if an infinite simplification chain exists, we can assume
without loss of generality that it only employs the rules
3 and 3. Since this is clearly impossible, an infinite sim-
plification chain cannot exist.]

A basic constraint is called normal if none of the five
simplification rules applies to it. A constraint 3 is ealled
a normal form of a basic constraint ¢ if ¢ can be sim-
plified to ¢ and ¢ 35 normal. A solved consireint 5 a
normal constraint that is different from L.

So far we know that we can compute for any basic
constraint ¢ a normal form ¢ by applying the simplifica-
tion rules as long as they are applicable. Although the
normal form i may not be unigue for ¢, we know that ¢
and 9 are equivalent in every model of FTy. It remains
to show that every solved constraint is satisfiable in 7.

Every basic consiraini ¢ has a unique decomposition
¢ = dw A ¢ such that ¢ is 2 possibly empty con-
junction of equations “2 = y" and and ¢y is & possibly
empty conjunction of feature constraints “zfy" and sort
constraints “Az", We call ¢y the normalizer and and

g the graph of ¢.

Proposition 3.4 A basic constraint ¢ £ L is solved iff
the following conditions hold:

1. an egualion = = y appears in ¢ ondy of z 5 elimi-
nated in ¢;

2. the graph of ¢ is a solved clause;

3. no primitive constraint appears more than once in .

Proposition 3.5 Every solved constraint is setisfiable
in cvery model of FT.

Proof. Let ¢ be a solved constraint and .4 be a mode] of
FT. Then we know by axiom scheme Ax3 that the graph
e of a solved constraint ¢ is satisfiable in an FT-model
A. A variable valuation @ into A such that 4, & = dg
can be extended on all eliminated variables simply by
alz) = aly) if 2 = y € &, such that 4,a | ¢. o

Theorem 3.8 Let ¢ be a normal form of o basic con-
straint ¢ Then ¢ is satisfiable in T if and only if v & L,

Proof. Since ¢ and 4 are eguivalent in every model
of Ky and T is & model of FTy, it suffices to show
that 1 is satisfiable in 7 if and only if ¢ £ L. To
show the nontrivial direction, suppose ¢ # L. Then +
is solved and we know by the preceding proposition that
% is satisfiable in every model of FT. Since T is a model
of F'T, we know that ¢ is satisfiable in T, o

Theorem 3.7 For every basic constraint ¢ the following
statements are equivalent:

T3¢ & Imodel Aof FTy: A=3p o FTE 3y

Proof. The implication 1 = 2 holds since T is & model
of FTy. The imphcation 3 = 1 follows from the fact that
T is a model of FT' It remains to show that 2 = 3.

Let ¢ be satisfiable in some model of FT;. Then we
can apply the simplification rules to ¢ and compute a
normal form 4 such that ¢ and ¢ are equivalent in every
model of FTy. Hence 1 is satisfiable in some model of
FTy. Thue4r 2 1, which means that 1 is solved. Hence
we know by the preceding proposition that 1 is satisfiable
in every model of FT, Since ¢ and ¢ are equivalent in
every model of FTyCFT, we have that ¢ iz satisfiable in
every model of FT. |

4 Entailment, Independence

and Negation

In this seetion we discuss some general properties of con-
straint entailment. This prepares the ground for the next
section, which js concerned with entailment simplifica-
tion in the feature tree constraint system.

Throughout this section we assume that .4 is a struc-
ture, v and ¢ are formulae that can be interpreted in A,
and that X is a finite set of variables.

We say that v disentails ¢ in 4 if v entails g in A
If « is satisfiable in .4, then + cannot both entail and
disentail X ¢ in 4. We say that v determines ¢ in A if
+ either entails or disentails ¢ in 4.

Given v, ¢ and X, we want to determine in an in-
cremental manner whether v entails or disentails 3X ¢,
Typically, v will not detexmine 3X¢ when JX¢ 35 con-
sidered first, but this may change when + is strengithened
toyA7". The basic idea leading to an incremental entail-
ment checker is to simplify ¢ with respect to the confest
« and the loeal variables X. Given y, X and ¢, simplifi-
cation must yield a formula 4 such that

v 43X o X,

The following facts provide some evidence that this is
the right invariant for entaillment simplification,

Proposition 4.1 Let 7 =4 3Xd + IXv. Then:
1. yEadXe iff vEaIXy;
2 a4 AXg iff v Fa AKX,
8. if Y=L, then v[4-3X¢;
4 f AXY s valid in A, then v =4 X .

Staiements 1 and 2 say that it doesn't matter whether
entailment and disentailment are decided for ¢ or 4.
Statement 3 gives a local condition for disentailment, and
Statement 4 gives a local condition for entailment. The
entailment simplification system for feature trees given
in the next section will in fact decide entailment and
disentailment by simplifying such that the condition of
Statement 4 is met in the case of entailment, and that
the condition of Statement 3 is met in the case of disen-
tailment.)

In practice, one can ensure by variable renaming that
no vareble of X occurs in . The next fact says that
then it suffices if entailment simplification respects the
more convenient invariant

AEqhd ey iy

This is the invariant respected by our system (ef. Propo-
sition 5.4).

Proposition 4.2 Let XN V(4)=0. Then:
1L.if Asyhdeyiy, then v 4N = XY,
2 yEa—-3Xé iff YA ¢ is unsatisfiable in A.

That is, the conjunction 4 A ¢ is satisfiable if and only if
4 either entails 31X, or it does not determine 3X¢.

The so-called independence of negative constraints [T,
14, 15] is an important property of comstraint systems.
If it holds, simplification of conjunctiens of positive and
negative constraints can be reduced to entailment sim-
plification of conjunctions of positive constraints.

To define the independence property, we assume that
a constraint system is a pair consisting of & structure
A and a set of so-called basic constraints. From basic

1017

constraints one can build more complex constraints using
ihe connectives and quantifiers of predicate logic. We
say thai a constraint system satisfies the independence

property if
Y EAIX i V..V I T Ti: v =a SXKag

for all basic constraints 4, ¢,..., ¢ and all finite sets
of variables Xq,. .., X

Proposition 4.3 [f u constraint system satisfies the in-
dependence property, then the following siatements hold
fv, ¢ and iy, ..., dn are basic constrainds):

1ogn-3Xg AL n 3K, unsatisfiohle in 4 iff

3i: v Ea AXadi;

2. if yA-3Xad A A-TXdn is satisfiable in A, then
aA-AXd AL A=K g Ea IX il 7 Ea X @

5 Entailment Simplification

We now return to the feature tree constrant system.
Throughout this section we assume that 5 is a solved
conetraint and X is a finite set of variables not ocournng
in 7. We will call the contezt, the variables in X' local,
and all other variables glabal

If T is a theory and ¢ and 4 are possibly cpen formu-
lae, we write ¢ =g 1 (read: ¢ entails ¢ in T) if ¥(¢ — ¥)
is valid in T'.

Theorem 5.1 For every basic constraint ¢, the follow-
ing equivalences hold:

v Er-3Xé if v pr, "3X¢ iff g EFr -3Xe.

Proof. Implication *2 = 37 helds since FTy CFT. Im-
plication “3 = 1° holds sinee T is a model of FT. To
show implication “1 = 2", suppose ¥ =r ~3X¢. Then
we know by Proposition 4.2 that A ¢ is unsatisflable
in ‘T. Thus we know by Theorem 3.7 that 4 A ¢ is un-
gatisfiable in every model of FT;. Hence we know by
Proposition 4.2 that ¥ Epr, ~3X¢. 8]

For every basic constraint ¢ and every variable & we de-
fine

. ,={y if =y £ ¢ and = is eliminated;
' 2 otherwise.

A basic constraint ¢ is X-oriented if 2 = y € ¢ always
implies # € X or y § X. A besic constraint ¢ is pivoted
if ¢ =y £ ¢ implies that = is eliminated in ¢ (and then
y is & "pivot™). -

The following entailment simplification rules simplify
basic constraints to basic constraints with respect to a
context and local variables X.

1013

L %% vfuvETAg, dy==z
¢ zfuhyfvCr,

TR | S
3.% AzAByCyhg, dz=gy, A£B
" “1”;“‘* Aycahd, dgyme
5, _TEYAG {r?‘-‘y; z € V(¢),

z=yhdar—yl |(zeEXorygX)
ﬁ.:—jH rg X, yelX
r_m z=yET, & Vg
5 h2ns

We say that a basic constraint ¢ simplifies to & constraint
& with respect to -y and X if ¢ = o or ¢ simplifies to o in
finitely many steps cach licensed by one of the eight sim-
plification rules given above. The notions of nermal and
normal form with respect to 4 are defined accordingly.

Example 5.2 Let y = zfuryfv A dusd By and X =
{z}. Then we have the [ollowing simplification chain
with respect to v and X:

e=chy==z
ZHux 2=zhy=z by Hule Ef
=ax z=2Ay=z by Rule E3
Sy #t=vhzrhiysz by Rule E2
TP'..,I__'[L h","RII]I:ES

Let us now take as context § = sfu A yfo A du. Then
g=u=wvhz=zhy = ris normal with respect
to ¥ and X. We shall see that this normal form tells
us that § does not determine ¢. If 5 gets strengthened
either to § A Buv (as above), or to 5 Az = g, then the
strengthened context does determine: it disentails in the
first and entails in the second case. The basic normal
formof Az = yisyfutdurv = uhz =y with
respect to this context ¢ simplifies to z = g. o

In the previous example, § = 2 = 2 Ay = = simplifies
fod =u =whz=g2Ay =2 wih respect to y =

zfutyfor Awn By and X = {z}. This corresponds to
a basic simplification as follows:

T MNd =
sfufyfe A Aut By

= zfusrcferdurBy AzZehy==z
=5 sferdunBry Au=vhz=gAy=2

= 7 AN

We observe that v A ¢, is equal 1o 4' A ¢}, modulo re-
naming y by ¢,y = = and u by ¢yx = v, and modulo the
repetition of = fv.

Az=zhy==

Lemma 5.3 Let ¢ simplify o ¢y with respect lo 7 and
X, not using Rule Ef (in an entailment simplification
step). Then 5 A ¢ simplifies do some v' A ¢ whick is
equal to y A ¢h up fo variable renaming and repetition of
conjuncts.

Proof. Clearly, cach enfailment simplification rule, ex-
cept for E6, corresponds directly to a basic stmplification
rule (namely, E1 and E2 to B1, E3 to B2, E4 to B3, E
and E7 to B4, and E8 te BS).

If the application of the entailment simplification rule
io ¢ relies on a condition of the form ge = ¥ or o = gy
where o # doory # dy, thenz = go € dory = gy € ¢,
and Rule B4 is first applied to v A ¢, eliminating = by
$= (y by du).

When comparing v A ¢y and 1 A ¢}, renamings take
account of these variable eliminations. Note that, if the
rule applied to ¢is E2, then 4" has one feature constraint
2 fw less than oy = which, after renaming, has a repetition
of exactly this constraint, o

Proposition 5.4 If ¢ simplifies to o with respect to ~
and X, then yAd and v Adp are equivalent in every model
of FTy.

Proof. Follows from Lemma 5.3 and Propoesition 3.2. O

Proposition 5.5 The entailment simplification rules
are ferminating, provided v ond X are fized,

Proof. First we strengthen the statement by weakening
the applicability conditions ¢y = = in Rules E1 and B4
to gy = go. Then from Lemma 5.3 follows: (*) Each
entailment simplification rule applies to ¢, with respect
toy and X if and only if it applies to ¢ with respect o+’
and X — except possibly for ES, when the corresponding
variable has already been climinated in an “extra™ basic
simplification step. '

If 4 has one conjunct of the form @ fu less than 4, then
(*) still holds; regarding a new application of E2 this is
ensured by its (therefore so complicated. . .) applicability
condition,

With condition (*), it is possible to prove by indue-
tion on n: For every entailment simplification chain

@@, ..., ¢y with respect to 4 and X, there exists a
‘basic plus Rule E6' simplification chain + A &, 7 A
@1, Tape Al where k = 0is the number of “extra®
variable elimination steps. Since, according to Prope
sition 3.3, basic simplification cheains are finite, 50 are
entailment ssmphbfication chams. a

S0 far we know that we can compute for any basic
constraint ¢ a normal ferm ¢ with respect to - and X
by applying the simplification roles as long as they are
applicable. Although the normal form ¢ may not be
unigue, we know that + A ¢ and + A 4 are equivalent in
every model of FTy.

Proposition 5.6 For every basic constraint ¢ one can
compule a normal form @ with respect to « and X. Fvery
such normal form ¥ satisfies: v =r X ¢ iff v =r IXY,
and v [Fpr 3X¢ iff v Fpr 3X9.

Proof. Follows from Propositions 5.4, 5.5, 4.2 and 4.1.
(W]

In the following we will show that from the entailment
normal form ¢ of ¢ with respect to y it is casy to tell
whether we have entailment, disentailment or neither.
Moreover, the basic normal form of 4 A @ is exactly y A g
in the first case (and in the second, where 4 A L = 1},
and “almost” in the third case {¢f. Lemma 5.3).

Proposition 5.7 A basic econsfraint ¢ # L is normal
with respeet to « and X 1f and only if the following con-
ditions are satisfied:

1. & is solved, X-oriented, and confains no variable
that i bound by -y,

2 if¢z =y and ofu C~, them yfv @ ¢ for every v;
3. if ¢z =gy andzfu € v and yfv € 7, then du = dv;
4. ¥f¢z =y end Az € 7, then By € ¢ for every B;
5 if gz = gy and Az € v and By €+, then 4 = B.

Lemma 5.8 If ¢ # L is normal with respect {0 v and
X, then 4 A ¢ is satisfiable in every model of FT.

Proof. Let ¢ # L be normal with respect to 4 and X.
Furthermore, let v = 1y Ay and ¢ = dy A de be the
unique decompositions in normalizer and graph. Since
the variables bound by vy oceur neither in 4¢ nor in ¢,
it suffices to show that yg A dw A de is satisfiable in every
model of FT.

Let ¢xlvz) be the basic constraint that is oblained
from g by applying all bindings of ¢r. Then yg A ¢y A
¢ 15 equivalent to ¢y A gyl{ve) A e and no variable
bound by ¢y cccurs in #’N[Tﬁ} M g Henee it suffices
to show that dp{ve) M dg is satisfiable in every model of
FT. With the conditions 2-5 of the preceding proposition

101e

it is easy to see that gy(vg) A do is a solved clavse.
Hemce we know by axiom scheme Ax3 that ¢n{vs) A ¢»¢-
is satisfiable in every model of FT.

Theorem 5.9 (Disentailment) Let ¢ be o normal
form of @ with respect to v and X. Then ~ ¢ -3X¢
iff ¢=1.

Proof. Suppese & = L. Then 4 v ~3X¢ and henece
4 v -3X ¢ by Proposition 5.8.

To show the other direction, suppose 4 =7 -3X 4.
Then 7 =g ~dX 4 by Proposition 5.6 and hence v A 4
unsatisflable in T by Proposition 4.2, Since T is a model]
of FT (Theoram 2.1), we know by the preceding lemma
that ¥ = L (since 4 is assumed to be normal). m}

We say that a vaniable £ 1s dependent in a solved con-
straint & if ¢ contains a constraint of the form Az, ¢ fy
or & = y. (Reeall that equations are ordered; thus y is
not dependent in the constraint @ = y.) We use DV(g)
to denote the set of all variables that are dependent in &
solved constraint .

In the following we will assume that the underlying
signature & ¥ J has at least one sort and at least one
feature that does not oceur in the constraints under con-
sideration. This assumption iz eerfainly satisfied if the
signature has infinitely many sorts and infinitely many
features.

Lemma 5.10 {Spiting) Let ¢,...,¢n be basic con-
strammis different from L, and X, ..., X, be finite sefs
of varighles disjoint from V{T}I Moreover, for every
1=1,...,n, lel ¢; be normal with respect do v and X,
and let ¢y hove a dependent variable that is not in X;.
Then 4 A -3Xygh AL A-TX g, i5 satisfiable in every
maodel of FT.

Proof. Let 4 = 4w A g be the unigue decomposition of
+ into normalizer and graph. Since the variables bound
by v cccur neither in 4¢ nore in any 4, it suffices to show
that 4g A -3 Xy A ... A DX g, is satisfiable in every
model of FT. Thus it suffices to exhibit & solved claunse
§ such that 4o C & and, for every i = 1,...,n, V(4] is
disjoint with X; and & A is unsatisfiable in every model
of FT.

Without loss of E,l:nl:r.u.]ily we can assume that every
X; is disjoint with ¥(7) and V(¢;) — X; for all j. Hence
we can pick in every ¢ a dependent variable ; such that
= f X for any 3.

Let #;,...,2 be all variables that occur on either side
of equation #; = y € ¢y, i = 1,...,n (recall that =; is
fixed for i). None of these variables occurs in any X
since every ¢ is X;-oriented. Next we fix a feature g and
& sort I such that neither occurs in «y or any ;.

Now § is obitained from 7 by adding constraints as
follows: if Az, £ ¢y, then add Bz if z;fy € o, then

1020

add z:f T, to enforce that the variables #,,... , Bp ATE

pairwise distinct, add
gre—y A L N mgn A ngl.

It is straightforward to verify that these additions to

vield a solved clause § as required. o

Proposition 5.11 If ¢ is solved and DV(g) C X, then
FT = V3X¢.

Proof. Let ¢ = diw A de be the decompesition of ¢ in
normalizer and graph. Since every variahle bound by ¢
is in X, it suffices to show that V1X ¢ is a consequence
of FT. This follows immediately from axiom scheme Ax3
sinee dig is a solved clause. m]

Theorem 5.12 (Entailment) Lety be a normal form
of ¢ with respect to v and X. Then ~ = IX¢ iff
b1 and DV(¥)C X,

Proof. Suppose v =r 3X¢. Then we know 7 =5 3X¢
by Proposition 5.6, and thus 4 A =3X iz unsatisfiable in
T. Since + is solved, we know that « is satisfiable in T
and hence that A 3X 3 is satisfiable in 7. Thus # L.
Since ¥ A -3X¢ is unsatisfiable in 7 and 7T is a model
of FT, we know by Lemma 5.10 that DV(¢) C X.

To show the other direction, suppose ¥ # 1 and
DV(¥) € X. Then FT | V3Xy by Proposition 5.11,
and hence T | ¥3X¢. Thus ¥ f=r 3X¢, end hence
¥ Er 3X ¢ by Proposition 5.5, o

Theorem 5.13 Let ¢ be @ basic constraint. Then o l=g
2X$ if v Epr X6,

Proof. One directicn holds since 7" is & model of FT. To
show the other direction, suppose v =7 X . Without
loss of generality we can assume that ¢ is normal with
respect to oy and X. Hence we know by Theorem 5.12
that ¢ # L and DV() € X. Thus FT = ¥3X¢ by
Proposition 5.11 and henee ¥ =pp 33X 4.]

Theorem 5.14 (Independence) Let ¢y,..., ¢, be ba-
sic constraints, and X,, ..., X, be finite sets of variables.
Then

YlEr3Xig V...V IAXads if i y =g TN

Proof. To show the nontrivial direction, suppose 7 =1
3Xagh V...V IXod,. Without loss of generality we can
assume that, for all { = 1,...,n, X is disjoint from Viy),
#; is normal with respect toy and X;, and ¢ # L. Since
A=3X gy A A= X,y I8 unsatisfable in T and T is a
model of FT, we know by Lemma 5.10 that DV(#:) < X,
for some k. Hence v =7 3Xu¢y by Thearem 5.12, a

6 Conclusion

We have presented a constraint system FT for logic pro-
gramming providing a universal data structure based
on rational feature trees. FT accommodates record-
like deseriplions, which we think are superior io the
constructor-based descriptions of Herbrand.

The declarative semantics of FT is specified hoth alge-
braicly (the feature iree structure T) and logically (the
first-order theory FT given by three axiom schemes).

The operational semantics for FTis given by an incre-
mental constraint simplification system, which can check
satisfiability of and entallment betwesn constraints.
Since FT satisfies the independence property, the sim-
plification system can also check satisfiability of conjunc-
tions of positive and negative constraints,

We see four directions for further research,

First, FT should be strengthened such that it sub-
sumes the expressivity of rational eonstructor trees [7, 8].
As is, FT cannot express that ¢ is a tree having direct
subtrees at exactly the features fi,..., fu. It turns out
that the system CFT '24] obtained from FT by adding

the primitive consiraing
e{fi,.... fa}

(= has direct subtrees at exactly the features f;,.. ., f.)
has the same nice properties as FT. In contrast to F'T,
CFT can express constructor constraints; for instance,
the constructor constraint = = A(y, z) can be expressed
equivalently as Az A 2{1, 2} A zly A 222, if we assume
that 4 is a sort and the numbers 1, 2 are features.
Second, it seems attractive to extend FT such that i
cen accommodate a sort lattice as used in [1, 3, 4, 5, 23).
One possibility to do this is to assume a partial crder <
on sorts and replace sort constraints As with guasi-sort
constraints [Alz whose declarative semantics is given as

\/ Be.

B<d

[Ale =

Given the assumption that the sort ordering < has great-
est lower bounds if lower bounds exist, it seems that the
results and the simplification system given for FT carey
over with minor changes.

Third, the worst-case complexity of entailmeni check-
ing in FT should be established. We conjecture it to be
quasi-linear in the size of v and ¢, provided the availahle
features are fixed a prory.

Fourth, implementation techniques for FT at the level
of the Warren abetract machine [2] need to be developed.

References

[1] H. Aft-Eaci. An algebraic semantics approach to the
effective resolution of type equations. Theoretical
Computer Scéence, 45:293-351, 1986.

[2] H. Ait-Eaci. Warren's Abstract Machine: A Tu-
torial Reconstruction, The MIT Press, Cambridge,
MA, 1901,

[3] H. Afl-Kaci and B. Nasr. LOGIN: A logic program-
ming language with buill-in inheritance. The Jour-
nal of Logic Programming, 3:185-215, 1986,

4

H. Att-Kaci and R. Nase. Integrating logic and func-
tional programming. Lisp and Symbolic Computa-
tion, 2:51-80, 1989,

[5] H. Aft-Kaci and A. Podelski. Towards 2 Mean-
ing of LIFE. Proceedings af the 3rd Infernational
Symposium on Programming Language Fmplemen-
tation and Logic Programming [Passau, Germany),
J. Maluszytiski and M. Wirsing, editors. LNCS 528,
pages 255-274, Sponger-Verlag, 1991,

[6] R. Backofen and G. Smolka, A complete and decid-
able feature theory. Draft, Germen Research Cen-
ter for Artificial Intelligence (DFKI), Stuhleatzen-
hausweg 3, 6600 Saarbricken 11, Qermany, 1991
To appear.

[7} A. Colmerauer. Equations and inequations on finite
and-infinite trees. In-Proceedings of the Snd Fnier-
national Conference on Fifth Generation Compuler
Systems, pages 85-99, 1984

8} A. Colmeraner, H. Kancui, and M. V. Caneghem.
Prolog, theoretical principles and current trends.
Technology end Science of Informatics, 2{4):255-
202, 1083,

[9] S. Haridi end 5. Janson. Kernel Andorra Prolog and
its computation model. In D, Warren and P. Szeredi,
editors, Logic Programming, Proceedings of the Tth
International Conference, pages 31-48, Cambridge,
MA, June 1990. The MIT Press.

[10] J. Jaffar and J.-L. Lassez. Constraint logic pro-
pramming. In Proceedings of the Lith ACM Sym-
poesium on Principles of Progremming Languages,
pages 111-119, Munich, Germany, Jan. 1987

[11] M. Johnson. Affribute-Value Logic and the Theory
of Grammar. CSLI Lecture Motes 16. Center for
the Study of Language and Information, Stanford
University, CA, 1988.

[12] R. M. Kaplan and J. Bresnan, Lexical-Functional
Grammar: A formal system for grammatical repre-
sentation. In J. Bresnan, editor, The Mental Repre-
senfation of Grammatical Relations, pages 1T3-381.
The MIT Press, Cambridge, MA, 1982,

[13] M. Kay. Functional grammar, In Proceedings of
the Fifth Annual Mesting of the Berkeley Linguis-
tics Sociely, Berkeley, CA, 1970, Berkeley Lingnis-
tics Society.

1021

[14] J.-L. Lassez, M. Maher, and K. Marriot. Unification
revisited. In J. Minkee, editor, Foundations of De-
ducizve Dafabases and Logic Programming. Mozgan
Kaufmann, Los Altos, CA, 1988.

[L5] J. L. Lassex and K. McAloon. A constraint sequent
calculus. In Fifth Annual TEEE Symposium on Logic
in Computer Science, pages 52-61, June 1990,

[16] M. J. Maher. Logic semantics for a class of
committed-choice programs. In J.-L. Lasses, editor,
Logic Programmang, Proceedings of the Fourth In-
ternotional Conference, pages 858-876, Cambridge,
MA, 1987, The MIT Press.

[17] K. Mukai. Partially specified terms in logic pro-
gramming for linguistic analysis. In Proceedings of
the Gth International Conference on Fifth Cenero-
tion Computer Systems, 1088,

[18] K. Mukai. Constraint Logic Programming and the
Unification of Information. PhI} thesis, Tokyo In-
stitute of Technology, Tokyeo, Japan, 1991.

[18] M. Nivat. Elements of a theory of tree codes. In
M. Nivat, A. Podelski, editors, Tree Automata (Ad-
vances and Open Problems), Amsterdam, NE, 1992,
Elsevier Science Publishers.

[20] W. C. Rounds and K. T. Kasper. A complete logical
calenlus for record structures representing lingmstic
information. In Proceedings of the 1st IEEE Sym-
posium on Legic in Computer Science, pages 3843,
Boston, MA, 1986,

[21] V. Saraswat and M. Rinard. Concurrent constraint
programming. In Proceedings of the Tih Annual
ACM Sympesium on Principles of Programming
Languages, pages 232-245, San Francisco, CA, Jan-
uary 1980,

[22] G. Smolka. Feature comstraint logics for unifica-
tion grammars. The Jowrnal of Logic Programming,
12:51-87, 1992,

[23] G. Smolka and H. Aft-Kaci. Inheritance hierar-
chies: Semantics and unification. Journal of Sym-
bolic Computation, T:343-370, 1988,

[24] G. Smolka and R. Treinen. Relative simplifica-
tion for and independence of CFT. Draft, German
Research Center for Artificial Intelligence (DFKI),
Stublsatzenhansweg 3, 6600 Saarbriicken 11, Ger-
many, 1992. To appear.

