PROCEEDINGS OF THE INTERMATIONAL CONFEREMNCE
OMN FIFTH GENERATION COMPUTER SYSTEMS [992,
adited by 1COT, & ICOT, 1992

100

Domain Independent Propagation

Thierry Le Provost, Mark Wallace
ECRC, Arabellastr 17
8000 Miinchen 81, Germany
{thierry | mark}@ecrc.de

Abstract

Recent years have seen the emergence of two main
approaches to integrating constraints into logie
programming. The CLFP Scheme introduces con-
straints as basic statements over built-in computa-
tion domains. On the other hand, systems such as
CHIP have introduced new inference rules, which
enable certain predicates to be used for propaga-
tion thereby pruning the search tree. Unfortn-
nately thess two complementary approaches were
up to now incompatible, since propagation tech-
niques appeared intimately tied to the notion of
finite demains. This paper introduces a general-
isation of propagation that is applicable to any
CLP computation doemain, thereby restoring or-
thogonality and bridging the gap between two im-
portant constraint logic programming paradigmes.
The practical interest of this new notion of “do-
main independent” propagation is demonstrated
by applying a prototype system for solving some
hard search problems.

1 Introduction

There are two main approaches for integrating
constraints into logic programming. The first ap-
proach, formalised as CLP(X) [Jaffar and Lassez,
1087, is to replace the usual domain of compu-
tation with a new domain X. The computation
domain X specifies a universe of values; a set of
predefined [unctions and relations on this universe;
and a class of basic constraints, which are formulae
built from predefined predicate and function sym-
bols, and logical connectives. The CLFP scheme
requires that an effective procedure decide en the
satisfizbility of the basic constraints, The facility
to define new predicates as facts or rules, possibly
involving the built-in’s, is carried over from logic
programming. The evaluation of queries involving
such user-defined predicates is performed using an

extension of resolution, where syntactie unification
is replaced with deciding the satisflability of basic
constraints (constraint solving). As with standard
logic programming the default search method for
evaluating program-defined predicates is depth-
first, based on the ordering of program clauses and

goals,

The second main approach to integrating con-
straints in logic programming uses the standard,
syntactic, domain of computation, except that
the variables may be restricted to explicitly range
over finite subsets of the universe of values {finite
domain variables) [Van Hentenryck and Dincbas,
1986). In this approach, insugurated by CHIFP
[Dinchas et al., 1988], it is the proof system that
is extended. The new type of controlled infer-
ence is termed constraint propagalion or consis-
tency techniques [Van Hentenryck, 1989). These
techniques combine solution-preserving simplifica-
tion rules and tree search, and were originally in-
troduced for solving constraint satisfaction prob-
lems [Montanari, 1974; Mackworth, 1977).

Informally eonstraint propagation aims at ex-
ploiting program-defined predicates as constraints.
It operates by looking ahead at yet unsolved goals
to see what locally consistent valuations there re-
main for individual problem variables. Such con-
straint techniques can have & dramatic effect in
cutting down the size of the search space [Dincbas
et al., 1990].

To date the technique of propagation has only
been defined for search involving finite domain
variables. Each such variable can only take a finite
number of values, and looking ahead is a way of
deterministically ruling out certain locally incon-
sistent values and thus reducing the domains. This
restriction has prevented the application of prop-
agation to new computation domains introduced
by the CLP({X) approach. In addition propaga-
tion, as currently defined, cannot reason on com-

pound terms, thereby enforcing an unnatural and
potentially inefficient encoding of structured data
as collections of constants.

This has meant that the two approaches to in-
tegrating constraints into logic programming have
had to remain quite separate. Even in the CHIP
gyatem which utilises both types of integration,
propagation is excluded from those parts of the
programs invelving new computation domains,
such as Boolean algebra or linear rational arith-
metic,

Thia paper proposes a generalisation of propa-
gation, which enables it to be applied on arbitrary
computation domains. Generalised propagation
can be applied in CLP(X) programs, whatever the
domain X. Furthermore its basic concepts, theo-
retical foundations, and abotract operational se-
mantica can be defined independently of the com-
putation domain. This allows programmers to rea-
son about the efficiency of CLP programs involv-
ing propagation in an intuitive and uniform way.
This generality carries over to the implementation,
where algorithms for executing generalised prop-
agation apply across a large range of basic con-
straint theories. Last but not least, the declarative
semantics of C'LP programes is preserved.

The main idea behind generalised propagation
is to use whatever basic constraints are available
in a CLP(X) language to express restrictions on
problem variables. Goals designated as propaga-
tion constraints are repeatedly approximated to
the finest basic constraint preserving their solu-
tions. When no further refinement of the current
resolvent’s basic constraint is feasible, a resolution
step is performed and propagation starts again.

The practical relevance of generalised propaga-
tion has been tested by implementing it in the
computation domain of Prolog. Programs are just
sets of Prolog rules with annotations identifying
the goals to be used for propagation. The lan-
guage has enabled us to write programs which are
simple, yet efficient, without the need to resort
to constructs without a clear declarative seman-
tics such as demons. The performance results have
been very encouraging.

In the next section we recall the interest of inte-
grating propagation over finite domains into logic
programming. We then present a logical basis for
propagation that will provide the basis for gen-
eralisation. The following section introduces gen-
eralised propagation, and sketches its theoretical
basis. The fourth section introduces our proto-
type system on top of Prolog, and discusses some
of the examples that we tackled with it. In con-
clusion we identify the directions that this work is
now taking,

2 Propagation over Finite Domains

2.1 Propagation in Constraint
Satisfaction Problems

The study of constraint satisfaction problems has
a long history, and we mention here just a few im-
portant references. The concept of arc consistency
was introduced in [Mackworth, 1977); its combina-
tion with backtrack search was described in [Haral-
ick and Elliot, 1980]; the notion of value propaga-
tion is due to [Sussman and Steele, 1980]; the ap-
plication of constraint methods to real arithmetic
was surveyed in [Davis, 1987]; finally [Van Henten-
ryck, 1980] extensively motivatés and describes in
detail the integration of finite-domain propagation
methods into logic programming.

A constraint satisfaction problem (CSP) can be
represented as

¢ a set of variables, {X1,..., Xn}, each Xi
ranging over a finite domain DM;

aset of constrainta C1,...,C'm on these vari-
ables, where each constraint Cf is an atomie
goal pi(Xd;,...X4;) defined by a k-ary predi-
cate p;.

A solution to the problem is an assignment of
values from the domains to the variables (a la-
belling) such that all the constraints are satis-
fied. We now briefly recall the main approaches
to solving CSP's in a logic programming selting,
using the following toy example. The problem has
four variables X1, X2, X3, X4, each with domain
{a,b,c}. There are four constraints, each involv-
ing the same binary predicate p:
plX3, X1) A p(X2, X3) A p(X2, X4) Ap(X3,X4)
The relation denoted by p has three tuples: <
a,b> <a,c>, <be>,

Generate and Test This approach enumerates
labellings in a systematic way until one is found
that satisfies all the constraints. It is hopelessly in-
efficient for all but the smallest problem instances,
In our example the system will go through all 27
labellings which begin with an a, before discover-
ing that X1 cannot take this value due to the firat
constraint p(X3,X1). In general reordering the
constraint goals may only bring minor improve-
ments. Analysing the cause for the failure of goals
so as to avoid irrelevant backtrack steps (selective
backtracking) makes the runtime structures more
complex and is insufficient for complex problems
(see for instance [Wolfram, 1989]).

*Selective, or intelligent, backtracking [Codognet
and Sola, 1990] addresses the symptom of too many
choice points. Propagation addresses the cause, by re-
ducing the number of choice points in advance,

1006

Dacktrack Search A first improvement on pure
generate-and-test is to check each constraint goal
as soon as all its variables have received values
[Golomb and Baumert, 19653]. Backtrack search
thus performs an implicit enumeration over the
space of possible labellings, discarding partial la-
bellings as soon as they can be proved locally in-
congisteni with respect to some constraint goal.
Backtrack search demonstrates considerable gains
over generate-and-test (the inconsistent assign-
ment X1 = a is detected at once). However
this procedure still suffers from “maladies” [Mack-
worth, 1077], the worst being its repeated discov-
ety of local inconsistencies. For instance it is obvi-
ous from p{ X3, X1} A p(X2, X3) alone that X1
cannot take the value b. Backtrack search will
nonetheless consider all 9 combinations of values

for X2 and X3 before rescinding X1 =b.

Loea! Propagation The idea behind local
propagation methods for CSP's is to work on each
constraint independently, and deterministically to
extract information about locally consistent as-
signments. This has lead to various consistency
algorithims for networks of constraints, the mosi
widely applicable of these being arc-consistency
[Montanari, 1974]. Consistency can be applied asa
preliminary to the search steps or interleaved with
them [Haralick and Elliot, 1980]. The application
of these technigues in the constraint logic program-
ming language CHIP was accomplished through
two complementary extensions [Van Hentenryck
and Dinchas, 1086: Van Hentenryck, 1089]

o explicit finite domains of values to allow
the expression of range restrictions, together
with the corresponding extension of unifica-
tion (FD-resolution)

* new lookahead inference rules to reduce finite
domains in a deterministic way

The effect of applying lookahead on a goal is to
reduce the domains associated with the variables
in the goal, so that the resulting domains approx-
imate as closely as possible the set of remaining
goal solutions. The solutions can be determined
by simply calling the goal repeatedly. Application
of the lookahead rule is repeated on all constraint
goals until no more domain reductions are possi-
ble, forming a propagafion sequence. Constraint
goals that are satisfied by any combination of val-
ues in the domains of their arguments can now be
dropped.

Our example problem can be encoded in a
CHIP-like syntax as follows:

cep(X1,X2,X3,74) =

loockahead p(X3,X1), /+ [1] «/

lockahead p(X2,13), J*+ [2] #/
loockahead p(X2,X4), J/» [3] */
lookahead p(X3,Xa), /* [4] */

dom(X1),dom(22),dom{X3) ,dom{X4).

The lookahead annotations identify goals that
must be treated by the new inference rule. An-
notations can be ignored for a declarative reading.

For our example problem, the initial propaga-
tion sequence is sufficient to produce the only so-
lution; domain goals merely check each of the vari-
able bindings already produced. A possible com-
putation sequence is as follows (theugh the order-
ing is immaterial for the final result):

lookahead on: produces:
p(X3,x1) [1] X3::{a,b}, Xi::{b,c}
p(x2,23::{a,bv}) [2] X2=a, X3=b
pla,X4) {21 X4::{b,c}
plb,X1::{b,c}) [4] Xd=c
p(b,X1::{b,c})} [1] Xi=e

pla,b) [2] succeads

pla,c) [3] succeeds

plb,c) [4] succeeds

Note that the constraint [1] takes part in two prop-
agation steps before it is solved. In general con-
straints may be involved in any number (> 0) of
propagation steps,

From this brief summary of consistency tech-
niques for CSP’s and their integration into logic
programming, it may appear that finite domain
variables form the cornerstone of propagation.
The purpose of this paper is to show that this is
not the case, and that propagation has a very gen-
eral, natural and useful counterpart in constraint
logic programming languages that do not feature
finite domains,

2.2 A Logical Basis for Propagation

The effect of (finite domain) propagation on a con-
straint is to reduce the domains associated with
the variables appearing in the constraint. The re-
sulting domains capture as precisely as possible
the meaning of the constraint. The aim of this
section is to say in what sense the meaning of a
constraint is captured by a set of domains, and to
give a formal characterisation of the qualification
“as precisely as possible”,

A constraint C(X1,...,X,) is to be understood
as a logical formula with free variables Xy,. .., X,.
A constraint formula has the syntactic form:

{Jﬁ = an A ...NX, = ﬂln} Voo W [_3{‘1 =
agr A .. A Xy = aga).

A domain formula Dom(X) is a disjunction of
equalities involving a single variable X':

X=a VX =aV.. VX =au.

Generally many variables are involved in a prob-
lern, and we therefore introduce a syntactic class
of formulae representing the conjunction of their
damains. These are the basic formulae. Thus a
basic formula D(X,, ..., X;) has the form:

Doy (Xy) AL oA Domg(X,).

The reduced domaing, resulting from propaga-
tion on a constraint, approximate the constraint
formula as closely as is possible using only a ba-
sic formula. Propagation is “precise” if this basic
formulais logically equivalent to the constraint for-
mula. The problem is that basic formulae have a
limited expressive power, and it iz not in general
possible to find one logically equivalent to a given
constraint formula.

For example the constraint formula OUXy, Xa),
{X1 =d.-"~X; =.!I:l"u"(X1 =ﬂﬁ}f1 =¢]V(X1 =
bAXq=1¢),
ia best approximated by the basic formula
(XizavXi=A(Xz=bVXa=2¢)

However there is no basic formula logically equiv-
alent to C{.r‘irl, Xz:l

Definition 1 A propagation sfep fakes a con-
straint formula C and a basic formula D and
yields a “least” basic formula [V which satisfies
(CAD) = IV, IV is the least such formule in the
sense thal for any ofher basic formula D" safisfy-
ing (C A D) — D" it 15 also true that D' — D",

This definition will be illustrated using the con-
straint CXy, Xa):
(Xi=aAXa=bV(Xi=bAXz=c)V(X, =
cAXs=a)

The input basic formula D(X,, X3) is:
(X1 =av X, =A(As=aVXy=bVvX:=c)

Propagation on & constraint involves two steps:
the simplification of the constraint and the reduc-
tion of domains associated with its variables

The simplification of the constraint C(Xy, X2},
with respect to the basic constraint D(X;, X;) is
just the calculation of a simplified constraint log-
ically equivalent to C(Xy, Xa) A D(Xy, Xa). The
result of simplifying is C'(X1, X2) = (C(Xy, Xa2) A
D(X1,Xa)) =
(Xi=aeAXo=bV(Xi=bAX, = ¢).

The reduction of the domains is the calcula-
tion of a new basic formula which approximates as
closely as possible the simplified constraint. The
result of reducing is D'(X;, Xa) =
(XKi=aVXi=hA(Xa=bVXs=2¢)

For this example there is no basic constraint
logically equivalent to C'(Xi,X3). However
I'(Xy,X32) is the least basic formula implied by
C(X, X3) since the domain of X must include
at least a and b, and the domain of X5 must in-

1007

clude at least b and c.

Definition 2 Propagation is the resull of applying
a propagation seguence, which is the repeated ap-
plication of propagation sieps on every consiraind
until ne more domain reductions are possible.

This definition dees not mention the order in
which propagation steps are done. In fact the re-
sult of performing propagation on a set of con-
straints is independent of the order. We prove this
as follows.

Lemma 1 If basic formulae are ordered by logical
entailment, propagafion steps are increasing and
monolonic on basic formulae.

This is easily deduced from the definition of a
propagation step.

Lemma 2 Fach (ordered) propagafion sequence
yields a fizpoind.

This follows from the fact that there are only
finitely many basic formulae greater than a given
basic formula under the logical entailment order-
ing, and propagation steps are increasing.

Theorem 1 The result of a propagation sequence
is independent of the order of the steps.

Suppose fizl and fiz2 were distinct fixpoints of
a propagation sequence, resulting from an initial
basic formula s0. Since propagation is increasing,
fizl = 80. fiz2 results from applying a particular
ordered sequence of propagations on 0. By mono-
tonicity this same sequence applied to firl yields
a result fied = fiz2. However since fizl is a fix-
point of the propagation sequence, fizd = fizl.
We conclude that firl 2 fir2. Symmetrically
we can conclude that fiz2 > fizl, and therefore
fizl = fizd.

It is also possible to show that propagation can
be performed in parallel, and still vield the same
fixpoint. These and other results fall out very nat-
urally when lattice theory is used to deseribe the
constraints. The lattice theoretic formalisation of
generalised propagation is described in another pa-
per [Le Provost and Wallace, 1992].

3 Generalised Propagation

For finite domain propagation, the basic formulae
express domains associated with the problem vari-
ables, and the constraint formulae express mem-
bership of tuples in relations. Each class of formu-
lae has a certain limited expressive power. How-
ever the definition of a propagation step and a
propagation sequence do not depend on the partic-
ular syntactic classes chosen for basic formulae or
constraint formulae. In this section we will explore

1008

the consequences of admitting different classes of
formulae. We shall propose a notion of generalised
propagation parameterised on the classes of formu-
lae.

In the CLP(X) approach a class of basic con-
straints is identified for each domain X. Gener-
alised propagation on a domain X is the result of
admitting the basic constraints on X as basic for-
mulae as deseribed in the last section. The class of
constraint formulae is the class of goals expressible
in CLP(X).

The basic formulae used for finite domain prop-
agation involve only the equality predicate and
no function symbols. For generalised propagation
over a domain X the basic formulae may include
other predicates, such as < and >, and function
symbols such as + and +, However the purpose
and effects of propagation remain the same. To
detect inconsistencies early and to extract as much
information as possible from a set of goals deter-
ministically before making any choices. The infor-
mation extracted is expressed as a basic formula,
which iz added to the current constraint set, either
vielding inconsistency immediately, or else helping
to prune the remaining search.

As a simple example of generalised propagation,
consider C'LP(@) with atomic constraints Var >
num and Ver < num, where num is any rational
numhber. Let us define a predicate p on which we
shall perform generalised propagation.

plX) = X >= 3.4, X =< 4.8
p{X) :- X »>= 2.8, X =< 3.8

Assume the current constraints include X < 4.0,
and p(X) is a goal. The CLP(X) approach requires
us to treat user-defined predicates such as p ala
Prolog. One clanse in the definition of p is selected,
and if that yields an inconsistency the other is tried
on backtracking. '

Generalised propagation on the predicate p,
treated this time as a constraint, deterministi-
cally derives the tightest basic constraint C{X)
satisfying (p(X) A X < 4.0) — C(X), and adds
C{X) to its current set of constraints. In this case
C{X)=(X > 28AX < 4.0), which can be used
to prune the remaining search tree,

The case of finite domains can be viewed as an
instance, CLP(FD), of the constraint logic pro-
gramming scheme, where the basic constraints
are the basic formulae as defined in section 2.2,
Propagation on finite domains can now be seen
as an instance of generalised propagation, just as
CLP(FD) is an instance of CLP(X). Notice that
the expressive power of CLP{FD) is weaker than
that of standard logic programming, since it is
imposaible using domains to state that two vari-

ables are equal, until their domains are rednced to
one value. This is indeed a weakness of propaga-
tion over finite domains, and in the next section
we shall present an implementation of generalised
propagation that overcomes it.

Unfortunately it is not the case that generalised
propagation can be automatically derived for any
computation domain X. There is a practical re-
quirement to constructively define a propagation
step. Specifically, for propagating on a goal the
system requires an efficient way to extract a basic
formula which generalises all the answers to the
goal.

More fundamentally a theoretical problem arises
when we move from finite domain constraints to
arbitrary basic constraints. There are only finitely
many finite domain constraints tighter than a,
given constraint. This fact ensures that propa-
gation is bound to reach a fixpoint. However for
many sets of basic constraints, such as inequali-
ties over the rationals as exampled above, there is
no similar guarantee of termination. This problem
has been addressed by introducing a notion of ap-
prozimate generalised propagation in [Le Provost
and Wallace, 1992].

4 Propia: An Implementation of
Generalised Propagation

4.1 An Overview of the Implementation

The behaviour of generalised propagation in prac-
tise has proved to be more than satisfactory.
An implementation of generalised propagation has
been completed based on ECRC’s Sepia prolog sys-
tem. We call it Propia. The underlying domain is
the Herbrand domain of standard logic program-
ming. The built-in relation on this domain is '=’,
and basic constraints are conjunctions of equalities
{or equivalently substitutions).

A simple example of generalised propagation
over this domain, is propagation on the predicate

p defined as follows:

plg(1),a,b).
p(f(a),a,al.
plgl2),b,a).
plt(b),b,b},

The resnlt of generalised propagation on the goal
plA,X,X), is the deterministic addition of a new
equation, A = f(X). Although there are two dif-
ferent possible values for A, they both have the
form f(X), where X is the same variable occur-
ring as the second and third arguments in the goal.
Using finite domains (even if structured terms were
admitted) it would only be possible to infer that
the domain of X was {a,b} and the domain of A4

was { f(a), f(B)}, but not that A = f(X). This is
the weakness of finite domain pointed out on page
5 above,

Implementationally constraint simplification
with respect to this goal amounts to selecting those
clauses in the definition which unify with the goal,
as done by Prolog. The reduction step, given a get
of answers, finds the set of equations which best
approximates them. The best approximation is, in
fact, their most specific generalisation.

Computations interleave the making of choices
and propagation. When a propagation sequence
terminates, goals are called a la Prolog until a new
binding, or set of bindings, oceur thereby conjoin-
ing new equations X = T to the current basic con-
straint. At this point propagation restarts, When
a fixpoint is reached, the propagation sequence is
complete and further goals are called a la Prolog.

It would be prohibitively expensive to attempt
propagation on all the constraints at each choice,
In practise the system determines on which vari-
ables new equalitics have been added and only
propagates on constraints involving those vari-
ables. When further equalities are added during
a propagation sequence, then propagation is also
attempted on constraints involving these variables.

The purpose of propagation is to extract as
much information as possible deterministically be-
fore making any choices. The Andorra princi-
ple [Warren, 1988] has a similar intent: it states
that deterministic goals should be executed before
other goals. The goal p(A, X, X) in the previous
example is clearly not deterministic, yet determin-
istic information can be extracted from it. Lee
Naish coined the term dafa determinacy for the de-
terminism detected and used by generalised prop-
agation, as opposed to Andorra’s weaker confrol

delerminacy.
4.2 An Example of Propagation

The behaviour of generalised propagation in the
syntactic equality theory can be illustrated using
a simple example, We shall investigate what prop-
agation is possible for various calls on the 'and’
predicate defined as follows:

and{true,true, true),
and{true,false,falsa).
and(false,true,false).
and(falss,false,falss).
We treat the goal as a propagation constraint by
making the call 7- propagate and(_,_,_). Note
that finite domain variables are not part of our
chosen propagation language.

For “most specific generalisation” we shall use
the abbreviation msg. First if the call is fully unin-
stantiated 7~ propagate and(X,Y,Z) the system

1009

finds the first two answers and forms the msg
and(irue, Y, Z). After the third answer the msg
becomes and(X, Y, Z), which is as little instanti-
ated as the query, and propagation stops.

Second if
the call has its first argument instantiated to false
?- propagate and(false,¥,Z) there are two an-
swers whose msg is and(false, _, false). Thus the
equality Z = false is returned.

Third if the call has its first argument instanti-
ated to true 7- propagate and(true,Y,Z) there
are again two answers, and(true, false, false} and
and(irue, true, true). Our generalisation proce-
dure is able to derive the equality of the last two
arguments and the final mag is and(irue, ¥, Y.
Thus the equality ¥ = Z is returned.

We note that the behaviour is very similar to
that obtained by encoding and using " cut gnards”
in Andorra, GHC rules, or "demons” in CHIP. For
example in CHIP we would write:

7~ damon and/3.
and(falze,Y,Z) :- Z=falss.

and{true,¥Y,Z) :- Z=Y.
and(X,false,Z) - Z=false.
and(X,true,2) :- Z=X.
and(X,Y,trua) :- X=true, ¥ = trus.

and(X,X,2) = Z=X

The difference is that the use of propagate enables
us to separate the specification of the predicate,
from its control. When using gnards or demons
we are forced to mix them together. Indeed gener-
alised propagation allows declarative specifications
to be directly used as constraints!

We used Propia for a benchmark set of propo-
sitional satisfiability problems distributed by the
FAW research institute [Mitterreiter and Rader-
macher, 1991]. Its behaviour was in general quite
comparable to that of CHIP's demons or built-in
constraints.

Another application we examined was that of
crossword puzzle compilation. The problem is to
fill up an emply crossword grid using words from
a given {possibly large)} lexicon. The propagation
constraints enforce membership of words in the
given lexicon. Intersections are expressed through
shared variables.

The statement of the problem is as follows:

/* gome lexicon of available words */
word{a).
word({a,b,a,c, k).

prog =
propagate word(A,E,C,DJ),
/* Hote tha shared letter B %/

(010

propagate word(E,F,B,H),

‘I'he program just comprises a set of propagation
constraints. (There is no need for a labelling since
Propia itself selects a propagation constraint for
resolution when the propagation sequence termi-
nates.) Immediately certain letters are instanti-
ated by the original propagation, Subsequently,
each time some letters are instantiated after select-
ing a word goal for resolution, the affected prop-
agation constraints are re-executed in the hope of
instantiating further letters.

The erossword compilation problem has also
been addressed using CLP by Van Hentenryck
[Van Hentenryck, 1989]. Generalised propaga-
tion vields a performance improvement of about
15 times on Van Hentenryck’s example. How-
ever much more significant ia the power of gen-
ctalised propagation for solving large problemas.
Van Hentenryck’s example vuses a lexicon which
contained precisely the 150 words needed to com-
pile the crossword, With generalised propagation
it is possible to compile crosswords from a 25000
word lexicon. It is interesting to note that gener-
alised propagation automatically yields a similar
algorithm for generating crosswords as that devel-
oped for specialised erossword puzzle generating
programs [Rerghel, 1987,

A further way to control the evaluation of the
crossword puzzle example is to divide the word
goals into clusters, reflecting connected subareas
of e crossword grid. A predicate cluster can he
defined which combinea all the words in a cluster:

cluster(4,B,C,D,E,F) :-
word(A,B,C),word(A,D,F}, ,word(C,E,F).

Generalised propagation can then be applied to
the whole cluster:

propagate cluster{A,B8,C,D,E,F)

In general propagation on cluster yields strictly
more information than propagation on each of the
word goals individnally. However the amount of
computing required to perform the propagation on
cluster is also likely to be greater than propagating
on the word goals individually.

If propagation is applied to larger subproblems,
then we term it more “global”. Global propagation
is more expensive than local propagation but the
amount of pruning of the search tree that results
can be very aignificant.

4.3 Topological Branch and Bound

Generalised propagation is based on the idea of
finding all answers to a query and eliciting the
muost specific generalisation. However it much

more eflicient to alternate the finding of answers
and caleulating the most specifie generalisation.
We call this “topological branch and bound™.

For example after finding two words which sat-
isfy a word goal in the crossword example, the sys-
tem immediately attempts to “generalise” by find-
ing common letters within and between words. If
there are no eommon letters, the propagation pro-
cess ceases immediately. Only if there are com-
mon letters does the system now search for a third
word., As a result, the system very rarely needs
to find more than a few answera to any word goal
during propagation. This is the reason that the
program has such an excellent runtime, even with
a dictionary of 25000 words compiling real cross-
words in a minute. It also accounts for Propia's
good performance on the propositional satisfiabil-
ity benchmarks despite its recalculating at runtime
propagation information which in the CHIF pro-
gram was hard coded by the programmer using
demons,

Further optimisations can be applied if the pred-
icate being used for propagation is defined by rules
instead of facts. The exploration of a new branch
in the search tree incrementally builds a new set
of equalities. If, when exploring a branch, the par-
tial set of equalities becomes larger than the cur-
rent most specific generalisation, then the search
on this branch can be stopped. This means that
propagation can terminate even when the actual
gearch tree is infinite. For example given the defi-
nition
pl=(0)).
ple(X)) := p(X}.

propagation on p(X) terminates after finding two
solutions yielding the constraint X = s{.).

5 Conclusion

Constraint logic programming systems offer a
range of tools for writing simple and efficient pro-
grams over various computation demains. Unfor-
tunately it is not always possible to use different
tools together. For example classical propagation
cannot be used in programs working on domains
such as Prolog I11's trees,

A second drawback is that the logic of the pro-
gram, when efficiency considerations are taken into
account, has to be transformed extensively, or
parts of it replaced altogether with rules expressed
in some reactive language such as demons. The
result for non-toy programs is a loss of clarity
and, possibly, efliciency. If the programmer is not
extremely competent these problems eompound
themselves, too often vielding a result which is not
only inefMicient but incorrect.

Generalised propagation makes a contribution
to both problems. Firstly propagation can be used
for arbitrary domains of computation, thereby im-
proving orthogonality. Secondly the propagation
annotations keep the control very simple and quite
separate from the program logic, thereby preserv-
ing clarity and correctness.

Current experiments show generalised propaga-
tion to bhe a powerful and flexible tool for ex-
pressing control. More global propagation is more
costly but it can bring a drastic reduction of the
scarch tree. Local propagation is a cheap solution
which is much easier to program and debug than
guarded clanses or demons.

We are continuing to investigate the eflective-
ness of generalised propagation on a range of ap-
plications, studying its practical applicability to
other computation domains, and following up the
study of its lattice thecretic basis.

6 Acknowledgements

This work was lunded by the Esprit 2 project,
ne. 5291 CHIC. Thanks also to Bull, ICL and
Siemens for providing a wonderful working envi-
ronment at ECRC.

References

[lerghel, 1087) H. Berghel. Crossword compila-
tion with Horn clauses, The Computer Journal,
30(2):183-18E, 1987.

[Cadognet and Sola, 1990] P. Codognet
and T. Sola. Extending the WAM for intelli-
gent backtracking. In Proe. &th Infernational
Conference on Logic Programming. MIT Pres,
1990,

[Davis, 1987] E. Davis.
with interval labels.
32:281-331, 1987.

[Dinchas et al., 1988] M. Dinchas, P. Van Henten-
ryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The consiraint logic program-
ming language CHIP. 1In Proceedings of the
International Conference on Fifth Generalion
Computer Systems (FGCS'88), pages 693-702,
Tokyo, Japan, November 1988,

[Dinebas ef al, 1990] M. Dincbas, H. Simonis,
and P. Van Hentenryck. Solving large combina-
torial problems in logic programming. Journal
of Logic Programming, 8:74-94, 1990,

[Golomb and Baumert, 1965] 5.W. Golomb and
L.D. Baumert. Backtrack programming. Jour-
nal of the ACM, 12:516-524, 1965,

Constraini propagation
Artificial Intelligence,

1011

[Haralick and Elliot, 1980] R.M. Haralick and
G.L. Elliot, Increasing tree search efficiency for
constraint satisfaction problems. Artificial In-
telligence, 14:263-314, October 1980,

[Jaffar and Lassez, 1987] J. Jaffar
and J.-L. Lassez. Constraint logic programming,
In Proceedings of the Fourteenth ACM Sympo-
sium on Principles of Programming Languages
(POPL'87), Munich, FRG, January 1987.

[Le Provost and Wallace, 1992] T. Le Provost and
M. Wallace. Generalised propagation. Technical
Report ECRC-92-1, ECRC, Munich, 1992,

[Mackworth, 1977] A.K. Mackworth. Consistency
in networks of relations. Artificial Intelligence,
B{1):99-118, 1977.

[Mitterreiter and Radermacher, 1991] 1. Mitterre-
iter and F. J. Radermacher. Experiments on the
running time behaviour of some algorithms solv-
ing propositional calculus problems. Technical
Report Draft, FAW, Ulm, 1991.

[Montanari, 1974] U. Montanari. Networks of con-
straints : Fundamental properties and applica-

tions to picture processing. Informalion Sci-
ence, 7(2):05-132, 1974.

[Sussman and Steele, 1080) G.J. Sussman and
G.L. Steele. CONSTRAINTS: A langunage for
expressing almost-hierarchical deseriptions. Ar-
tificial Intelligence, 14(1):1-39, January 1980.

[Van Hentenryck and Dinchas, 1986] P. Van Hen-
tenryck and M. Dinchas. Domains in logic
programming. In Proceedings of the Fifth
National Conference on Artificial Inlelligence
(AAAI'86), Philadelphia, PA, August 1986,

[Van Hentenryck, 1989] P. Van Hentenryck. Con-
siraint Salisfaclion in Logic Programming.
Logic Programming Series. The MIT Press,
1989,

[Warren, 1988] D.IL.D. Warren. The andorra

model. Presented at the Gigalips Workshop,
Univ. of Manchester, 1988,

[Wolfram, 1989] D.A. Wolfram. Forward checking
and intelligent backtracking. Information Pro-
cessing Lelters, 32{2):B5-87, July 1980,

