PROCEEDINGS OF THE INTERNATIONAL CONFEREMCE
ON FIFTH GEMERATION COMPUTER 5YSTEMS 1992,
edited by ICOT. (@ ICOT, 1992

7R3

Estimating the Inherent Parallelism in Prolog Programs

David C. Sehr *

Laxmikant V. Kalé t

University of Illinois at Urbana-Champaign

Abstract

In thiz paper we describe a system for compile time
instrumentation of Prolog programs to estimate the
amount of inherent parallelism. Using this infor-
mation we can determine the maximum speedup
obtainable through OR- and AND/QR-parallel ex-
ecution. We present the results of instrumenting a
number of common benchmark programs, and draw
some conclusions from their execution.

1 Introduction

In this paper we describe a method for timing Pro-
log programs by instrumenting the source code.
The resulting program is run sequentially to esti-
mafte the sequential and best possible OR. parallel
execution times. This method is then extended to
give the best possible AND/OR parallel execution
time, Qur instrumentation does not drastically re-
duce efficiency, and we present the results of a pum-
ber of programs,

Our AND parallelism estimation method is based
upon the work of by Kumar [1988] in estimating
the inherent parallelism in Fortran programs. His
method augments the source program with a times-
tamp for each data item d, which is updated each
time d is written. In order to honor dependences,
each computation that reads d can begin no ear-
lier than the time recorded in d'% timestamp. The
largest timestamp computed by such an augmented
program is the optimal parallel time for the original
program. This time can be used to evaluate how
well a given implementation exploits parallelism.

This paper comprises six sections. The remain-

*Center for Supercomputing Ressarch and Development,
305 Talbot Laboratory, 104 8. Wright St., Urbana, IL 61801,
USA. (sehr@icerd.uiuc, adu) This work was supported by
Air Force Office of Scientific Fesearch grant AFOSR 90-0044
and a grant from the IBM Corporation to CSRD.

tDepartment of Computer Science, Digital Computer
Laboratory, 1304 W, Springfield Ave., Urbana, IL 61801,
USA. (kalefics.niuc. edu) This work was supported in part
by NSF grant NSF-CCR-B9-02496.

der of the first presents some terminclogy. The
second describes measuring the amount of OR par-
allelism in a Prolog program. The third section
extends this method to include AND parallelism.
The fourth presents the timing methods used for
several builtin predicates. The fifth section gives
the results of our technique on the UCE Bench-
marks. The last section presents some conclusions
and suggests some future work.

1.1 Terminology

A prolog program consists of a top-level guery and
a set of elauses. The top-level query is a sequence
of literals; we shall also use the term guery to refer
to any arbitrary sequence of literals. A literal is an
alom or a compound erm consisting of a predicale
name and a list of sublerms or arguments. Each
subterm is an atom or a compound term. The num-
ber of subterms of a compound term is ite arity. A
clause has a head literal and zero or more body [iter-
als. A clause with no body literals is a faei; others
are rules. Clauses are grouped into procedures by
the predicate name and arity of their head liter-
als. The rest of this paper assumes some working
knowledge of Prolog’s execution strategy.

For our timings we model a program’s execution
as traversal of its OR tree (SLD tree). Each nodein
an OR tree iz labeled by a query. The first literal
of the query at node N is the literal ai N. The
label of the root is the top-level query!. Each child
N of a node M is produced by unifying a clause
C’s head with the literal L at M. N’'s query is
formed by replacing L in M’s query by the body
of C. The left-to-right order of such children is the
order of the clauses in the source program. A leafl
node with an empty query is a success. Sequential
Prolog systems traverse this tree depth-first and
left to right.

1 Which may have appearsd in the source program, or
may have been typed by the user at the read-evaluate-print
prompt.

T84

2 Sequential and OR time

The most efficient OR parallel implementations of
Prolog to date [Warren 1987, Ali 1990] have been
based upon the Warren Abstract Machine (WAM)
[Warren 1983]. Because of this, we compute crit-
ical path timings in number of WAM instructions
executed. The number of instructions is an ap-
proximation to execution time, since each type of
WAM instruction takes a slightly different time.
Variations in execution time come mainly from two
sources: argument unification and backward exe-
cution. The former comes from the get_value and
unify value instructions, whose costs depend on
the size of the terms they unify, which can be sub-
stantial. We address this by making the cost of
these instructions the number of unification steps
they perform. Backward execution comes from in-
struction failure and may perform significant book-
keeping changes, especially for deep backtracking.
Different WAM implementations, particularly par-
allel ones, have differing costs for backward execu-
tion. In the measurements presented here we have
assumed zero backward execution cost, but other
cost assumptions can be used.

The execution time of a program has two com-
ponents, The literal L at a node N in the OR tree
15 a call to a procedure p. Calling p consists of
setting up L's calling arguments by a sequence of
put instructions and performing the call by a call
or execute instruction. The execution time of this
sequence is a statically computable time ¢,(L) for
L, which we approximate by the number of put
instructions plus one.

Executing a called procedure consists of trying
clanses in succession. If € is being tried for the call,
the call arguments are snified with the arguments
of C's head literal K. This is done by get and
unify instructions and takes a time ¢, (H). In gen-
eral the execution time of these instructions cannot
be estimated at compile time, so this head unifica-
tion is performed by calls to run-time routines for
the corresponding WAM instructions. £,(H) is the
sum of the times computed by these routines.

To represent execution times the OR. tree is given
two new labels, First, each node N is labeled with
the time ¢, (L) for the literal L at N. Second, each
edge (N, M) is labeled with 1,({H), where H ia the
head literal of the clause C applied to produce node
M. The program's all-solutions sequential execu-
tion time is the sum of the all #;’s and £,’s in the
tree’s processed region®.

IPredicates such as cut may prevent traversal of parts of
the tree.

Tib(0,1).

fib(1,1).

fib(N,F) :-
F=>1,
N1 is N - 1,
fib(N1,F1),
N2 is W - 2,
fib(N2,F2),
F is F1 + F2.

Figure 1: A program to be timed

—
put_constant 3, A0

TS(L) | ot variable ALA1]tpfu
lcall fibydg |

Ts(C) | get_variable AQ,YD

’] get_variable A1,Y1 1‘“‘”

o | put_value X1,A1
TS(U) [t variable X2,42]q;f.u}

T R B R A 8 8 e 8

| other lilerals

—

Te(C}

Figure 2: Execution of a timed literal L

2.1 Pure Prolog

Finding the minimum OR parallel time requires
finding the critical path in the OR tree. For a pure
Prolog program this is done by summing the ¢,’s
and ¢,'s from the root to each leaf. The critical
path has the largest such sum. Programs contain-
ing builtins such as read, setof, recorda, and
asaert require timing in sequential order. We first
deacribe the method for pure programs and extend
it to handle these predicates below,

Figure 1 shows a program to be instrumented,
and Figure 2 shows its execution., The time at
which literal L is to be processed is dencted by
T.(L). If L is at the root of the OR tree, then
Ti(L) = 0. Otherwise T,(L) is the time the pre-
ceding computation finished, Execution of L begins
with the puts and eall, which take time {,(L), as
we noted above. Thus the earliest time any clause
can be tried for L is T, (L) +1,(L). This is the start
time T,(C) for every clause C applied for L, since
all are tried in QR parallel. Head unification for

C begins at T,(C) and is done by get (and unify)
instructions, If successful, this completes at time
T(C) + iu(H). If C is & fact, then the end time is
T.(C) + 1, where the 1 is for the proceed instruc-
tion.

If C is a rule, each literal L; is processed as L
was, begins at time T,(L;), and ends successful ex-
ecution at time T,(L;). The first body literal begins
at time T, (L) = T,{(C)+tu(H). I the call from L;
is successful and returns at time T, (L;), then the
next literal L;4, starts at time T,(Li4.) = To(Li).
This continues until the last literal L, completes
at time T, (L,), which is also the finish time T.(C)
for C.

The time for a success is T.(L) for the last lit-
eral L in the top-level query. The time for a failed
instruction in € is T, (C') plus the portion of #,(H)
computed before the failure. Mosat builtins are
given a cost of one, and builtin failure takes the
same time as a successful call does,

The system maintaine a global critical path time
Tmax. Whenever a library routine performing head
unification fails at time T}, it examines Tinax, and
stores the larger of the two times as the new Tipax.
The library routine that computes T,(C) also up-
dates Tmax, and the top-level query is modified to
update it as well.

Figure 3 shows the timed version of Figure 1.
Each clause has two new arguments, Ts and Te,
and head unification is performed by routines such
as get_constant and get_variable. These rou-
tines perform the corresponding WAM operation
and update the critical path time. The first two
clauses are facts, so the end time is computed by
an update.time literal for the proceed instruction.

The third clause is a rule, so each body literal L
has & preceding update_time literal. If L refers
to a user-defined predicate this literal computes
T.(L) +tp(L) for use as the start time for the call.
If L refers to a builtin predicates (except those in
Section 4) the update_time literal adds t,(L), plus
one for the builtin's execution time, and uses this
as the end time for L.

Each clause also has an initial index literal that
enables last call optimization. Moving head unifi-
cations to the body made indexing impossible, so
this literal is added to perform first argument in-
dexing. If this is not done, last call optimization
rarely works. This literal appears sufficient for last
call optimization with the Sicstus compiler.

185

£ib(A,B,Ts,Te) :-
(A ==0; var(a)),
get_constant(A,0, Ts, Tui),
get_constant(B,1, Tul, Tu2),
update_time(Tu2, 1, Te).

fib(A,B,T5,Ta) :-
(A ==1: var(4)),
get_constant{A,1, Ts, Tul),
get_constant(B,1, Tul, Tu2),
update_time(Tu2, 1, Te).

fib(4,B,Ta,Te) :-
get_variable(A,N, Ts, Tul),
get_variable(B,F, Tul, Tneck),
update_time(Tneck, 4, Tel),

HE>1,
update_time(Tel, 6, Te2),
i is N - 1,

update_time(Te2, 3, Ta3),
1ib(N1, F1, Ts3, Te3),
update_time(Te3, 6, Ted),
N2 is N - 2,
update_time(Ted, 3, Ts5),
1ib(K2, F2, Ts5, Teb),
update_time(TeL, 6, Tel,
F ia F1 + F2.

Figure 3: Program after instrumentation

3 Adding AND parallelism

The eritical path time determines the best possi-
ble OR parallel execution time. Often segments
of a branch can execute simultaneously, and de-
ing so would reduce that critical path time, This
is AND parallel execution, and unlike OR paral-
lelism, it requires testing for dependences even in
pure Prolog programs. In this section we describe
the application of Kumar’'s [1988] techniques for
Fortran to estimate the best AND/OR parallel ex-
ecution time. The method we describe extends
his work to deal with the dynamic data structures
and aliasing present in Prolog. We believe this
framework has the advantage over other methods
[Shen 1986, Tick 1987] of allowing us to extend it to
measure critical path times in programs with user
parallelism.

A program’s dependences can only be exactly
determined at execution time, since one execution
may have a dependence while another does not. A
compiler, to ensure legal execution, must assume a

TRA

7

LIS }N) (NK.
M1 is N-1 T N2is N-2

N1}

I
-4
J?

Fil
B FisFl+F2

Figure 4: A dependence graph

dependence exists unless it can be proven not to.
Because of this, compilers often infer many more
dependences than are actually present in the pro-
gram. Another use of the method we propose is to
compute exact dependences.-to test the effectiveness
of dependence tests.

There are a number of AND parallel execution
models that differ in their treatment of the dynamic
nature of dependences. The approaches range
from dependence graphs that are static [Kalé 1987,
Chang ef al 1985, Wise 1986] to partly dynamic
(conditional) [DeGroot 1984, Hermenegildo 1988)
to completely dynamic [Conery and Kibler 1985].
Kal’e [1984] notes that in some rare situations it
may be beneficial to evaluate dependent literals in
parallel. His Reduce-Or Process Model allows for
dependent AND parallelism, but his implementa-
tion [Ramkumar and Kalé 1989] supports only in-
dependent AND parallelism. Epilog [Wise 1986)
also permits dependent AND parallelism, but pro-
vides a primitive (CAND) to curtail it. The model
we have developed includes dynamic, independent
AND parallelism, with a strict sequential ordering
on dependent literals. We are only able to present
the results here for independent AND paralle] exe-
cution, though, because of a problem in the Prolog
system used to execute the instrumented programs.
In the future we hope to report the timings for the
more genera] approach.

3.1 Dependences

The third clause in Figure 1 contains six body
literals that might potentially execute in parallel.
The arguments of the > builtin must both be nu-

meric expressions, so Lo execute correctly the argu-
ment ¥ to #ib must be an integer, Because neither
writes K, the two is goals can execute indepen-
dently. Each reads ¥ and produces a binding for
N1 or K2, the values of ¥ for the recursive instances.
Sinee all £ib clauses read N, the recursive calls can
only begin after their corresponding is. The final
is literal requires the value of both F1 and F2, so
the two £ib calls must precede the final is. There
need be no other ordering between literals.

Figure 4 shows the dependence graph for the
clause. There is a node for the initial call to £ib
and a node for each body literal. Recursive com-
putaiions are represented by shaded areas. An
arc beiween two nodes represents a dependence, or
that the node at the tail must precede the node
at the head of the arc. Dependence arcs are la-
beled with the variables causing them. Such a vari-
able v causes a dependence § in one of two ways.
First, if the node at the tail of § binds v, and and
v is read at the head, then there is a duta depen-
dence. Second, if the node at the head of § binds
v and the node at the tail reads v using a meta-
logical predicate (var, write, etc.), then there is
an anti-dependence. Anti-dependences arise when
a literal succeeds with a variable v unbound and
would fail or produce incorrect output because v is
subsequently bound.

3.2 Shadow terms

Dependences are detected at run time by shadow
terms. Each term t has a shadow term (1) asso-
ciated with it, which mirrors #'s structure. The
shadow of an atomic term is the atom a. The
shadow term of a compound term t = f(t;,...,1,)
is s(¥(t1),...,¥(ts)), where 9(i;) is the shadow for
13

A variable must be bound for a dependence to
exist, so the shadow term for a wvariable keeps
the binding times for that variable (there can be
multiple bindings, since some may be variable-to-
variable). The shadow of an unbound wvariable is
unbound. If v is bound to any term ¢ at time T
by a get_variable or unify_variabla instruction,
the shadow variable ¥(v) is dereferenced and the fi-
nal variable is bound to the structure w((f),T).
The same operation is performed if v is bound to a
non-variable term { by any other instruction. Ifv is
bound to another variable ¥’ by any other instrue-
tion at time T, an alias has been created. The two
shadows reflect this by dereferencing both (v) and
¥(v") and binding the final variables of both to the
term w(¢'(v),T), where /(v) is a new unbound

fib{A, B, Sa, Sb, Ts, Te) :-
(A == 0 ; var(i)),
get_constant(A,0, Sa, Ts, Tul),
get_constant(B,1, Sb, Tul, Tu2},
update_times(Tn2, 1, Ta).

fib(A, B, Sa, Sb, Ts, Te) :—
(A ==1; var(d)),
get_constant(A,1, Sa, Ts, Tul),
get_constant(B,1, Sb, Tul, Tu2),
update_times(Tu2, 1, Te).

fib(A, B, 5a, Sb, Ts, Te) :-
get_variable(A,N, Sa, Sn, Ta, Tul),
get_variable(B,F, Sb, 5f, Tul, Tu),
max_shadow_time(Tu, [Sn], Tti},
update_time(Tt1, 4, Tel),
¥ >,
max_shadow_time(Tu, [Sn1,5n}, Tt2),
update_time(Tt2, 6, Te2),
N1 ia N - 1,
set_shadows{[Sn1],[N1],Te2),
update_time(Tu, 2, Tsd),
fib({W1, F1, Snl, 5f1, Ts3, Ted),
max_shadow_time(Tu, [Sn2,Sn], Tt4),
update_time(Tt4, &, Ted),
W2 is § - 2,
set_shadows{[Sn2], [K2], Ted),
update_time(Tu, 3, Tsb),
£ib(N2, F2, Sn2, 512, Tsb, Teb),
max_shadow_time(Tu, [Sf,5f1,5f2]1, Tt8),
update_tima(Tt8, 6, Te8),
F is F1+F2,
set_shadows{[Sf], [F], Te8),
max([Tei,Te2,Ta3,Ted,Teb,Ta6], Te).

Figure 5: AND/OR instrumented program

variable. If v is examined by a meta-logical builtin
at time T, 4(v) is dereferenced, and the final vari-
able is bound to m(y’(v), T'), where ¢'(v) is a new
unbound variable.

3.3 Dependences with shadow terms

Figure 5 shows fib after instrumentation for
AND/OR parallelism. Each variable ¥ in a clause
has a shadow variable Sv, and each head argument
has a shadow argument. The end time for a clause
is the largest end time for any literal in that clause,
as if each literal starts immediately after head unifi-
cation and suspends until its dependences are satis-
fied. In Figure b the end time is shown as computed

T87

by a max literal at the ¢nd of the clause. This is
for clarity of presentation only, because this wauld
inhibit last call optimization. In the real version a
current maximum is passed to each body literal in
succession.

The head unification routines now include
shadow variables as arguments, since it is in these
instructions that dependences in user-defined pred-
icates are enforced. These routines previously com-
puted their finish time only from the start time
and the cost of the instruction. Now there is the
possibility that the instruction must wait until the
shadow time for a variable causing a dependence
before performing the unification. Hence the com-
pletion time is computed by performing the unifica-
tion and keeping a current time. Whenever a term
is referenced the current time becomes the maxi-
mum of the current time and the timestamp. The
unification is then performed and the current time
incremented.

Two other predicates enforce dependences in-
volving builtins. The first, max _shadow_time, com-
putes the earliest time the builtin's arguments are
available® from the latest time in the arguments’
shadows. This enforces data dependences that have
the builtin as their head. The builtin’s end time
is computed by update_time, as before. The sec-
ond predicate, set_shadows, bailds shadows for
changes to the arguments of a builtin. Shadows
are built for theose arguments that are bound or
are examined by meta-logicals, and they are con-
structed from the variable bindings after execution.
This handles builiins at the tail of a dependence.
For some builtins such as =.. this can be fairly
complex.

4 Builtin predicates

Prolog has several types of builtin predicates, each
with a different set of effects on eritical path timing.
We have already noted that meta-logical builtins
(var, write, etc.) can cause anti-dependences. In
this section we deseribe four other kinds of predi-
cates and methods for timing each of them.

4.1 Predicates involving call

There are four predicates that implicitly use the
meta-logical builtin call. They are bagof, setof,
not, and \+. Timing these predicates requires two

*This predicate is also used to enforce independent-AND
parallel execution, by making every nser predicate strick

TRE

setof(X,p(X),L)

| push Tmax
':"Jr.ru;'xr-{lr

Te=Tmax
Tmax=max{pop,Te|

Tmaxe=__]

Figure 6: Processing setof

kinds of special handling. First, since call’s argu-
ments may be constructed at run time, instrumen-
tation is done at run time. This is done by including
the the instrumentation program in the timed pro-
gram. Second, setof, bagof, not and \+ traverse
an entire OR tree, so their finish times are related to
the longest path in that tree. A stack of maximum
times is used with nested calls to these predicates
to colleet a subtree’s maximum time, For setof
and bagef we also add one for each solution for the
cost of building the returned list.

Figure 6 shows the processing of a call to setof
that computes all the solutions for the p(X) in re-
gion R and collects them in a list L. Since it tra-
verses the whole OR tree R required to compute
p(X), setof’s finish time is the longest completion
time in /. The maximum time is maintained by
update_time in the global variable Tmax® Since
there may be a previous maximum time greater
than the largest completion time in R, Tmax is
pushed on a stack and the start time for the setof
is used as Tmax. R is traversed and the maximum
time is stored in Tmax, as always. The return time
for setof, Te is Tmax. Al the end of setof Tmax is
set to the maximum of the stack value and Te, so
again Tmax contains the global largest time,

4.2 Read and write

Neither setof nor pure Prolog cause depen-
dences between branches in the OR tree. The in-
put/output predicates (read, write, etc.) cause

*In the implementation of our system the maximum time,
along with a parallelism histogram, is maintained by several
C routines accessed through a foreign function interface, but
thiz is done only for the sake of efficiency.

write(1)
Tel=Td(1)+1
last_io=Tel
write(2)
Te2=max{Td(Z}, Tel]+1
last_io=Te2

Figure T: Processing the input/output predicates

cross-branch dependences, since the observable or-
der of input/output needs to conform to Prolog’s
left-to-right order. Figure 7 depicts the execution
of a program with two erites, wy and we. Data de-
pendence would permit each write to start when
its arguments were ready (times Ty(1) and Ty(2)
respectively) were it not for the order of output.
wy must write its output before wa, so to deter-
mine when input or output can be done we main-
tain a global variable last_is. In this example, ws
cannot write its output until max{T;(2), last_io}.
Writes cost one time unit, so wy can start no earlier
than max{T)d(2), Tu(1) + 1}. In the instrumented
version each input/output predicate is preceded by
a literal that updates last_ie.

4.3 Recorda and recorded

Frolog also has the builtins recorda, recorded,
and erase to manipulate an internal database.
Parallel accesses to relations in the database must
appear to preserve the scquential execution order.
Accesses to different database relations do not al-
fect one another, so this order is only within a rela-
tion. It is not necessary to serialize accesses to each
relation to preserve the appearance of sequential ac-
cess order. All we need is to guarantee that read
accesses to an element by recorded aoccur after the
write access that placed that element there, and
that write accesses (recordas and erases) are or-
dered. The former is enforced by pairing each item
placed in the database with its insertion time. Ac-
cesses by recorded wait until the maximum of the
data dependence time Ty and the element’s inser-
tion time. The write order is enforced by labeling
each relation with a last modify that is updated

Program Serial | OR AND/OR
Name WAM Parallel | Parallel
Instr, Speedup | Speedup
chat_parser || 1014791 | 257 1596
crypt J1TRY 58 114
dividel0 207 1 2
fast_mu BRO9 9.1 10.7
flatten 5218 1.25 2.37
logl0 119 1 1.2
meta_gsort || 38675 21 3.7
mu 5925 16.7 17.7
nand 180145 | 5.4 14.3
nreverse 4460 1 1
opsi 163 1.04 2.8
polyl0 307177 | 1.1 76.3
prover T159 4.5 14.2
qeort 5770 1.3 1.5
gueenss 33821 26.4 69.3
query 17271 243 480
reducer 279220 | 2 3.3
serialise 3199 1.4 1.9
tak 1431202 | 1.1 686
timesl0 207 1 1.9
unify 20490 1.6 3.5
zebra 261858 | 453 482

Table 1: Instrumented benchmark times
just like last_io.

4.4 Assert and retract

Prolog also allows assert and retract to mod-
ify the program at run time, These predicates
are timed by the method for call and that for
the internal database. The former is because the
assarted clause can be constructed at run time,
and hence the instrumentation must be done then.
The latter is because predicates modified at run
time must obey the access rules for database up-
dates. The write-write (assert and retract) or-
der is enforced by updating the last _modify for the
predicate. The read-write ordering is maintained
by adding a first literal to each asserted clause
that records when it was added. This is used to de-
termine the earliest time a read (a clause builtin
or call to the modified predicate) can execute.

5 Analysis of programs

Table 1 presents the results obtained by instru-
menting 23 of the University of California at Berke-

TED

ley’s UCB benchmarks. These programs range over
& variety of sizes and purposes. There are sev-
eral interesting facts to observe from these pro-
grams. First, David H. D. Warren’s assertion
[Warren 1987] that OR parallelism was likely to
produce significant speedups on a range of pro-
grams appears to be borne out. Several pro-
grams achieved small speedups from OR paral-
lelism, mostly due to shallow backiracking (e.g flat-
ten, ops8, polyl0, gsort, tak, unify). Improved in-
dexing would probably eliminate most of this OR
parallelism. A number of programs exhibited es-
sentially no OR parallelism (e.g. dividel0, logl0,
nreverse, times10).

In gemeral, independent AND parallel execu-
tion improved the performance of programs al-
ready speeded up by OR parallel execution by
a small factor {1-6). These programs have all
shown reasonable speedups in real OR parallel
systems[Szeredi 1989). Our results show that there
is plenty of parallelism in several of these programs
to extend to much larger machines (e.g. consider
chat_parser, query and zebra). Those with smaller
specdups may profit from the introduction of inde-
pendent AND parallelism.

Of the programs that were mostly OR-sequential,
the majority get very small speedup by applying in-
dependent AND parallel execution. For divideld,
logl0, and times10, this is because the AND paral-
lel sub-problems are very unbalanced; that is, one
sub-problem is much larger than the other. For
nreverse, the reason is that independent ANT) par-
allel execution is not able to execute the two body
goals of nreverse in parallel. It is a recurrence, and
is hence completely sequential. This can be ad-
dressed by replacing the algorithm or applying a
parallel recurrence solver.

The best results for independent AND paral-
lelism come from polyll and tak. In bolh cases
these give rise to fairly large numbers of indepen-
dent subecomputations. In the case of tak, the
branching factor is approximately three and the
calling depth is large, so a large speedup is ob-
tained. Qsort on a well-chosen input list with a
better partition routine should be able to obtain
gimilar results.

These results are just the beginning of under-
standing the parallelizability of programs, as we
would like information on the more general AND
and other sorts of parallelism. Howewver, they can
tell us something about how much speedup we can
reasonably expect from parallel models. More-
over, examining these programs to see where de-
pendences occur should help in designing restruc-

750

turing transformations.

6 Conclusions

The amount of OR and AND/OR parallelism in
a Prolog program can be effectively measured by
sequentially executing an instrumented version of
that program. The timings obtained this way give
a best-possible speedup under two different paral-
lelism models, and can be used for a number of pur-
poses. First, they can be used to evaluate the abil-
ity of a parallel execution model to exploit paral-
lelism. These results can suggest areas of improve-
ment for such models. We intend to instrument a
number of programs for this purpose.

‘With some relatively simple extensions this tech-
nigue can measure the amount of a number of
lower-level program characteristics. Among these
are unification parallelism, backtracking properties,
aliasing, data dependences, and dereference costs.

Prolog can also be extended with predicates for
source-level parallelism. With proper timing meth-
ods, this instrumentation method can be used to
evaluate restructuring transformations for Prolog.
The instrumentation system we described has been
extended with such predicates and we have begun
to evalvate transformations. In the future we will
describe these extensions to the instrumentation
method as well as the results of our restructuring
transformations.

Acknowledgments

The authors would like to thank David Padua for
his many useful suggestions about this work.

References

[AL 1990] Khayri Ali. The muse or-parallel prolog
model and ifs performance. In Proceedings of
the 1990 Nerth American Logic Programming
Conference, pagea T57-T76, 1990.

[Chang et af 1985] J. Chang, A. M. Despain, and
D. DeGroot. And-parallelism of logic pro-
grams based on a static data dependency anal-
ysis. In Proceedings of Compeon 85, 1985.

[Conery and Kibler 1985] J.S. Conery and D.F.
Kibler. And parallelism and nondeterminism
in logic programs. New Generation Compui-
ing, 3:43-70, 1985.

[DeGroot 1984] D. DeGroot. Restricted and-
parallelism. In Proceedings of the Inferna-
tional Conference on Fifth Generation Com-
puler Systems, pages 471-478. North Holland,
1984,

[Hermenegildo 1988] M. V. Hermenegildo. Inde-
pendent AND-Parallel Prolog and its Architec-
ture. Kluwer Academic Publishers, 1988,

[Kalé 1984] Laxmikant V. Kalé. Parallel Architee-
tures for Problem Solving. PhD thesis, State
University of New York at Stony Brook, 1985,

[Kalé 1987] Laxmikant V. Kalé. Parallel execu-
tion of logic programs: the reduce-or process
model. In Proceedings of the International
Conference on Logic Programming, pages 616~
632, May 1987.

[Kumar 1988] Manoj Kumar. Measuring par-
allelism in computation intensive scien-
tific/engineering applications, IEEE Transac-
tions on Computers, 37(9), September 1988.

[Ramkumar and Kalé 1980] B. Ramkumar and
L.V. Kalé, Compiled execution of the reduce-
or process model on multiprocessors. In Pro-
ceedings of the 1989 North American Confer-
ence on Logic Programming, pages 313-331,
October 1980,

[Shen 1986] Kish Shen. An investigation of the ar-
gonne model of er-parallel prolog. Master's
thesis, University of Manchester, 1986,

[Szeredi 1089] Peter Szeredi. Performance analy-
sis of the aurora or-parallel prolog system. In
Proceedings of the 1989 North American Con-
ference on Logic Programming, pages 713-732,
1939.

[Tick 1987] Evan Tick. Studies in Prolog Architec-
tures. PhD thesis, Stanford University, June
1987,

[Warren 1983] David H. D. Warren. An abstract
prolog instruction set. Technical report, SRI
International, October 1983. Technical Note
309,

[Warren 1987] David H.D. Warren. The sri model
for or parallel execution of prolog — abstract
design and implementation. In Proceedings of
the 1987 Symposium on Logic Programming,
pages 92-103. September 1987.

[Wise 1986] Michael Wise. Prolog Multiprocessors.
Prentice-Hall International Publishers, 1986.

