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Abstract

We argue that in order to exploit both Indepen-
dent And- and Or-parallelism in Prolog programs there
ie advantage in recomputing some of the independent
goals, as opposed to all their solutions being reused.
We present an abstract model, called the Composition-
Tree, for represenling and-or parallelism in Prolog Pro-
geams. The Compesition-tree closely mirrors sequen-
tial Prolog execution by recomputing some indepen-
dent goals rather than fully ee-using them, We also
outline two environment representation techniques for
And-Or parallel execution of full Prolog based on the
Composition-tree model abstraction. We argue that
these Lechnigues have advantages over earlier propos-
als for exploiting and-or parallelism in Prolog.

L. Introduction

One of the lealures of logie programming lan-
guages that make them atiractive is that they al-
low implicit parallel execution of programs. There
are three main forms of parallelism present in logie
programs: or-parallelism, Independent And-parallelizm
and Dependent and-parallelism. In this paper we
restrict ourselves to Or-parallelism and Independent
and-parallelism. There have been numerous proposals
for exploiting or-parallelism in logic programs [AKS(0,
HCET, LW90, W84, W8T, et ]t and guite a few for ex-
ploiting independent and-parallelism [H&6, LK8E, etc.].
Models have also been propossd to exploit hoth or-
parallelism and independent and-parallelism in a single
framework [BE88, GI89, RK8S]. It is the latter aspect
of combining independent and- and or-parallelism that
this paper addresses.

1' Much of this work was done while the first author was a He-
search Associate in David H.D. Warren's group at the University
of Bristol.

i Ses [G190] for & systematic analysis of the various models.

One aspeet which most models that have been pro-
posed (and some implemented) so far for combining
ar-parallelism and independent and-parallelism have in
commaon ig that they have either considered only pure
logic programs (pure Prolog), e.g. [RKB89, GJ8Y], or,
alternatively, modified the language to separate parls
of the program thal contain extra-logical predicates
{such as cuts and side-effects) from those that contain
purely logical predieates, then allowing parallel execu-
tion only in parts containing purely logical predicates
[R587, BK8E]. In the former case practical Prolog pro-
grams cannot be execufed since most such programs
use extra-logical features. The latter approach has a
number of disadvantages: first, il requires program-
mers to divide the program into sequential and paral-
lel parts themselves. As a result of this, parallelism
iz not exploited completely implicitly since some pro-
grammer intervention is required. This also rules ont
the possibility of taking “dusty decks” of existing Pro-
log programs and running them in parallel. In ad-
dition, some parallelism may zlso be lost since parts
of the program that contain side-effects may also ae-
tually be the parts that contain parallelism. It has
been shown that or-parallelism and independent and-
parallelism can be exploited in full Prolog completely
implicitly (for example, in the Aurora and Muse Sys-
tems [HC88, LWHI0, AKO1], and in the &-Prolog sys-
tem [HGO0, MH89, CCED]). We argue that the same
can be done for systems that combine independent and-
and or-parallelism and that will be one of the design
objectives of the approach presented in this paper.f

The paper thus describes a general approach for

t Due to length limitations the actual techniques for incorpo-
rating side effects in and-or parallel systems in order to execute
full Prolog are presented in & separste report [G591]. [owewver,
the model presented in this paper has been designed with this is-
sue in mind, Le., having as one of the objectives that the inclusion
of side effects be facilitated.



combined exploitation of independent and- and or-
parallelism in full Prolog. We present an abstract
model of and-or parallelism for logie programs which
mirrors sequential Prolog execution more closely, essen-
tially by recomputing some independent goals (those
thal Prolog recomputes) rather than re-using them,
and show the advantages of this approach. Qur pre-
sentation is then two-pronged, in that we propose two
alternative efficient environment representation tech-
niques to support the model: paged binding arrays and
stack copying. Using the concept of teams of proces-
sorsf, we also briefly discuss issues such as scheduling
and memory management,

The environment representation techniques pro-
posed are extensions of techniques designed for purely
or-parallel systems—specifically the Aurora [LWS0]
and Muse [AK90] systems, The method for encod-
ing indcpendmt. md—p&raﬂeﬁﬁm i5 taken from purely
independent and-parallel systems—specifically the f-
Prolog system [HGY0]: we use the parallel conjunction
operator “& to signify parallel execution of the goals
separated by this operator and Conditional Graph Ex-
pressions (CGEs) [HN8G,HEG]S. Henee our model can
be viewed as & combination of the &-Prolog system and
a purely or-parallel system such as Aurora or Muse—
in the prezence of only independent and-parallelism our
model behaves exactly like &-Prolog while in Lhe pres-
ence of only or-parallelism it behaves exactly like the
Aurora or Muse systems, depending on the environ-
ment representalion technique chosen,

The rest of the paper is organised as follows: See-
tion 2 describes or-parallelism and independent and-
parallelism in Prolog programs. Section 3 presents
arguments for favouring recomputation of some inde-
pendent and-parallel goals aver their complete reuse.
Section 4 then presents an abstract model called the
Composition-tree for representing and-or parallel ex-
ecution of Prolog with recomputation.  Section 5
deals with environment representation issues in the
Composition-tree: section 5.1 presents a comparison
of environment representation technigues based on
whether there is sharing or non-sharing, section 5.2
presents an extension of the Binding Areays method, an
environment representation technique based on shar-

} We refer to the working “agents” of the system —the "work-
ers” of Auwrora and Muse and "agents” of &-Prolog- simply as
processors, under the asswmption that the term will gererally
represent processes mapped onto actual processors in an actual
implermentation.

§ Mote that CGEs and & operators can be introduced auto-
matically in the program at compile time [MH88a] using abstract
interpretation and thus the programmer is not burdened with the
parallelization task,

T

ing; while section 5.3 presents another technique, based
on non-sharing, which employs stack-copying. Finally,
section G presents our conclusions. We assume that the
reader is familiar to some extent with Binding Arrays
[W84, WAT], the Aurora and Muse Systems [LWHS0,
AKS0], and the &-Prolog system [HG90], as well as
with some aspects of sequential Prolog implementation.

2, Or- and Independent And-parallelism

(r-parallelism arises when more than one rule de-
fines some telation and a procedure call unifies with
more than one rule head in that relation—the corre-
sponding bodies can then be executed in or-parallel
fashion. Or-parallelism is thus a way of efficiently
searching for solutions to a goal, by exploring alter-
native solutions in parallel. It corresponds to the par-
allel exploration of the branches of the proof tree. Or-
parallelism has successfully been exploited in full Pro-
log in the Aurora [LWH0] and the Muse [AKS0] sys-
tems both of which have shown very good speed up
results aver a range of problems.

Informally, fndependent And-parellelism  arises
when more than ane goal is present in the query or
in the body of a procedure, and the pun-time bindings
for the variables in these goals are such that two or
mote goals are independent of one another. In general,
independent and-parallelism includes the parallel exe-
eution of any set of goals in a resolvent, provided they
meet some independence condition. Independent and-
parallelism is thus a way of speeding up a problem by
executing its subproblems in parallel. One way for goals
to be independent is that they don't share any variahle
at run-time (sfrict independence [HR#0]f). This can
be ensured by checking that their resulting argument
terns after applying the bindings of the variables are ei-
ther variable-free {i.e., ground) or have non-intersecting
sets of variables. Independent and-parallelism has been
successfully exploited in the &-Prolog system [HGO(].
Independent. and-parallelism is expressed in the &-
Prolog system Lhrough the parallel conjunction opera-
tar “&", which will also be used in this paper. For syn-
tactic brevity we will also use &-Prolog’s Conditional
Graph Expressions (CGEs), which are of the form

(eondition = gealy & gools & ... & goal, )

meaning, using the standard Prolog if-then-else con-
ghruct,

(condition — goaly & .. & goal, | goaly, ... goal,)

T There is a more general concepl of independence, RoR-
strictl independence [HR20), for which the same results (the
model presented in this paper included) apply. However, the
rest of the presentation in this section will refer for simplicity,
and without loss of generality, to strict independence.
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Le., that, if condition is true, goals goaly ... goal, are
to be evaluated in parallel, otherwise they are to be
evaluated sequentially. The condition can obviously
be any prolog goal but is hermally a conjunction of
special builting which include groundf1, which checks
whether its argument has become a ground term at run-
time, or independent/2, which checks whether its two
arguments are such at run-time that they don't have
any variable in common, or the constant #rue meaning
that geal; ... goal, ean be evaluated in parallel uncon-
ditionally. It iz possible to generate parallel conjune-
tions and or CGEs automatically and quite sucesssfully
ab compile-time using abstract interpretation [MHB89].
Thus, exploitation of independent and-parallelism in &-
Prolog is completely implicit (although vser annotation
is also allowed).

There have been a number of attempts to exploit
or- and independent and-parallelism together in & single
Framework [G)8%, RK8%, WRAET, etc.], however, and as
mentioned earlier, they either don’t support the fufl
Prolog language, or require user intervention. Also, in
general these systems advocate solulion sharing which,
as will be argued in the following section, stands in the
way of supporting (ull Prolog,

3. Recomputation vs Reuse

In the presence of both and- and or-parallelism in
logic programs, it is possible to avoid recomputing cer-
tain goals. This has been termed as solution sharing
[GI89, GOla]. For example, consider two independent
goals alX), B{Y), each of which has multiple solutions.
Assuming that all solutions to the program are desired,
the most efficient way to execute this goal would be to
execute a and b in their entirety and combine their so-
lutions (possibly incrementally} through a join [BK88,
GJ8%, RK8Y]. However, to solve the above goal in this
way one needs to be sure that the set of salutions for a
and b are stalic (i.e., if either goal is executed multiple
times, then each invocation produces an identical set
of solutions). Unfortunately, this can hold true only if
clauses for a and b are pure logic programs. [F side-
effects are present (as is usually the case with Prolog
programs), then the set of solutions for these goals may
not be static. For example, consider the case where,
within b, the value of a variable is read from the stan-
dard input and then some action taken which depends
on the value read. The solutions for & may be differ-
ent for every invocation of b (where each invocation
coreesponds to a different solution of a), even il the
goal is completely independent of the others. Hence
solution sharing would yield wrong results in such a
case. The simple solution of sequentializing such and-
parallel computations results in loss of too much and-

parallelism, because if a(X), BY) falls in the scope
of some other goal, which is being executed in and-
parallel, then that goal has to be seqguentialized toe,
and we have to carry on this sequentialization process
right up to the top level query, If, however, the goals are
recomputed then this sequentialization can be avoided,
and parallelism exploited even in the presence of cuts

and side-effects [GS81].

Hence, there is a strong argument for recomput-
ing non-deterministic and-parallel goals, especially, if
they are not pure, and even more so if we want to
support Prolog as the user languaget. Additionally,
recent simulations of and-or parallelism [SH91] show
that typical Proleg programs perform very little re-
camputation, thus providing further evidence that the
amount of computation saved by a systemn which avaids
recomputation may be guite small in practice. Pre-
sumably this behaviour is due to the fact that Prolog
programmers, aware of the selection and computation
rules of Prolog, order literals in ways which result in
efficient search which minimises the recomputation of
goals. Note that the use of full or partial recomputa-
tion can never produee any slowdown with. respect to
Prolog since Prolog itself uses full recomputation.

Recomputation of independent goals was first pro-
posed in the context of &-Prolog.i. 1t is obviously also
used in Aurora and Muse (since, performing no goal
independence analysis, no possibility of sharing arises)
and has made these three systems quite capable of sup-
porting full Prolog. Recomputation in the context of
and-or parallelism has also been proposed in [SH91]3.
The argument there was basically one of ease of simu-
lation and, it was argued, of implementation (being a
simulation study no precise implementation approach
was given). Here we add the important argument of
being able to support full Prolog, provide an abstract
representation of the corresponding execution tree, and
outline two efficient implementation approaches.

4., And-Or Composition Tree
The most common way to express and- and or-

t There is a third possibility as well: to recompute those
independent and-parallel goals that have side-effects and share
those that don’t. Since Lhe techniques for implementing salution
sharing are in the literature and techniques for implementing
solution recomputation are presented herein such an approach
would represent a —perhaps non-trivial- eombination of the given
methads,

1 In the case of k-Prolog there are even further arguments
in favour of recomputation, related to management of a single
binding enviranment and merory economy,

§ The ides of recomputation is referred to a8 “or-under-and”
in f5Ha1).



parallelism in logic programs is through the traditional
concept of and-or trees, i.e. trees consisting of or-nodes
and and-nodes. Or-nodes represent multiple clause
heads matching a goal while and-nodes represent rmul-
tiple subgoals in the body of a clause being executed
in and-parallel. Since in the model prescated herein we
are representing and-parallelism via parallel conjunc-
tions, our and-nodes will represent such conjunctions.
Thus, given a clause g :~ (true => a & b), and as-
suming that a and b have 3 solutions each (to be exe-
cuted in or-parallel form) and the query is 7- q, then
the corresponding and-or tree would appear as shown
in figure 1.

(s & B
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Figure 1: And-Or Tree

One problem with such a traditional and-or tree is
that bindings made by different alternatives of a are not
vizible to different alternatives of b, and vice-versa, and
hence the correct environment has to be created before
the continuation goal of the parallel conjunction can be
executed. Creation of the proper environments requires
a global operation, for example, Binding Array loading
in AO-WAM [GJ89, G91a], the complex dereferencing
scheme of PEPSys [BK88], or the “global forking” oper-
ation of the Extended Andorra Model [W90]. To elim-
inate this possible source ol overhead in our model, we
extend the traditional and-or tree so that the various
ar-paralle]l environments that simultaneously exist are
always separate.

The extension essentially uses the idea of recomn-
puting independent goals of a parallel conjunction of
&-Prolog [HGO0] (and Prolog!). Thus, for every al-
ternative of a, the goal b is computed in its entirety.
Each separate combination of a and b is represented
by what we term as a composilion node (c-node for
brevity). Thus, each composition node in the tree cor-
responds to a different solution for the parallel conjunc-
tion, i.e., a different “continuation™. Thus the extended
tree, called the Composition-tree (C-tree for brevity),
for the above query might appear as shown in figure
2—for each alternative of the and-parallel goal a, goal
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b is entirely recomputed (in fact, the tree could contain
up to 9 c-nodes, one for each combination of solutions
of a and b). To represent the fact that a parallel con-
junction can have multiple solufions we add & branch
point (choice point) before the different composition
nodes, Note that c-nodes and branch points serve pur-
poses very similar to the Parcall frames and markers of
the RAP-WAM [H&6G, HGY0]. The C-tree can represent
or- and independent and-parallelism quite naturally—
execution of goals in a c-node gives rise to independent
and-parallelism while parallel execution of untried al-
ternatives gives rise to or-parallelism. .
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Figure 2: Composition Tree

Motice the topological similarity of the C-tree with
the purely ar-parallel tree shown in figure 3 for the pro-
gram above., Essentially, branches that are “shared” in
the purely oe-parallel tree (ie. that are “ecmmon”,
even though different binding environments may still
have to be maintained —we will refer to such branches
and regions for simplicity simply as “shared”) are also
shared in the C-tree. This sharing is represented by
means of a share-node, which has a pointer to the
shared branch and 2 pointer to the composition node
where that branch is needed (figure 2). Due to shar-
ing the subtrees of some independent and-parallel goals
maybe spread oul across different composition nodes.
Thus, the subtree of goal a is spread out over c-nodes
1, C2 and C3 in the C-tree of figure 2, the to-
tal amount of program-related work being essentially
maintained.

t In fact, a graphical tool capable of representing this tree
has shown itsell to be guite useful for implermontors and users of

independent and- and ar-parallel systems [CGH1].
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Figure 3; Or-Parallel Tree

4.1 And-Or Parallelism & Teams of Processors

We will present some of the implementation isuues
from the point of view of extending an or-parallel sys-
tem to support independent and-parallelism. When a
purely ar-parallel model is extended to exploit indepen-
dent and-parallelism then the following problem arises:
at the end of independent and-parallel computation,
all participating processors should see all the bindings
created by each other. However, this is completely op-
posite to what is needed for or-parallelism where pro-
cessors working in or-parallel should not see the (con-
ditional) bindings created by each other. Thus, the
requirements of or-parallelism and independent and-
parallelism seern anti-thetical to each other. The so-
lutions that have been proposed range from updating
the environment at the time independent and-parallel
computations ate combined [RK89, GJ89] to having a
complex dereferencing scheme [BI88]. All of these op-
erations have their cost.

We contend that this cost can be eliminated by or-
ganising the processors into teams. Independent and-
parallelism is exploited among processors within 2 team
while or-parallelism is exploited among teams. Thus a
processor within a team would behave like a processar
in a purely and-parallel aystem while all the processors
in a given team would collectively behave like & pro-
cessor in a purely or-parallel system. This entails that
all processors within each team share the data struc-
tures that are used to maintain the separate or-parallel
environments. For example, if binding arrays are be-
ing used to represent multiple or-parallel environments,
then only one binding array should exist per team, so

that the whele environment is visible to each member
proceszor of the team. In copying is used, then pro-
cessors in the team share the copy. Note that in the
limit case there will be only one processor per team.
Also note Lhat despite the team arrangement a proces-
sor is free to migrate to another team as long as it is
not the only one left in the team. Although a fixed
assignment of processors to teams is possible a flexi-
ble scheme appears preferable. This will be discussed
in more detail in section 4.3. The concept of teams of
processors has been successfully used in the Andorra-l
system [SW91], which extends an or-parallel system to
aceommodate dependent and-parallelism.

4.2, C-tree & And-Or Parallelism

The concept of organising processors into teams
also meshes very wall with C-trees. A team can work on
a c-node in the C-free—each of its member processors
working on one of the independent and-parallel goal in
that c-node, We illusteate this by means of an example,
Consider the query corresponding to the and-or tree of
figure 1. Suppose we have 6 processors P1, P2, ..,
P8, grouped into 3 teams of 2 processors each. Let us
suppose P1 and P2 are in team 1, P3 and P4 in team 2,
and PS5 and PG in team 3. We illustrate how the C-tree
shown in figure 2 would be created.

Execution commences by processor P1 of team 1
picking up the guery g and executing it. Execution con-
tinues like normal sequential execution until the paral-
lel conjunction is encountered, at which point a choice
point node is created to keep track of the information
about the different solutions that the parallel conjune-
tion might generate. A c-node is then created {node
Cl in figure 2). The parallel conjunction consists of
two and-parailel goals a and b, of which a iz picked
up by processor P1, while b is made available for and-
parallel execution. The goal b is subsequently picked
up by processor P2, teammate of processor P1. Pro-
cessor Pl and P2 execute the parallel conjunction in
and-parallel producing solutions a1 and bi respectively.
In the process they leave choice points behind, Since
we allow or-parallelism below and-parallel goals, these
untried alternatives can be processed in or-parallel by
other teams. Thus the second team, consisting of P3
and P4 picks up the untried alternative corresponding
to a2, and the third team, consisting of P5 and P8,
picks up the untried alternative corresponding to a3,
Both these teams create a new c-node, and restart (he
execution of and-parallel goal b (the goal to the right
of goal a): the first processor in each team (P3 and
P§, respectively) executes the alternative for a, while
the second processor in each team (P4 and P8, respec-
fively) executes the restarted goal b. Thus, there are



3 copies of b executing, one for each alternative of a.
Mote that the nodes in the subtree of a, between c-node
1 and the choice points from where untried alterna-
tives were picked, are “shared” among different teams
(in the same sense as the nodes above the parallel con-
junction are—different binding environments still have
to be maintained).

Since there are only three teams, the untried alter-
natives of b have to be executed by backtracking. In
the C-tree, backtracking always takes place from the
right to mimic Prelog’s behaviour—goals to the right
are completely explored before a processor can back-
track inside a goal to the left. Thus, if we had only
one team with 2 processors, then only one composition
node would actually need to be created, and all solu-
tions would be found via backtracking, exactly as in
&-Prolog, where only one copy of the Parcall frame ex-
ists [HB86, HG20]. On the other hand if we had 5 teams
of 2 processors each, then the C-tree could appear as
shown in fig 4. In figure 4, the 2 extra teams steal the
untried alternatives of goal b in e-node C3, This results
in 2 new c-nodes being created, Cd and C5 and the sub-
tree of goal b in c-node C3 being spread across c-nodes
C3, C4 and C5. The topologically equivalent purely
or-parallel tree of this C-tree is still the one shown in
figure 3. The most important point to note is that
new c-nodes get created only if there are resources to
execute that c-node in parallel. Thus, the number of c-
nodes in 2 C-tree can vary depending on the availability
of processors,

] Chasircz prist ﬂr",,,_m.“mcr] 2 and C3 wre eveansd oo each
thve ke alomrmai o acmad-parallz] & Of mnd O3
B Sl e creanad whis tog of e sHemative: Lhe wolstres ol

 — rmition -uip-llzl compiitize node lckoad by
e L 'Fhu!::nkupm;nwmldmkilhmmui

Figure 4: C-tree for 5 Teams

It might appear that intelligent backtracking, that
accompanies independent and-parallelism in &-Prolog,
is absent in our abstract and-or parallel C-tree model.
Thiz is becavse if b were to completely fail, then this
failure will be replicated in each of the three copies of b.
We can incorporate intelligent backtracking by stipolat-
ing that an untried alternative be stolen from a choice
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point, which falls in the scope of a parallel conjunction,
only after at least one solution has been found for each
goal in that parallel conjunction. Thus, e-nodes C2,
3, C4 and C5 (fig 4) will be created only after the
first team (consisting of P1 and P2) succeeds in finding
solutions al and bi respectively. In this situation if b
were to fail, then the c-node C1 will fail, resulting in
the failure of the whele parallel conjunction.

4.3. Processor Schaduling

Since our abstract model of C-trees is dependent
upon the number of processors available, some of the
processor scheduling issues can be determined at an
abstract level, without going into the details of a con-
crete realization of the C-trees. As mentioned earlier,
teams of processors are vsed to carry oul or-parallel
work while individual processors within a team perform
and-parallel work. Since and-parallel work is shared
within a team, & processor can in principle steal and-
parallel work only from members of its own leam. Or-
parallel work is shared at the level of teams, thus only
an idle team can steal an untried alternative {rom a
choice point. An idle processor will fiest lock for and-
parallel work in its own team. If no and-parallel work is
found, it can decide to migrate to another team where
there is worl, provided it is not the last remaining pro-
cessor in that team. If no such team exists it can start
a new team of ils own, perhaps with idle proeessors
of other teams, and the new team can steal or-parallel
work, One has to carefully balance the number of teams
and the number of processors in each team, to fully ex-
ploit all the and- and or-parallelism available in a given
Prolog programt.

5. Environment Representation

So Far we have described and-or parallel execution
with recomputation at an abstract level. We have not
addressed the crucial problem of environment represen-
tation in the C-tree. In this section we discuss how to
extend the Binding Arrays {BA) method [W84,W8T7|
and the Stack-copying [AK90] methods to solve this
problem. These extensions enable a team of processors
to share a single BA without wasting too much space.

5.1 Sharing vs Non-Sharing

In an earlier paper [GJ90] we argued thal environ-
ment representation schemes that have constant-time
task creation and constant-time access to variables, but
non-constant time Lask-switching, are superior Lo those

1 Some of the ‘fexible scheduling” technigues that have bean
developed for the Andorra-1 system [091] can be directly adapted

for optimal distribution of or- and and-parallel work.
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methods which have non-constant time task creation
or non-constant time variable-access. The reason being
that the number of task-creation operations and the
number of variable-access operations are dependent an
the program, while the number of task-switches can be
controlled by the implementor by carefully designing
the work-scheduler.

The schemes that have constant-time task ereation
and variable-access can be further subdivided into those
that physically share the execution tree, such as Bind-
ing Arrays scheme [W84, W87, LW30] and Versions
Vectors [HC8T] scheme, and those that do not, such as
MUSE [AKS0] and Delphi [CA88). Both these kinds of
schemes have their advantages. The advantage of non-
sharing schemes such as Muse and Delphi are that less
synchronization is needed in general since each proces-
sor has its own copy of the tree and thus there is less
parallel overhead [AK90]. This also means that they
can be implemented on non-shared memory machines
more efficiently. However, operations that may require
synchronization and voluntary suspension such as side
effects, cuts and speculative scheduling are mare aver-
head prone to implement. When an or-parallel sys-
tem reaches a side effect which is in & non-lefimost
or-branch, it has two choices: (i} it can suspend the
current branch and switch to some other node where
there is work available, the suspended branch would be
woken up when it beeomes leftmast; or (i) it can busy-
wait at the current branch until it becomes left meet.
In case (i) an or-parallel system that does not share
the execution tree, such as Muse, will have to save its
current execution stack in a scratch memary-area sines
swilching to a new node means that the current stack
would be overwritten due to copying of the branches
corresponding to the new nede. Even if modern sophis-
ticated muitiprocessor Operating Systems may allow
s0me memory-saving optimizations, a substaniial mem-
ory overhead may still be pressntf, The same halds for
case (i), where a modern OS may manage to avoid
busy-waiting, but at the cost of extra memory.

The essential conclusion is that for some applica-
tions (those that require processors Lo synchronize of-
ten due o presence of 2 large number of side-effects
and cuts) environment representation schemes which
share the or-tree are better, and for some other appli-
cations (those that require processors to synchronize
less often) schemes which maintain an independent or-
tree per processor are better. With this obssrvation
in mind we have extended both types of environment

1 Experimental resulis show that processors may voluntasly
suspend as much as 10 to 1005 of times for large sized programs
[sTe].

representation schemes to acecommodate independent
and-parallelism with recomputation of goals. We first
describe an extension of the Binding Arrays scheme,
and then an extension of the stack-copying technique.
Due to space limitations the essence of both approaches
will be presented rather than specifying them in detail
as full models, which s left as future work.

5.2. Environment Representation using BAs

Recall that in the binding-array method [W84,
W&T] an offset-counter is maintzined for each branch of
the or-parallel tree for assigning offsets to conditional
variables (CVs)f that arise in that branch. The 2 main
properties of the BA method for or-parallelism are the
following:

(i) The offset of a conditional variable is fixed for its
entire life.

(ii) The offsets of two consecutive conditional variables
in an or-branch are also consecutive.

The implication of these two properties is that con-
ditional variables get allocated space consecutively in
the binding array of a given processor, resulting in opti-
mum gpace usage in the BA. This is important becanse
a large number of conditional variables might need to
be created at runtimel.

Fig fijc Paat of 5. C-1me
Figure 5: BAs and Independent And-Parallelism

Figure: (§): Optimal Space Allocation fn the BA

In the presence of independent and-parallel goals,
each of which has multiple solutions, maintaining con-
tiguity in the BA can be a problem, especially if pro-
cessors are allowed (via backtracking or or-parallelism)
to search for these multiple solutions. Consider a goal
with a parallel conjunction: a, (trus => b & ¢), 4.
A part of its C-tree is shown in figure 5(i) (the figure

T Conditional variables are variables that receive different
bindings in different enviranments [G.120].

1 For instancs, in Aurors [LWO0] about 1M of space is allo-
cated for cach BA.




aleo shows the number of conditional variables that are
created in different parts of the tree). If b and c are
executed in independent and-parallel by two different
processors P1 and P2, then assumning that both have
private binding arrays of their own, all the conditicnal
variables created in branch b-bl would be allocated
space in BA of P1 and those created in branch of ¢~
ci would be allocated space in BA of P2, Likewise
conditional bindings created in b would be recorded in
BA of P1 and those in ¢ would be recorded in BA of
P2. Before P1 or P2 can continue with d after finding
solubions b1 and c1, their binding arrays will have to
be merged somehow. In the AQ-WAM [GJ83, GOla]
the approach taken was that one of F1 or P2 would
execnte d after updating its Binding Array with con-
ditional bindings made in the other branch (known as
the the BA loading operation). The problem with the
BA loading operation is that it acts as a sequential bot-
tleneck which can delay the execution of d, and reduce
speedups. To get rid of the BA loading everhead we
can have a8 common binding array for P1 and P2, so
that once PI1 and P2 finish execution of b and ¢, ane of
them immediately beging execution of d since all con-
ditional bindings needed would already be there in the
common BA. This is consistent with oor discussion in
gection 4.1 about having teams of processors where all
processors in a team would share a common binding
array.

However, if processars in a team share a binding
array, then backiracking can cause inefficient usage of
space, because it can create large unused holes in the
BA. This is because processors in a team, that are work-
ing on different independent and-paraliel branches, will
allocate offsets in the binding array concurrently, The
exact number of offsets needed by each branch cannot
be allocated in advance in the binding array because
the number of conditional variables that will arise in a
branch cannot be determined a priori. Thus, the offsets
of independent and-branches will overlap: for example,
the offsets of & CVs in branch bl will be intermin-
gled with those of &z CVs in branch cl. Due to over-
lapping offsets, recovery of these offsets, when a pro-
cessor backtracks, requires tremendous book-keeping.
Alternatively, if no book-keeping is done, it leads to
large amount of wasted space thal becomes unusable
for subsequent offsets (see [GS92, GI1, G91a] for more
details).

5.2.1. Paged Binding Array

To solve the above problem we divide the binding
array into fized sized segments. Each conditional vari-
able is bound to a pair consisting of & segment number
and an offset within the segment. An auxiliary array
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keeps track of the mapping between the segment num-
ber and iis starting location in the binding array. Deref-
erencing CVs now invelves double indirection: given a
conditional variable bound to {7, o}, the starting address
of its segment in the BA is ficst found from location i
of the suxiliary array, and then the value at offsel o
from that address is accessed. A set of CVs that have
been allocated space in the same logical segment (i.e.
(Vs which have common ) can reside in any physi-
cal page in the BA, as long as the starting address of
that physical page is recorded in the ith slot in the
auxiliary array. Note the similarity of this scheme to
memory management using paging in Operating Sys-
tems, hence the name Paged Binding Array (PBA){.
Thus & segment is identical to a page and the auxil-
iary array is essentially the same as a page table. The
auxiliary and the binding array are common to all the
processors in a team. From now on we will refer to the
BA as the Paged Binding Array (PBA), the anxiliary
array as the Page Table (PT), and our model of and-or
parallel execution as the PBA medelt.

Every time execution of an and-parallel goal in a
parallel conjunction is started by a processor, or the
eurrent page in the PBA being used by that processor
for allocating CWs becomes full, a page-marker node
containing a unigue integer id { is pushed onto the
trail-stack. The unique integer id is obtained from a
shared counter {called a pt.counter). There is one
such counter per team. A new page iz reguested from
the PBA, and the starting address of the new page iz
recorded in the fth location of the Page Table. 1 is re-
ferred to as the page number of the new page. Each
processor in a team maintains an offset-counter, which
is used to assign offsets to CVs within a page. When a
new page is obtained by a processor, the offset-counter
is reset. Conditional variables are bound to the pair <i,
o>, where i is the page number, and o is the value of the
offset-counter, which indicates the offset at which the
value of the OV would be recorded in the page. Every
time a conditional variable is bound to such a pair, the
offset counter o is incremented. If the value of o be-
comes greater than K, the fixed page size, a new page
is requested and new page-marker node is pushed.

T Thanks to David H. . Warren for pointing out this
simnilarity.

1 A paged binding array has also heen used in the ElipSys
system of ECRC [VX81], but for entirely different reasons. In
ElipSys, when a choice point is reached the B4 s replicated for
each new branch., To reduce the overhead of replication, the BA
is paged. Pages of the BA are copied in the children branches
on demand, by using a *copy-on-write” strategy. In ElipSys,
unlike cur model, paging is not necessitated by independent and-
parallelism.
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A list of free pages in the PBA is mainiained sepa-
rately (as a linked list). When a new page is requested,
the page at the head of the list is returned. When a
page is freed by a processor, it is inserted in the free-
list. The free-list is kept ordered so that pages higher
up in the PRA occur before those that are lower down.
This way it is always guaranteed that space at the top
of the PBA would be used first, resulting in optimum
space uszage of space in the PBA.

While selecting or-parallel work, il the untried al-
ternative thai is selected is not in the scope of any
parallei conjunction, then task-switching is more or
less like in purely or-parallel system (such as Aurorsa),
modulo allocation/deallocation of pages in the PBA.
If, however, the untried alternative that is selected is
in the and-parallel goal g of a parallel conjunction,
then the team updates its PBA with all the conditional
bindings created in the branches corresponding to goals
which are to the left of g. Conditional bindings created
in g above the choice point are also installed. Goals
to the right of g are restarted and made available to
other member processors in the team for and-parallel
execution. Notice that if a C-tree is folded into an
or-parallel tree aceording to the relationship shown in
figures 2 and 3, then the behaviour of (and the num-
ber of conditional bindings installed/deinstalled dur-
ing) task switching would closely follow that of a purely
or-parallel system such as Aurora, if the same schedul-
ing order is followed.

Note that the paged binding array technigue is a
generalization of the environment representation tech-
nique of AO-WAM [GJ8&9, G91la], hence some of the
optimizations [GJ90a] developed for the AD-WAM,
to reduce the number of conditional bindings to in-
stalled /deinstalled during task-switching, will also ap-
ply to the PBA model. Lastly, seniority of conditional
variables, which needs to be known so that “alder™ vari-
ables never point to “younger ones”, can be easily deter-
mined with the help of the <i, o> pair. Older variables
will have a smaller value of #; and if i is the same, then
a smaller value of o.

More details on Paged Binding Arrays can be
found in [G592, GA1).

5.3. The Stack Copying Approach

An alternative approach to represent multiple en-
vironments in the C-tree is to use explicit stack-copying.
Rather than sharing parts of the tree, the shared
branches can be explicitly copied, using techniques sim-
ilar to those employed by the MUSE system [AK90).

To briefly summarize the MUSE approach, when-
ever a processor P1 wants to share work with another

processor P2 it selecis an untried alternative from one
of the choice points in P2' siack. It then coples the
entire stack of P2, backtracks up to that choice point
to undo all the conditional bindings made below that
choice peoint, and then continues with the execution
of the uniried alternative. In this approach, provided
there is a mechanism for copying stacks, the only cells
that need to be shared during execution are those cor-
responding to the choice points, Execution is other-
wise completely independent (modulo side-effect syn-
chronization) in each branch and identical to sequential
execution.

If we consider the presence of and-parallelism in
addition to or-parallelism, then, depending on the ac-
tual types of parallelism appearing in the program and
the nesting relation between them, a number of relevant
cases can be distinguished. The simplest two cases are
of course those where the execution is purely or-parallel
or purely and-parallel. Trivially, in these situations
standard MUSE and &-Prolog execution respectively
applies, modulo the memory management issues, which
will be dealt with in section 5.3.2.

Of the cases when both and- and or-parallelism
are present in the execution, the simpler one represents
executions where and-parallelism appears “under® or-
parallelism but not conversely (i.e. no or-parallelism
appears below c-nodes). In this case, and again mod-
ulo memory management issues, or-parallel execution
can still continue as in Muse while and-parallel execu-
tion can continue like &-Prolog (or in any other local
way. The only or-parallel branches which can be picked
up appear then above any and-parallel node in the tree.
The process of picking up such branches would be iden-
tical to that described above for MUSE.

In the presence of or-parallelism under and-
parallelisrn the sitwation becomes slightly more com-
plicated. In that case, an important issue is carefully
deciding which portions of the stacks to copy. When
an untried alternative is picked from a choice-point,
the portions that are copied are precisely those that
have been [abelled as “shared” in the C-tree. Note that
these will be precisely those branches that will also be
copied in an equivalent (purely or-parallel) MUSE ex-
ecution. In addition, precisely those branches will be
recomputed that are also recomputed in an equivalent
(purely and-parallel) &-Prolog exeeution.

Consider the case when a processor selects an un-
tried alternative from a choice point ereated during ex-
ecution of a goal g7 in the body of a goal which occurs
after = parallel conjunction where there has been and-
parallelism above the the selected alternative, but all
the forks are finished. Then not only will it have to copy



all the stack segments in the branch from the root to
the parallel conjunction, but also the portions of stacks
corresponding to all the forks inside the parallel con-
junction and those of the goals between the end of the
parallel conjunction and g;. All these segments have in
principle to be copied becanse the untried alternative
may have access to variables in all of them and may
modify such variables,

On the other hand, if & processor selects an untried
alternative from a choice point ereated during execution
of a goal gi inside a parallel conjunction, then it will
have to copy all the stack segments in the branch from
the root to the parallel conjunction, and it will also
have to copy the stack segments corresponding to the
goals gy ...gi—1 (ie. goals to the left). The stack seg-
ments up to the patallel conjunction need to be copied
because each different alternative within the gis might
produce a different binding for a variable, X, defined
in an ancestor goal of the parallel conjunction. The
stack segments corresponding to goals g; through g;
have to be copied becanse the different alternatives for
the goals following the parallel conjunction might bind
a variable defined in one of the goals g, ... gi—; differ-
ently.

5.3.1. Execution with Stack Copying

We now illestrate by means of a simple example
how cr-parallelisin can be exploited in non determinis-
tic and-parallel goals through stack copying. Consider
the tree shown in figure 1 that is generated as a result of
executing a guery g containing the parallel eonjunction
(trme => a(X) & b(Y)}). For the purpose of illustra-
tion we assume that there is an unbounded number of
procesaors, F1 ... Pn.

Execution begins with processor P1 executing the
top level query g. When it encounters the parallel con-
junction, it picks the subgoal a for execution, leaving
b for some other processor. Let's assume that Proces-
sor P2 picks up goal b for execution (figure 6.(1)). As
execution continues P1 finds solution ai for a, gener-
ating 2 choice points along the way. Likewise, P2 finds
solution Bl for b.

Since we also allow for full or-parallelism within
and-parallel goals, a processor can steal the untried al-
ternative in the choice poink created doring execution
of a by P1. Let us assume that processor PJ steals this
alternative, and sets itself up for executing it. Te do
50 if copies the stack of processor P1 up to the choice
point (the copied part of the stack is shown by the dot-
ted line; see index at the bottom of figure 6), simulates
failure to remove conditional bindings made below the
choice point, and restarts Lthe goals o its right (ie. the

e

goal b). Processor P4 picks up the restarted goal b and
finds a solution b1 for it. In the meantime, P3 finds the
solution a2 for a (see figure 6.(ii)). Note that before P3
can commence with the execution of the untried alter-
native and P4 can execute the restarted goal b, they
have to make sure that any conditional bindings made
by P2 while exseuting b have also been removed. This
is done by P3 {or P4) getting a copy of the trail stack
of P2 and resefting all the variables that appear in it.

Like processar P3, processor P5 steals the untried
alternative from the second choice point for a, copies
the stack from P1 and restarts b, which is picked up
by processor P8. As in MUSE, the actual choice point
frame is shared to preveni the untried alternative in
the second choice point from being executed twice (once
through P1 and once through P3). Eventually, P5 finds
the solution &3 for a and PG finds the solufion b1 for b.
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Figure §: Parallel Execution with Stack Copying

Note that now 3 copies of b are being executad,
ane for each solution of a. The process of finding the
solution b1 for b leaves & choice point behind. The
untried alternative in this choice point can be picked
up for execution by another processor. This is indeed
what is done by processars PT, P8 and P8 for each copy
af b that is executing. These processors copy the stack
of P2, P4 and P&, respectively, up to the choice point.
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The stack segments corresponding to goal a are also
copied [ﬁgures ﬁ.f_i\'}, 6.(v), G.(¥i)) from processors P1,
P3 and P5, respectively. The processors PT, P8 and P9
then proceed to find the solution b2 for b.

Execution of the alternative corresponding to the
solution b2 in the three copies of b produces an-
ather choice-point. The untried alternatives from these
choice points can be picked up by other idle teams in a
manner similar to that for the previous alternative of b
{not shown in figure 6). Note that if there were no pro-
cessors available fo steal the alternative {corresponding
to solution b3) from b then this solution would have
been found by processors P7, P8 and P9 (in the re-
spective copies of b that they are executing) through
backtracking as in &-FProlog. The same would apply
if no processors were available to steal the alternative
from b corresponding to solution b2,

5.3.2. Managing the Address Space

While copying stack segments we have to make
sure ihal pointers in copied portions do not need re-
location. In Muse this is ensured by having a phys-
ically separate but logically identical memory spaces
for cach of the processoras [AK90]. In the presence of
and-parallelism and teams of processors a more sophis-
ticated approach has to be taken.

All processors in a team share the same logical
address space. Il there are n processors in the team the
address space is divided up into m memory segments
{m = n). The memory segments are numbered from 1
to . Each processor allocates its heap, local stacks,
trail ete. in one of the segments (this also implies that
the maximum no. of processors that a team can have is
m). Each team has its own independent logical address
space, identical to the address space of all other teams.
Also, each team has an identical number of segments.
Processors are allowed to switch teams so long as there
is a memory segment available for them to allocate their
stacks in the address space of the other team.

Consider the scenario where a choice point, which
is not in the scope of any parallel conjunction, is picked
up by a team Ty from the execution tree of another
team Tp. Let r be the memory segment number in
which this choice point lies. The root of the Prolog ex-
ecution tree must also lie in memory segment « since
the stacks of a processor cannol extend into another
memory segment in the address space. Tg will copy
the stack from the zth memory segment of Tp into its
own xth memory segment. Sipce the logical address
space of each team is identical and is divided into iden-
tical segments, no pointer relocation would be needed.
Failure is then simulated and the execution of the un-

tried alternative of the stolen choice point begun. In
fact, the copying of stacks can be done incrementally
as in MUSE [AK90] (other optimizations in MUSE to
save copying should apply equally well to our model,
and are leff as future work).

Now consider the more interesting scenario where
a choice point, which lies within the scope of a parallel
conjunction, is picked up by a processor in a team Ty
from another team Tp. Let this parallel conjunction be
the CGE (frue = g;1& ... &gs) and let g; be the goal
in the paralle] eonjunction whose sub-tree contains the
stolen choice point. T'¢ needs to copy the stack seg-
ments corresponding to the computation from the root
up to the parallel conjunction and the stack sepments
corresponding to the goals g; through g;. Let us as-
sume these stack segments lie in memory segments of
team T'p and are numbered =y, ..., 2z, They will be
copied into the memory segments numbered =y,..., 3
of teamn T'g. Again, this copying can be incremen-
tal. Failure would then be simulated on g;. We also
need to remove the conditional bindings made during
the execotion of the goal g4, ...9, by team T'p. Let
The1 ... % be the memory segments where gig1 ... gn
are executing in team Tp. We copy the trail stacks of
these segments and reinitialize (i.e. mark unbound) all
variables that appear in them. The copied trail stacks
can then be discarded. Onee removal of conditional
bindings is done the execution of the untried alterna-
tive of the stolen choice point is begun. The execution
of the goals g1 ... gy, is restarted and these can be ex-
ecuted by other processors which are members of the
team. Note that the copied stack segments occupy the
same memoty segments as the original stack segments.
The restarted goals can however be executed in any of
the memory segments.

An elaboraie deseription of the stack-copying ap-
proach, with techniques for supporting side-effects, var-
ions optimizations thal can be performed to improve
efficiency, and implementation details are left as future
work. Preliminary details can be found in [GHY1].

8. Conclusions & Comparison with Other Work

In this paper, we presented a high-level approach
capable of exploiting both independent and-parallelism
and or-parallelism in an efficient way. In order to find
all solutions to a conjunction of non-deterministic and-
parallel goals in our approach some goals are explic-
itly recomputed as in Prolog. This is unlike in other
and-or parallel systems where such poals are shared.
This allows our scheme to incorporate side-effects and
to support Prolog as the user language more easily and
simplifies other implementation issues.



In the context of this approach we also presented
two techniques for environment representafion in the
presence of independent and-parallelism which are ex-
tensicns of highly successful environment representa-
tion techniques for supporting oe-parallelism. The first
technigue, based on Binding Arcays [W84, WET], and
termed Paged Binding Array technigue, yields a sys-
termn which can be viewed as a direct combination of
the Aurcra [LW90] and &-Prolog [HGS0] systems. The
second technique based on stack copying [AK90] yields
a system which can be wiewed as a direct combina-
tion of the MUSE [AK90] and &-Frolog systems. If
an input program has only or-paralielism, then the gys-
tem based on Paged Binding Arrays (resp. Stack copy-
ing} will behave ezactly like Aurora (resp. Muse). II
a program has only independent and-parallelism the
two models will behave eractly like &-Prolog (exeept
that econditional bindings weould be alloeated in the
binding array in the sysiem based on Paged Binding
Arrays). Our approach can also support the exira-
logical features of Prolog (such as cuts and side-effects)
transparently [G581], something which doesn't appear
to be possible in other independent-and/or parallel
models [BEKBS, GJ89, RK8Y]. Control in the models
is quite simple, due to recomputation of independent
goals, Memory management is also refatively simpler.
We firmly believe that the approach, in its two ver-
sions of Paged Binding Array and stack copying can
be implemented very efficiently, and indeed their im-
plementation is scheduled to begin shortly. The im-
plementation techniques described in this paper can
be used for even those models that have dependent
and-parallelism, such as Prometheus [SK92], and ID-
IOM (with recomputation) [GY91]. They can also be
extended to implement the Extended Andorra Model
[Wao].
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