PROCEEDINGS OF THE INTERNATIONAL COMFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. € 1COT, 1992

759

An Automatic Translation Scheme from Prolog
to the Andorra Kernel Language *

Francisco Bueno
busno@fi.upm.es

Manuel Hermenegildo !
hermeffi.upm.es oF hermelcs utexas.edn

Facultad de Informética
Universidad Politécnica de Madrid {UPM]
28660-Boadilla del Monte, Madrid - Spain

Abstract

The Andorra family of languages (which includes the
Andorra Kernel Language ~AKL) 1= aimed, in principle,
at simultaneously supporting the programming styles of
Prolog and committed choice languages. On the other
hand, AKL requires a somewhat detailed specification
of control by the nser. This could be avoided by pro-
gramming in Prolog to run on AKL. However, Prolog
programs cannot be executed directly on AKL. This
is due to a number of factors, from more or less trivial
syntactic differences to more involved issues such as the
treatment of cut and making the exploitation of certain
types of parallelism possible. This paper provides ba-
sic guidelines for constructing an automatic compiler
of Prolog programs into AKL, which can bridge those
differences. In addition to supporting Prolog, our style
of translation achieves independent and-parallel execu-
tion where possible, which is relevant gince this type of
parallel execution preserves, through the translation,
the user-perceived “complexity” of the original Prolog

program,

1 Introduction

A desirable goal in logic programming language de-
sign is to support both the don't-know nondetermin-
istic, search-oriented programming style of Prolog and
the don’t-care indeterministic, concurrent communicat-
ing agents programming style of committed-choice lan-
guages. Furthermore, from an implementation point
of view it is interesting to be able to support the or-
and independent and-parallelism often exploited in the
former (eg. |Lus83, AK9D, Kald7, HGO0[} as well
as the dependent and-parallelisam exploited in the lat-
ter (e.g. |Cra%0, IMT87, HS86]). The Andorra fam-
ily of languages is aimed at simultanecusly supporting

*This work was funded in part by both ESPRIT project 2471
"PEPMA® and CICYT project 305.90.

tPlease direct correspondence ta Manuel Hermenegildo at the
sbove address,

these two programming paradigms and their associated
modes of parallel execution. The Andorra proposal in
[War| (called the “basic” andorra model, on which the
Andorra-I system [SCWY0) iz based) defined a frame-
work which allowed or-parallelism and also the and-
parallel execution of deterministic goals (deterministic
“streamn and-parallelism®), this new being called the
"Andorra Principle.”

An important idea behind the choice of contrel in
the basic Andorra model s to perform the least pos-
sible amount of computation while allowing the maxi-
mum amonnt of parallelism to be exploited. Ancther
and complementary way of achieving this goal which
has also been identified [HR89, HR90| is to also run in
parallel nondeterministic goals, but provided (or while)
they are independent (“independent and-parallelism® —
IAP). In order to also include this type of parallelism
the Eztended Andorra Model (EAM) [War90, HI%0| de-
fines an execution framework which allows [AF in addi-
tion to the forms of parallelism supported in the basic
Andorra model. The EAM defines roles which specify
a series of admissible steps of computation from each
possible given state. Several rules can be admissible
from a given state and this gives rise to both nondeter-
minism and indeterminism, and also to opportunibies
for parallel execution. One important issue within this
framework is thus that of control: i.e. which of the ad-
missible rules should be applied in order to achieve the
most efficient execution while attaining the maximum
parallelism.

Two obvious approaches to treating the above men-
tioned issme are to put control decisions in the hands
of the programmer or to try to do this antomatically
by compile-time and/or run-time analysis. The An-
dorra Kernel Language (AKL) [HJ90, JH91|, uses ex-
plicit control. In particular, AKL allows {dependent)
parallel execution of determinate subgoals, as stated
by the Andorra Principle, but it also allows the more
general forms of parallel execution of the EAM, albeit
controlled by the programmer. The specification of con-
trol is done, among other mechanisms, by positioning

T60

the goals and constraints before or after a guard oper-
ator, in a way that can be reminiscent of the labeling
of unification as input or output (ie. ask or tell con-
straints [Sar89]) in the GHC language [Ued87a]. These
operators divide body clauses into twa parts, the guard
and the actual body. Guards are executed in indepen-
dent environments and proceed unless they attempt
to perform output unification, while bodies wait un-
til guards are completely solved and goals in the body
promoted. Such geals are then executed concurrently
provided they are deterministic, in the spirit of the An-
dorra Principle. These properties give a means of con-
trol to the programmer which can be used to achieve
parallel execution of general goals.

The AKL is therefore quite a powerful language.
However, it does put quite a burden on the programmer
in requiring certain specification of conirol. In partic-
ular, Prolog programs cannet always be executed di-
rectly on the AKL. This is due to a number of factors,
from more or less trivial syntactic differences to more
mvalved issues such as the treatment of cut, labeling
of unification, and making the exploitation of certain
types of parallelism, most notably IAP, possible with-
out user involvement and preserving the programmer-
perceived complexity of the original program.

The objective of this paper is to investigate how the
above mentioned differences can be bridged, through
program analysis and transformation, It points out
the non-trivial preblems involved in perferming such
a translation, and then provides solutions for these
problems. Although desirable, cur aim at this point
is not to provide the best possible translation, which
would take advantage of AKL properties to achieve a
large reduction of search space, but rather to bridge
the gap between Prolog and AKL in a manner that no
increment in the search space is done, and also [AP
can be exploited [with the important result of achiev-
ing “stability” in the frame of AKL for these cases).
Building on partial translation approaches presented
in [JHS0, Her90] the paper presents a basic algorithm
for comstructing a translator from Prolog to AKL'.
An important feature of the translation approach pro-
posed herein is that it automatically detects and allows
the parallel execution of independent goals (as well of
course as or-parallelism, and the parallel execution of
deterministic goals even if they are dependent as per
the Andorra Principle). The execution of independent
goals in parallel has the very desirable properties of pre-
serving the program complexity perceived by the pro-
grammer |HR89]. Important requirements for such a
transiation are the compile-time detection of goal in-
dependence and input/output modes. This requires in
general a global amalysis of the program, perhaps us-

"Ueda |Ued8Tb| proposed automatic translation from Prolog
to a committed-choice language (GHC, in his case]. Howewver,
our aim and target language are quite different.

ing abstract interpretation. In the approach proposed
herein heavy nse will be made of our compile-time tools,
developed in the context of &-Prolog [HG90|. In partic-
ular, Prolog programs are first analyzed and annotated
as &-Prolog programs (thus making goal independence
explicit], and then they are translated into AKL.

In the following section, the AKL control model and
its Tules are briefly reviewed together with some ayn-
tactic conventions. Then transformations for Prolog
constructions for a basic translation are presemted in
section 3 and some rules for combining the AKL model
with our purpose of achisvement of independent paral-
lelism are shown in section 4. Section 5 will present the
analysis tools and why they are needed in the trans-
lation process. In section 6 some results are shown for
the execution of a number of benchmarks automatically
translated, and section 7 presents some conclusions.

2 The Andorra Kernel Lan-

guage Revisited

In this section we present a briel overview of the AKIL
model of execution, in order to make the paper self-
contained. The purpose is to, based on an understand-
ing of this, extract the correct rules for a tranalation of
Prolog which achieves the desired results. AKL and
its model of execution have been fully described in
|THS1, HI20].

AKL is a language with deep guards. Thus, clauses
are divided into twe parts: the guard and the body, sep-
arated by a guard operator. Guard operators are: wast
(), cut {!), and commit (|). The following syntactical
restrictions apply:

s Each clause is expected to have one and only one
guard operator;

= All clauses in the definition of a predicate have to
be guarded by the same guard operatar. So, if any
of the clauses is not guarded, the guard operator
of its companions is assumed and positioned just
after the clanse neck.

* A wait operator is assumed, and in the above men-
tioned position, where no other operator can be
assumed using the above mentioned rules.

Guards are regarded as part of clanse selection. This
means that a clause body is not entered unless head
unification sncceeds and its guard is completely solved.
Then, execution proceeds by “expansion™ of the present
configuration by application of a rule of the computa-
tion model. The rules in the AKL model allow rewriting
of configurations (states) leading to valid configurations
from valid ones. They are fully described in [JTH91|, s0
we will simply enumerate them, providing very infor-
mally the concept behind the rule, rather than a precise
definition:

1. Local forking: unfolds an atomic goal into a choice
of all the alternatives in its definition (but without
creating “copies” ? yet of continuation goals).

2. Nondeterminate promotion: promotes one guarded
goal with solved guard in a choice of several of them
(i.e. copies the goal to the parent continuation, ap-
plying its constraint /substitution to it, and creates
a “copy” of the continuation environment).

3. Determinate promofion: special case of the above
when there iz a single guarded goal in a choice if
its guard is solved (no copying of the continuation
environment is necessary).

4. Fasdure and synchromization rules: remove or fail
configurations in the usual way.

5. Pruning reles: handle the effects of prun.ing guard
operators,

6. Distrthution and bagof rules: do the distribution of
guards and the bagof operation.

These rules basically represent the allowable transi-
tions of the EAM. The last three rules are less relevant
for our purpeses. In addition to these rules there are
three basic control restrictions in the general computa-
tion model (meta-rules) which control the application
of the above rules and which are highly relevant to our
mdependent style translation:

= Pruning in AKL has to be guiet, that is, a solution
for the guard of a cut or commit guarded clause
may not further restrict {or constrain) variables
outside its own confignration.

» Goals in the guard of a clause are completely and
locally executed. This means that execution of
guards is simultaneous but independent of the par-
ent environment.

» Nondeterminate promotion iz only admissible
within a stable subgoal of a configuration. A goal is
stable if no rule iz applicable to any subgoal, and
no possible changes in its environment will lead to
a situation in which & rule is B.Pp.]icablﬂ in the goal.

As we shall soon see these three restrictions force the
conditions nnder which translation has to be done if we
want to achieve parallelism and correct pruning in the
translated clavses. But firet, we will illustrate the AKL
execution model with a simple example:

partition([],_.Left, Right):- [,
Laft = [],
Right = [].

2 Although we refer to “copying” throughout the paper, park
of the continuation goals could in principle be shared [War0].

761

partition([E|R] ,C,Loft Right) -
E<¢ |,
Laft = [ElLefti],
partition(R,C,Leftl Bight).
partition ([E|R] ,C.Left Right):-
E» g, |,
Right = [ElIRighti],
partition(R,C, Left Rightl]).

For a query such as partition{[2.1],3,I.D) the
initial configuration wonld be a choice-point with the
three clanses for the predicate. Head unification wounld
fail the first alternative {[J=[2,11), but the zecond one
would succeed ([E[R1=[2,1]1,0=3,E<C, including the
gqa.rd], thus pruning the rest of the alternatives.

The single remaining alternative would then be pro-
moted by determinate promotion, its bindings pub-
lished, and execution would proceed with goals in its
body. Note that this could not be done if, for example,
the goal Left=[E|Left1] were included in the guard,
as it would add constraints to the variable I [I=Left)
in the external configuration, and thus pruning would
have been *noisy.”

On the other hand, if the clanses had no (explicit)
guard operator, & wait aperator would be assumed. In
this case, both the second and third alternatives would
succeed and only nondeterminate promotion would be
applicable. If the configuration is stable, and assum-
ing that the rightmost alternative is selected for pro-
motion, the goal E==f [Le. 2>=3} would be execnted
{and failed) only after promotion. After failure of this
branch, determinate promotion of the remaining one
would be applicable, and execution would proceed as
befare.

3 Translating Prolog Construc-
tions

Having the aforementioned rules in rni.ud, we now dis-
cuss transformation rules fer translating basic Prolog
comstructions, disregarding any possible explaitation of
IAP. Even this straightforward step is nontrivial, as we
shall soon see. This is due mainly to the semantics of
cut in both Prolog and AKL, cut being a gnard oper-
ator in the latter. With the restrictiona required for
guard operators to achieve both syntactic and semantic
correctness in AKL, we find problems in the following
constructions:

= syntactical restrictions:
- definitions of predicates in which a pruning
clause appears,
- clauses in which more than one cut appears;
& semantic restrictions:
- if-then-elses, where the cut has a “local” pru-
ning effect,
- pruming clauses where the cut is regarded as

762

noisy (i.e. attemnpts to further restrict varia-
bles cutside its scope),

- side-effectz and meta-logical predicates, which
should be sequentialized,

The transformations required to deal with these con-
structions are proposed in the following subsections.
This is done mainly through examples. The aim is thus
not to provide precise and formal definitions of program
transformaticns but rather to provide the intuition be-
hind the process of translation. In subsequent sections
we will discuss other issues invelved in the process of
translation, such as achievement of TAP, problems in
this, and its relation with the AKL stability conditions.

3.1 Direct translation

First, as all AKL clauses in a definition are forced to
have the same guard operator, we have to ensure this
is achieved. For example:

Example 1 Same guard operator in a definition

piEYd:= qlXd, =(Y).

PUE. Y- test(X), 1,
ootput{¥).

plI.T)c- 8(X, 7).

PLLY):= q(X), £(Y).
pX,)= pelX, 1)

pelX, Y := cat{X), 1,
cutput(T).
pell,f):- (X, Y},

Note that clauses before the pruning one will have an
(assumed) wait operator and clauses after that one (and
that one itself) will have an (assumed} cut operator.
All of them but the pruning cne have an empty guard.
Note that, had the program not been rewritten, the
rules for assuming guard operators would have put a
cut operator in the first clanse, which is obviously not
the correct translation.

Note alse, that only one guard operator is to be al-
lowed in a clause. Therefore repeated cuts in the same
body [which are otherwise strongly discouraged as a
matter of style and declarativeness) have to be “folded”
out nsing the technigue sketched below: '

Example 2 Single puard sperator in a clanse
pll.Th:- test(X), !,

tast (Y}, 1,
accepti{l, T).

pEX, YD - tamtlX), 1,
foofX,Y}.

fooll,¥):= tast{T), !,
accapt (I,7).

Second, the AKL cut operator is regarded as a guard
operater, and, furthermore, it has to be quiet {which is
not the case in some Prolog constructions, which can-
not be easily translated to AKL). One of them is local
pruning, Le. if-then-else. Indeed, an if-then-else can be
viewed as a disjunetion containing a cut whose scope is
limited to the disjunction itself, rather than the clause
in which it appears. Thus the following preprocessing
can be done;

Example 3 Local pruning of if-then-else
phE):- (cond(X) =3 p(X¥:- foolX,.T.2), si¥.2).

gl{x. 1)
i £(X,2) foolX, ¥, J:- cond(X), |,
), sl¥,2). gk, 1),

fosl(X, _,Z):- (L, 2).

Last but not least, we have to ensure the quietness
of all AKL cuts. A cut is quiet if it does not attempt
to bind variables which are seen from omtside its own
scope, that is, the clause where they appear. Then,
if this is not the case, we have to make that binding
explicit in the form of an equality constraint (a unifi-
cation) and place it after the cut itself, i.e. outside the
grarded part of the clause:

Example 4 Making a cut quiet

plX,Th:= weat{X), plE. Y= test(X),
outpat(¥), 1. oatput (Y1), 1,
pLI.Y):- a(I 1), T1=Y.
peE. Y- a(X,T).

Note that knowledge of input/output modes of vari-
ables is required for performing this transformation,
and that the transformation may not always be safe®.
This will be discussed in the following subsection.

3.2 Noisiness of cut

The main difference between cut in Prolog and eut in
AKL is that cut is gquietin AKL*, “Quiet” in the context
of a cut means that the solution of the cut’s guard is
quiet, that is, it does not add constraints to variablea
outside the guarded goals themselves, other than those
which already appear in its enviromment.

Indeed, a transformation such as the one proposed
in example {3.1).4 can make a noisy cut quiet. What
it does is to delay output unification until the gunard is
promoted by making it explicit in the body part of the
clause. We regard a variable to be oulput in a query
if execution for this query will further constrain it; a
variable will be regarded as snput if execution will de-
pend on its state of instantiation (or constraint). In
other words, a variable is an output variable in a literal
if it is farther instantiated by the query this literal rep-
resents, it is an input variable if it makes a difference
for the execution of the literal whether the variable is
instantiated or not®. Note that a given variable can be
both input and output, ar none of them.

IMote also that this transformation, when safe, may be of
advantage as well in standard Prolog compilers in order to aveid
trailing overhead.

*MNevertheless, a noisy cut has alsc been implemented in AKL,
which we wifl discuss later.

*These definitions are similar to those independently praposed
in [SCWY91], (and alse in the spirit of those of Gregory [Gre8S]),
which describes translation techniques from Prolog to Anderra-
I, an implementation of the Basic Andorrs Model. Although the
techniques used in such a tramslation have same relationahip with
those invelved in Prolog-AKL tranalation, the latter requires in
prackies quite different techniques dus to AKL being based en the

The objective of a transformation such az the one
proposed is to rename apart all output variables in the
head of a pruning clause, and then bind the new vari-
ables to the original ones in the body of the clause,
leaving input variables untouched. In general, it is un-
wise to rename apart input variables since, from their
own definition, this renaming would make the variable
appear uninstantiated and potentially result in growth
in the search space of the goals invelved. This would
not meet our objective of preserving the complexity of
the program (and perhaps not even that of preserving
its semantice). However, since a variable can be both
mput and output a conflict between renaming and not-
renaming requirements appears in such cases. For these
cases in which a variable cannot be *moved” after the
cut guard operator a real nolsy cut iz needed. This
operator exists in AKL (1), together with a sequential-
ization operator, the sequential conjunction (&). It is
necessary that every noisy cut be sequentialized, this
to ensure that pruning would occur in the same con-
text that it weuld in Prelog. Thus, every literal call
to the pruning predicate has to be sequentialized to jts
right, and every other call to a predicate sequentialized
has in turn to be also sequentialized. For this reascn
noisy cut is mot very efficient, and thus the translation
tries to minimize its use.

At this point we can summarize the action that
should be taken in every case to transform the prumn-
ing clauses of a Prolog program, based on the knowl-
edge of inputfoutput variables, that is, whether they
are “tested” or not and further instantiated or not.
Here we use “noisy” to mean the transformation that
defauits to the AKL noisy cut, and "move® to refer to
the renaming of variables like in example [3.1) 4.

[Further I.nstaiimd? [Teated™ | Acticn ||
yes

ves noiEY

no move

unknown user

no ¥ none
unknown Ve user
no move

unknown user

Note that the knowledge of input/output modes in
the Prolog program that is assumed in this transforma-
tion requires in general 2 global analysis of the program
and can only be approximated, the translater having
to make conservative approximations or warn the user
(“user” cases above) when insufficient information is
available. Note also that the “user” cases can be re-
placed by *noisy” cases if a non-interactive transforma-
ticn is preferred. This subject will be discussed further
in section 5, as well as the type of analysis required,

Ertended Andorra Model [thus having to deal with the possibility
of parallelism among non-deterministic goals and the stability
rules) and the rather diffecent way in which the control of the
execution model (explieit in AKL and implicit in Andorra-I) is
done in each language.

763

3.3 Synchronization of side-effects

In general, the purpose of side-effect synchronization is
to prevent a side effect from being executed before other
preceding (in the sense of the sequential operational se-
mantics) side-effects or goals, in the cases when such
adherence to the sequential order is desired. In our
context, if side-effects are allowed within paraile]l AKL
code and a behaviour of the program identical to that
observable on a zequential Prolog implementation is to
be preserved, then some type of synchronization code
should be added to the program. In general, in order
to preserve the sequential abservable behaviour, side-
effects can only be executed when every subgoal to their
left has been executed, ie. when they are “leftmost®
in the sxecution tree. However, 2 distinction can be
made between soft and hard side-effects (a side-effect is
regarded to be kard if it could affect subsequent execu-
tion), see [DeGa7| and [MHS9|. This distinction allows
more parallelism. It is also convenient in this context to
distingnish between side-effect built-ins and side-effect
procedures, i.e. those procedures that have side-effects
in their clanses or call other side-effect procedures.

To achieve side-effect synchronisation, wvarious
compile-time methods are possible:

e To use a chain of variables to pass a *leftmost to-
ken”, taking advantage of the suspension proper-
ties of guards to suspend exscution until arrival of
the token [SCWYO1].

e To use chains of variables as semaphores with some
compact primitives that test their value. In [MH89|
a golution was proposed along such lines, and its
implementation discussed.

* Touse a sequentialization built-in to make the side-
effect and the code surrounding it wait; this primi.
tive would be in our case the sequentialization op-
erator “&".

In the first solution, a pair of arguments is added
to the heads of relevant predicates for synchronization.
Side-effects are encapsulated in clanses with a wait (:)
guard containing an “ask™ unification of the first ar-
gument with some known value (token), to be passed
by the precedihig side-effect upon its completion. Upon
successful execution of the current side-effect the sec-
ond argument is bound [“tell”) to the known value and
the token thus passed along. This quite elegant solution
can be optimized in several cases.

The second solution can be viewed as an efficient
implementation of the first one, which allows further
optimization |MH&9). The logical variables which are
passed to procedures in the extra arguments behave as
semaphores, and synchronization primitives operate on
the semaphore valoes,

764

In the third solution, every soft side-effect is syn-
chronized to its left with the sequentizlization Opera-
tor “&*, and every hard one both to its left and right.
This sequentialization is propagated upwards to the
level needed to preserve correctness. This introduces
s0me unnecessary restrictions to the parallelism avail-
able. However, if side-effects appear close to the top of
the execution tree, this may be quite a good solution.

4 Stability and Achievement of
Independent And-Parallelism

In order to achieve more parallelism than that available
by the translations described so far one might think of
translating Prolog into AKL so that every subgoal conld
run in parallel nnrestricted. However, this can be very
inefficient and would viclate the premise of Preserving
the results and complexity of the computation expected
by the user. On the other hand, and as mentioned
before, parallel execution of independent goals, even if
they are nondeterministic, is an efficient and desirable
form of parallelism and its addition motivated the de-
velopment of the EAM, on which the AKL is based,
Nevertheless, in AKL goals known to be independent
have to be explicitly rewritten in order to make sure
that they will be run in parallel. This is becanse of the
rules that govern the (nondeterminate) promotion, that
is, the stability condition on nondeterminate promo-
tion, which will prevent these goals for being promoted
if they try to bind external variables for cutput. There-
fore, one important issue is the transformation that is
needed to avoid suspension of independent goals. This
is presented in section 4.1. Also, independence detec-
tion can and will be used to reduce stability checking,
a potentially expensive operation.

Clearly, an important issue in this context is how
stability /goal independence is detected. In the frame-
work of the &-Prolog system we have already developed
technology and the associated tools for determining in-
dependence conditions for goals and partially evaluat-
ing many of those conditions at compile-time through
program analysis. Conceptual models for independent
and-parallel execution have been presented and their
correctness and efficiency proved |HR89); among all
we focus on the and-parallelism models proposed in
[HR90, HR89]. For different but related models the
reader is referred to the references in those papers. As
mentioned before, in the translation process we pro-
pose to use algorithms and tools already developed in
the context of &-Prolog. In this context, a series of al-
gorithms used in the &-Prolog compiler for annotating
Pralog programs have been implemented and described
in [MH90]. These algorithms select goals for paral-
lel execution and, using the sufficient rules propesed
in |HR89|, generate the conditions under which inde-

pendence is achieved and therefore independent paral-
lel execution ensured. The result is a transformation of
a given Prolog clause into an &-Prolog clanse contain-
ing parallel expressions which achieve such independent
and-parallelism.

The output of this analysis is made available for
the translation process in the form of an annotated
&-Prolog program [HG90|, ie. the program itself ex-
presses which goals are independent and under which
conditions, These conditions are expressed in the form
of if-then-alzes which have the intuitive meaning of *if
the conditions hold then run in parailel otherwise se-
quentially.” The parallelism itself is made explicit by
using the “&" operator to demote parallel conjunction
instead of the standard sequential conjunction dencted
by "%, Some new issues are involved in the interaction
between the conditions of these parallel expressions and
other goals run in paralle] cemcurrently, as it would be,
the case in AKL. These will be presented in section 4.2,

4.1 The transformation proposed

At this point the &-Prolog conditionals are regarded as
input to the translator. As such, if-then-elses are pre-
processed in the form mentioned in the previous sec-
tions and the remaining sue is the treatment of the
parallelization operator “&". In implementing this op-
erator we will use the AKL property that allows loeal
and unrestricted execution of guards, i.e., goals that are
encapsulated in a guard can run in parallel with goals
in other guards even if they are nondeterministic, The
transformation that takes advantage of this will:

» put goals known to be independent in (different)
guards, and

* extract output arguments from the guards, binding
them in the body part of the clauzes,

the last step being required so that the execution of
these goals is not suspended because of their attempt-
ing to perform output unification. With the guard en-
capsulation we ensure that those predicates will be exe-
cuted simultaneously and independently. The following
example illustrates the transformation mvolved:

Example 5 Encapsulation of independent subgoals

pl):- (ground{X),
indep(¥, 2} -»
qix.¥) & riX, B

plX):- pp(X.T,2), 8(Y,Z).

pp(X, Y, 20~ groumd(X),

: qfx, 1), «(1,2) indep(¥,2), 1,
). qp{X, Y},
s(¥.2}. rpll,2).

pROE.T.2):= qfK,¥), r(L,Z).
aplX,¥):- q(X, Vi), :, T=Ti.

plX,2):- ik, 21}, :, Z=Z1.

Nobe that in AKL these operators have just the opposite
meaaningl.

When the condition is met, both subgoals will be
tried by the local fork rule, then both guards will be
completely and locally solved, and then, as goals are
independent on X (X is ground) and no output is pro-
duced in the guard, the nondeterminate promotion rule
is always applicable and all solutions will be tried in
the standard cartesian product way. Thus, paralle] ex-
ecution is ensured for those goals that are identified as
independent, '

On the other hand, when the condition fails (the goals
being dependent) they appear together in a body with
an empty guard. This means that the guard will be im-
mediately solved, the clause body promoted, and sub-
goals tried simultaneonsly. Then the standard stability
and promotion rules will apply.

It should be noted that, as in the case of cut,
and in addition to detecting goal independence, to be
able to perform this transformation it is necessary to
have inferred mode information regarding the predicate
clanses. In section 5 technignes used in order to infer
this information will be reviewed.

4.2 Cohabitation of dependent and
independent and-parallelism and
stability checks

When evaluating the conditions of paralle]l expressions
at run-time within a parallel framework such as that
of the AKL, they may not evaluate to the same value
than during a Prolog execution. This is what we have
termed in another context the C'GE-condition problem
[GSCYH91|", and may result in a loss (or increase) of
parallelism, To deal with these issues, different levels
of resirictions can be placed on the translation:

* Dizallow any parallel execution except for those
goals found to be independent.

* Allow parallel execution enly for goals not binding
variables that appear in the conditions or CGE.

» Allow parallel execution outside a CGE but se-
quentialize before and after the conditional paralle]
EXpressions.

» Allow unrestricted parallel execution unrestricted,
i.e. no sequentialization is to be done.

The first solution can be implemented by translating
every conjunction as a sequentis]l AKL conjunction, ex-
cept those joining independent goals. This will lead to

"Note that same other problems mentioned in |GSCYHO1| re-
gurding the interaction between independent and dependent and-
parallelism (in particular, the deferministic goal problem) ars less of
an issue in the proposed translation to AKL because independent
goala execute in their cwn environments, thanks to the dynamie
scoping of AKL guards. In any case, the AKL implemantation is
assumed to cope with all types of goal activations pessible within
the BEAM.

765

a type of execution where only goala known to be inde-
pendent are run in paralle]l and which directly resem-
bles that of &-Prolog [HG90]. The same search space
as &-Prolog will be explored. Nondeterminate {and de-
terminate) promotion will then be restricted to only
independent and sequential goals. Thus, one very im-
portant advantage of this translation is that no checks
on stabilily ever need Lo be done, as stability is ensured
for sequential and independent execution. This is an
important issue sinee stability checking is a potentially
expensive operation {and very closely related to inde-
pendence checking). Thus, in an ideal AKL implemen-
tation code translated as above, ie. free of stability
checks, should run with comparable efficiency to that
of &-Prolog. On the other hand, the transformation
loses determinate dependent and-parallelism and its de-
sirable effect of co-routining, which counld be useful in
reducing search space [SCW‘!"&:U?.

The second solution attempts to preserve the environ-
ment in which the CGE evalnates while allowing coroun-
tining of goals that dom't affect CGE conditions and
goals. Althongh interesting, this appears quite diffienlt
to implement in practice as it requires very sophisti-
cated compile-time analysis and will probably incur in
ran-time cverheads for checking of the conditions placed
in the program.

The third solution can be viewed as a relaxation of
the first one to achieve some coroutining, or as an effi-
cient [and feasible] way of partially implementing the
second one. Goals before and after are allowed to exe-
cute in parallel using the Andorra Principle, but they
are sequentialized just before and after a CGE. In this
way CGEs evaluate in the same context as in Prolog
and the same level of independent and-parallalism is
achieved. This translation has the good characteristics
regarding search space of the previous one. In addi-
tion, some reduction of search space due to coroutining
will be achieved. Hnwev!r,, shabﬂit}' c]led!.i.‘hg, a.]l.huugh
reduced, cannot in general be eliminated altogether.

The fourth sclution will allow every goal to run in
parallel. The full EAM and AKL operational seman-
tics (including stability) has to be preserved. The
execution of goals which are unconditionally indepen-
dent or depend only on groundness checks (conditionals
in the parallel expressions are compeosed of ground/1
and indep/2 checks, as in the example of section 4.1)
will be the same as in &-Prolog as eager execution
of other goals cannot affect ground or empty checks
[GECYH91). However, independence checks may fail
where they wouldn't in Prolog (therefore losing this
parallelizm}), but also succeed where they would fail in
Prolog (therefore gaining this parallelism). Aleo, the
number of parallel steps will always be the same or less
a3 in Prolog (although different than in &-Proleg). This
solution (as well as the first and second ones) appear as
quite reasonable compromises and offer different trade-

Tab

offs. The current translation approach uses this fourth
option, but the others should also be explored.

5 Inferring modes - Abstract In-
terpretation

We have mentioned in previous sections the need for
inferring modes of clause variables (i.e. whether they
are input or output variables) in Prolog programs. The
main reason for this need is that we have ta know which
are the output variables in a clanse in order te rename
them apart and place corresponding bindings for them
in the body part of the clause in both

* the pruning clanses (as shown in section 3.2), and

» the remade clauses for parallel execution (as shown
in section 4.1 in example 5).

Much work has been dene in global analysis of logic
programs fo infer ron-time properties, and, in particu-
lar, modes, mostly using the technique of abstract in-
terpretation [CCT7]. A more sophisticated sort of vari-
able binding analysis (comprising groundness, aliasing,
and freeness information) is instrumental in the pro-
cess of inferring the independence conditions far lit-
erals in a body. While not strictly needed, such an
analysis is extremely useful as it allows the reduc-
tion of the number of conditions and therefore the im-
provement of performance by reducing run-time check-
ing [WHD&8, MHO1b| (these papers provide references
to the important body of other work in this area).
The standard global analyzer in the &-Prolog compiler,
described in [MHS1b|, infers groundness and variable
sharing/aliasing. Since variable freeness is also needed
for the AKL translator, this analyszer has been extended
to use the algorithm described in [MH91a| and infer
variable freeness information.

It turns out that freeness information is very useful
for many reasons [MH91a]. In the translation process
it is essential for determining input/output arguments.
This we can show by simply expressing the information
required for the table in section 3.2 in terms of infor-
mation directly available from abstract interpretation.
In order te do this, recall, as defined in section 3.2, that
a program variable (or an argument) is output in a lit-
eral if the call to the corresponding predicate further
instantiates this variable, and it is input in a literal if
its state of instantiation is going to be checked in the
execution of the call for that literal. With these defini-
tions in mind the following table shows how the input
o output character of variables can be decided in a
good number of cases based on the information directly
available from global analysis:

From the table we identify cases in which it is elear
that the variable is known not te be an input variable,
without any further analysis (i.e. when the variable is

[Before T After | Oubpus? | InputT [

ground | {ground) na o
free free no ¥
sEmd yes no

ground yos no

semmi) FELTH no -
Aerdg yes T

ground yes ?

free). Furthermore, we realize that if a variable is
knewn not to be an cutput variable then it doesn’t need
to be renamed apart and it is not necessary to deter-
mine whether it is an input variable or not (**” cases).
Reducing the cases where knowing if a variable is input
is quite useful since inferring whether a variable hind-
ing is needed or not requires additional analysis (“7"
cases). This analysis seeks to decide if a variable is
crucial in clanse selection or checking. Note that the
analysis has to be extended for every child procedure of
the one being analyzed.

Finally, we would like to also mention that combining
mode/type analysis [such as the one used in [SCWYS1]
or [Jan80|) with the accurate tracking of sharing and
freeness information of |[MH91a] could be very helpful
in this process {improving the ability to more accurately
resclve different degrees of partial instantiation such as
the serni; /sermniy cases in the table above) and is part
of our plans for future work.

6 Performance Timings

This section presents some results on the timing of a
number of benchmarks in a prototype AKL system.
The AKL versions of the programs ohtained through
automatic compile-time translation are compared with
versions specifically written for AKL. Timinge for the
original Prolog versions are also included for compar-
ison and also with the intention of identifying trans-
lation paradigms that help efficiency. With this aim
in mind, the set of benchmarks has been chosen so
that performance results are obtained for several differ-
ent programming paradigms, and a number of different
translation issues are takem into account. The results
show that translation suffices in most cases, provided
state-of-art analysis technology is nsed.

Timings® have been done for the Prolog program
[compiled and interpreted), the AKL program obtained
from automatic translation and the “hand-written-
AKL" version. Execution until the first sclution is ob-
tained has been measured. Timings are an average of
ten consecutive executions deme after a first one {nut
timed) and are given in in milisseconds, rounded up to
tens.

381CStus 1.8 and o sequential AKL 0.0 prototype system,
made avallable by SICE, have been used.

We briefly introduce the programming paradigms
represented by each of the benchmarks used. gsort has
been translated in two ways, one that “folds” pruning
definitions, and another one that is able to “extend™ the
cut to all clanses; the latter showing an advantage w.r.t.
the former. sort illustrates the advantage of being able
to detect that some cuts are not noisy {as opposed to
defaulting to noisy cut in every case). In fact, in this
case the transiated version is slightly faster than the
hand-coded one.

For money we have used three different versions. In
the first version of the program the problem is solved
through extensive backtracking. In the second one the
ordering of goals is improved at the Prolog level. In
the third version the Prolog builtins are translated into
AKL specific ones. As in zebra the difference with the
“hand-written” version is in the use of the arithmetic
predicates: addition is programmed in the hand-coded
AKL version as illustrated by the sum/§ predicate,

sum(X.¥,Z):- plua(L,V,203, |. 2 = Z0.

sam(X,¥,Z):- mdnue(Z,¥,%00, |, I = 10.
sum(X, ¥, Z) i = minua(Z, X700, I, ¥ = ¥O.

in which the coroutining effect provides a “constraint
solving” behaviour,

Secaniner is a program where AKL can take a
large advantage from concurrent execution and the
“determinate-first” principle, even without explicit con-
trol, and this is shown in the good performance of the
translated program. On the other hand, in triangle
and knights heavy use of special AKL features has been
made, through hand-optimization.

Prolog rolog ARL AKL
| compiled | interpret. | translated | "hand"
(gsartl || &0 | z@0 | T80 | 290 |
geark 30 280 250 250
sart 0 50 B70 510
moneyl || 66,690 B20,190 | | 294,870 580
|| money 47,790 591,150 294,070 530
moneyb 47,790 301,190 137,520 530
zebra 8,550 43,740 10,380 1,580
scanner || 1,407,450 | 6,688,000 54D 120 ||
triangle 140 7,260 185,950 | 11,020 ||
knighta K] BGG,049 | 1,165,020 FE]
_ | e |
Frolag Frolog AKL
compiled | inkerpret, | translat. | translat.
[encap.) {direct)
qaort 30 260 230 200 |
matrix 50 400 610 %0 ||
hanal 1] 50 70 310 ||
query FIT) 270 100 ||
[Cmaps T (2] 140 .00 |

In matriz, henoi, query, and maps (and also gsort),
encapsulation of different programming paradigms has
been tried. The results show that encapsulating inde-
pendent goals which are deterministic provides no im-
provement, but performance improves when they are
nondeterministic. Performance also improves in the

a7

case of goals which act in producer/consumer fashion
{maps). These results suggest that AKL control simi-
lar to that of hand-coded versions can be imposed au-
tomatically for paradigms other than independence of
goals.

The automatic transformation achieves reasonably
good results when compared to code specifically writ~
ten for AKL, provided one takes into account that the
starting point &5 a Prolog program with little specifi-
cation of conbrol, and it iz being compared to an AKL
program where control has been greatly optimized by
the programmer. The examples where the largest dif-
feremces show are those in which the control imposed
by hand in the AKL program changes the complexity
of the algarithm, generally through smart use of sus-
pension (as in the sum/§ predicate), something that
the transformation can not yet do antomatically. How-
aver, the resulis also show that it would obviously be
desirable to extend the translation algorithms towards
implementing some of the smart forms of control that
can be provided by an AKL programmer.

When comparing with Prolog, both the interpreted
and compiled Prolog figures should be considered, as
the AKL system prototype used is somehow something
in between ‘a compiler and an interpreter. The re-
sults show that a variable performance improvement
can be obtained whenever determinism is significant in
the problem (this is quite spectacular in scanner). Also,
the encapsulation transformation can help efficiency in
some cases. In any case the figures are of course pre-
lirninary and a more exhaustive study should clearly be
done after improvements in the translation prototype
znd the AKL system, and also when an actual paralle]
AKL system is available.

7 Conclusions

We have presented an algerithm for translating Pro-
log into AKL which in addition achieves independent
and-paralle] execntion of appropriate goals. We have
pointed out a series of non-trivial problems associated
with such a translation and proposed solutions for them
based on existing global analysis technology. We have
shown how to take advantage both of the AKL exe-
cution model (the Extended Andorra Model} and the
independence analysiz performed in the comtext of &-
Prolog to preduce a translation that allows the exploita-
tion of all the forms of parallelism present in AKL
(dependent-and, independent-and, and er-parallelism)
while offering the user the familiar Prolog (or, in gen-
eral, logic with minimal control} view [and debugging
easel], Most importantly, this is done while preserving
or improving the user-perceived complexity of the pro-
gram. The transformation is relevant even in the case
of a sequential AKL implementation since the reduc-
tion of stability checking which follows from knowledge

768

of goal independence can already be of significant ad-
vantage, given the expected cost of stability tests. In
the case of a parallel AKL implementation the transfor-
mation amounts to a form of automatic parallelization
and search space reducing implementation for Prolog
programs which exploits the EAM, and imposes 2 par-
ticular form of control on it.

A sequential AKL implementation is already being
developed at SICS with a first prototype already run-
ning. The translator itzelf is also being implemented
and a preliminary version is already integrated with
the &-Prolog system compilation tools. The combina-
tion has been tested and some sample programs exe-
cuted successfully on AKL, and compared with their
specific AKL counterparts. Further work is expected
in the translator as better translation algerithms are
developed to take more specific advantage of the AKL
control facilities, in particular coroutining, in more ac-
curately detecting input and output variables, in adapt-
ing the algorithms to possible evolutions of the AKL, in
evaluating the performance of the translated programs
with respect to Prolog, and in the formal proof of the
correctness of the transformation and its preservation
of user expected computation size, the latter point be-
ing supported already in part by the basic resulis on
independent and-parallelism. '

Acknowledgements

The anthors would like to thank Seif Haridi, Sverker
Jansson, Johan Montelius, and Mats Carlsson of SICS,
and David H.D. Warren, Vitor Santos Costa, and Gopal
Gupta of U. of Bristol for many useful discussions. Alse
thanks to SICS for making the prototype AKL imple-
mentation available for experimentation. This work
has been performed in the context of the ESPRIT
“PEPMA”® project and has greatly benefited from dis-
cussions with other members of the partner institutions,
most significantly from SICS, U. of Bristol, and U.P.
Madrid.

References

K.AM. Ali and R. Karlsson. The Muse
Or-FParallel Prolog Model and its Perfor-
mance, In 1960 North American Confer-
ence on Logic Programming. MIT Press,
October 1990,

[AKa0|

[cCTT) P. Cousot and R. Cousct. Abstract In-
terpretation: A Unified Lattice Model for
Static Analysis of Programs by Construc-
tion or Approximation of Fixpoints. In
Conf. Rec. fth Aem Symp. on Prin. of

[Cras0]

!De GaT7]

|Gre8s)

|GSCYHY1]

[Her90]

[HGS0]

[HJ20]

|HRa9)]

[HR90|

Programmung Languages, pages 238-252,
1877.

‘Jim Crammeond. Scheduling and Variable

Assignment in the Parallel Parlog Imple-
mentation. In 1990 North American Con-
ference an Logic Programming. MIT Press,
1590.

D. DeGroot. Restricted AND-Parallelism
and Side-Effects. In Internafional Sympo-
sivm on Logic Programmaing, pages 80-89.
San Franecisco, JEEE Computer Society,
Angust 1987,

8. Gregory. Design, Application and Im-
plementation of a Parallel Logic Program-
ming Language. PhD) thesis, Imperial Col-
lege of Science and Technology, London,
England, 1985.

G. Gupta, V. Santos-Costa, R. Yang, and
M. Hermenegildo, IDIOM: A Model In-
tergrating Dependent-, Independent-, and
Or-paralleliem. Technical report, Univer-
gity of Bristol, March 1961.

M. Hermenegilde. Compile-time Analysis
Requirements for the Extended Andorra
Model. In Swverker Jansson, editor, Parallel
Logic Programming Workshep, Box 1263,
5-163 13 Spanga, SWEDEN, June 1980,
5ICS.

M. Hermenegildo and K. Greene. &-Prolog
and its Performance: Exploiting Indepen-
dent And-Parallelism. In 1990 Interna-
tional Conference on Logic Programming,
pages 255-268. MIT Press, June 1990.

8. Haridi and 5. Janson. Kernel Andorra
Prolog and its Computation Model. In
Proceedings of the Seventhk Internafional
Conference on Logic Programming. MIT
Press, June 1990,

M. Hermenegildo and F. Rossi. On the
Correctness and Efficiency of Independent
And-Parallelism in Logic Programs. Im
1959 North American Conference on Logie
Programming, pages 36%-390. MIT Press,
October 1989,

M. Hermenegildo and F. Rossi. Non-3trict
Independent And-Parallelism. In 1990 In-

ternational Conference on Logic Program-
ming, pages 237-252. MIT Press, June
1980,

[HS86]

[IMT&7|

[Jan80]

[JH90]

[JH91]

[Kala7|

|Lus8a}

[MES9]

[MHg0)

[MHo91a]

A. Houri and E. Shapiro, A sequential ab-
stract machine for fat concurrent prolog.
Technical Report CS86-20, Dept. of Com-
puter Science, The Weizmann Institute of
Science, Rehovat T6100, Israel, Jnuly 1986,

M. Ichiyoshi, T. Miyazaki, and K. Taki. A
Distributed Implementation of Flat GHC
on the Multi-PS1. In Fourth International
Conference on Logic Programming, pages
257-275. University of Melbourne, MIT
Preas, May 1987.

G. Janssens. Deriving Run-time Proper-
ties of Logic Programs by means of Ab-
stract Interpretation. PhD thesis, Dept. of
Computer Science, Katholiske Universiteit
Leuven, Belginm, March 1990,

8. Jansen amd S. Haridi. Programming
Paradigms of the Andorra Kernel Lan-
guage. Technical Report PEPMA Project,
BICS, Box 1263, S-164 28 KISTA, Sweden,
November 1990. Forthcoming.

Sverker Janson and Seif Haridi. Program-
ming Paradigms of the Andorra Kernel
Language. In 1991 Infernational Logic
Programming Symposium, pages 167-183.
MIT Press, 1591

L. Kale. Parallel Execution of Logic Pro-
grams: the REDUCE-OR Process Model.
In Fourth Internationel Conference on
Logic Programming, pages 616-632. Mel-
bourne, Australia, May 1987.

E. Lusk et. al. The Aurora Or-Parallel
Prolog System. In International Confer-
ence on Fifth Generation Computer Sys-
terns. Takyo, November 1988,

K. Muthukumar and M. Hermlmegildu.
Efficient Methods for Supporting Side Ef-
fects in Independent And-parallelism and
Their Backtracking Semantics. In 1959 In-
ternational Conference on Logic Program-
ming. MIT Press, June 1989,

K. Muthukumar and M. Hermenegildo.
The CDG, UDG, and MEL Methods for
Automatic Compile-time Parallelization of
Logic Programs for Independent And-
parallelism. In 1990 International Con-
ference on Logic Programmang, pages 221-
237. MIT Press, June 1990,

K. Muthukumar and M. Hermenegildo.
Combined Determination of Sharing and
Freeness of Pn:lgra.ln Variables T}Lruugh

[MHs1b)

[Sars9]

[sCWY90)

[sCWY91]

[Ueda Ta]

[Ued87h)|

[War]

[Wars0)|

|WHD38)|

769

Abstract Interpretation. In 1991 Interna-
tional Conference on Logic Programming.

MIT Press, June 1991

K. Muthukumar and M. Hermenegildo.
Compile-time Derivation of Variable De-
pendency Using Abstract Interpretation.
Jouwrnal of Logic Programmang, 1991, To
appear (also published as Technical Re-
port FIM 59.1/TA /90, Computer Science
Dept, Universidad Politecnica de Madrid,
Spain, Aug 1990).

Vijay A. Saraswat. Concurrent Conslraind
Programming Langeages. PhD thesis,
Carnegie Mellon, Pittsburgh, 1989, Schoal
of Computer Science.

V. Santos-Costa, D.H.D. Warren, and
R. Yang. Andorra-I: A Parallel Prolog
System that Transparently Exploits both
And- and Or-parallelism. In Proceedings
of the Srd. ACM SIGPLAN Sympostum
on Principles and Praciice of Parallel Pro-
grammaing. ACM, April 1980,

V. Santos-Cesta, D.H.D. Warren, and
R. Yang. The Andorra-I Preprocessor:
Supporting Full Prolog on the Basic An-
dorra Model, In 1991 International Con-
ference on Logic Programming, pages 443-
456. MIT Press, June 1991.

K. Ueda. Guarded Horn Clauses. In E. Y.
Shapire, editor, Concurrent Prolog: Col-
lected Papers, pages 140-156. MIT Press,
Cambridge MA, 1987,

K. Ueda. Making Exhaustive Search Pro-
gramz Deterministic. New Generation
Computing, 5(1):20-44, 1987,

D. H. D. Warren. The Andorra Principle.
Presented at Gigalips workshop, 1987, Un-
published.

D, H. D. Warren. The Extended An-
dorra Model with Implicit Contrel. In
Sverker Janssonm, editor, Farallel Logic
Programming Workshop, Box 1263, 5-163
13 Spanga, SWEDEN, June 1990, SICS.

K. Warren, M. Hermenegildo, and 3. De-
bray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth In-
ternaitonal Conference and Symposium on
Logic Programming. MIT Press, August
1988,

