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Abstract

Equality can be added to logic programming by using
surface deduction. Surface deduction }ric]d,u in‘l.zrp‘[eta-
tions of unification failures in terms of residual hypothe-
ses needed for unification to succeed. [t can therefore
be used for abductive reasoning with equality. In sur
face deduction the input clauses are first transformed to
flat form (involving no nested terms) and symmetrized
(if necessary). They are then manipulated by hinary
resolution, a restricted version of factoring and com-
pression. The theoretical properties of surface dedic-
tion, including refutation completeness and a weak de-
ductive completeness (relative to equality), are estab-
lished in [Cox et al. 1991]. In this paper we show that
weak deduclive completeness implies that surface de-
duction will yield eszentially all hypotheses when used
as an abductive inference engine. The full characteri-
zation of equational implication for goal clauses given
in [Cox ef al. 1991] is shown to yield a uniquely defined
equationally equivalent residuum for every goal clanse.
The residuum naturally reprezents the corresponding ab-
ductive hypothesis. An example illustrating the use of
surface deduction in abductive reasoning is presented,

1 Introduction

In abductive reasoning, the task is to explain a
given ohservation by introducing appropriate hypotheses
([Cox and Pietrzykowski 1987, [Goebel 1090]). Most
presentations of abduction do not include reasoning with
equality, nor do they allow the introduction of equal-
ity assumptions fo explain an observation. A notable
exception is E. Charniak’s work on metivation analy-
sis [Charniak 1988). Charniak allows the introduction of
certain restricted equality assumptions to determine mo-
tivations for obeerved actions. He shows that the intro-
duction of such equality assumptions is required to sue-
cessfully abduce motivations. In this paper we consider
the problem of abductive reasoning with Horn clauses in
the presence of equality. We show that surface dedue-
tion has the necessary properties for use in an abductive

inference system.

In the presence of equalily, an abduction problem
eonsists of a theory T and a formula O (the sbservation).
An explanation of (0, T) is a forrnula £ consistent with
T such that E together with T equationally implies O.
We will assume that O and F are existentially guantified
conjunctions of facts and that 7 is a Horn clause theory.

One way to obtain an explanation £, given an obser-
vation (0 and a theory 7, is to deduce =& from T and
=3, Since explanations with less irrelevant information
are preferved, it is sufficient to deduce a clause ~E' such
that ~E' implies =F, Intuitively, £’ is &t least as good
an explanation as E (see Section 4). It follows that a de-
duetion system adequate for abductive reasoning should
satisfy a weak deductive completeness: If the theory T
implies a non-tautological clause —E, then we must be
able to deduce a clause - E' from T such that -E' im-
plies =E. In the absence of equality, SLD-resalution
(see [Lloyd 1984]) satisfies this condition.

The problem of introducing equality to Horn clause
logic has been well-studied, see [Hélldobler 198%] for an
excellent overview. The simplest approach fo this prob-
lem involves adding the equality axioms {which are Horn
clauses) to the set of input clauses. However, unre-
stricted use of these axioms results in inefficiency. Fur
thermore, this approach dees not yield any insights inte
the degree to which the equalily axioms are needed.
Parainodulation and other lerm rewriting systems do
not explicitly introduce new equality assumplions into
derivations and therefore do not satisfy the weak deduc-
tive completeness condition, Other approaches, such as
the ones in [van Emden and Lloyd 1984] and extended
in [Hoddinott and Elcock 1986] using the homogeneous
form of clauses, require restricting the form of the input
theory. Here, we use the results of [Cox ef ol 1991] to
show that if eguality is intreduced to Horn clanse logic
via surface deduction, all explanations for an abduction
problem can be obtained.

In surface deduction, a set of input clauses is first
transformed to & flat form and symmetrized. The deduc-
tion then proceeds using linear input resolution for Horn
clauses (see [Lloyd 1984]) together with a limited use of
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factoring and a new rule called compression. The addi-
tional deduction rules are equivalent to those restricted
uses of the reflexivity axiom (r = x =) which preserve
flatness, They are required only at the end of a deduc-
tiom.

A clause is flat if it has no nested functional expres-
sions, and every variable which appears immediately to
the right of an equality symbol (=) appears only in such
positions. A strenger version of fatness requires that in
addition the clause is separated. This means that every
variable appears at most once in any given literal and has
only one occurrence inside a functional or relational ex-
pression. Symrmetrization affects only those clauses with
equalities in their heads (see Section 3).

The idea of using flattening to add equality to theo-
rem proving is due to [Brand 1975] and is applied to logic
prgramming in [Cox and Pietraykowski 1986] where sur-
face deduction is defined. Flattening is closely related to
narrowing. In narrowing the process of flattening is im-
plicit in the deduction rules. The relationship between
the two metheds is examined in [Bosco et al. 1988).. Sep-
aration of terms is implicit in the transformations to ho-
mogeneous forms of [Hoddinott and Elcock 1986). The
symmétrization method used here is similar to the one in-
troduced in [Chan 1986].and does not increase the num-
ber of clanses in the theory.

In [Cox et al. 1991] it is shown that surface deduction
satisfies a weak deduetive completeness provided that the
input clauses are first transformed to separated form. As
an application of this result, equational implication for
goal clauses is found to have a simple syntactic charac-
terization analogous to subsumption.

Once an explanation E is obtained by surface deduc-
Lion, in what form should E be presented? For example
if =E (the actual clause deduced) is given by

then =y = by = ¢ is equationally equivalent to ~E.
Therefore the atom = = a is irrelevant and should be
removed. In Section 4 it is shown that the character-
ization of equational implication for goal clauses given
in [Cox ef al. 1991] implies that for every goal clanse
there is & uniquely defined equational residuum RES(()
which cannet be further reduced without weakening
the corresponding explanation. The notion of equa-
tional residuum is related to that of prime implicates
used in switching theory [Kohavi 1978, truth mainte-

nance systems [Reiter and de Kleer 1987] and diagnoses:
[de Kleer ef al. 1988]. RES(C) is an equational prime.

implicate of & flattening of ',

In Section 2 the terminology is established; in Sec-
tion 3 surface deduction is defined and the completeness
results needed for abductive reasoning are given. In Sec-
tion 4 the formalism of abductive reasoning with surface
deduction is discussed; and finally in Section 5 an exam-

ple is presented of an abductive problem solved by using
surface deduction.

2 Preliminaries

Familiarity with logic programming iz assumed (see
e.g [Lloyd 1984]). As in [Halldobler 1990], let = denote
the equality predicate symbol. The usual equality sym-
bol = is used exclusively for syntactic equality. If L is
an atom and & = {M,,..., M.} is & sel of atoms, then
L = C denotes the Horn clause Lv M, v ... =M, In
this expression, L is the head and C is the body of the
clanse. A clause of the form = C is a goal clause. The
atoms of €' are the subgoals of - C. A clause of the form
L= isa fact, If C,...,C, are sets of atoms and O is
the union of the C), then L =C),...,C, means [ -,
When possible, set notation is omitted for one-element
sels.

If OF is an operation which maps clanses to clanses
and A is a set of clauses, then OP(A) = {OP(C) | C €
A} Let o be a substitution. Haw =t fori=1,...,n
and za = r for all other variables, then o is denoted by
{z; —1,...2, —1,}. A substitution o is variable-pure
iff zer 15 a variable for every variable z.

The expression ‘most general unifier' is abbreviated
by ‘mgu’. An equality is an atom of the form s = ¢, Let
£ be the set of equality axioms other than = = z =, If
A and B are sets of clauses, then A satisfies (or implies)
8 iff every model of A is a model of 5. A equationally
satisfies (or implies) B iff AUEU {z = z - } satisfies B.
A and B are [equationally) equivalent iff each {equation-
ally) satisfies the other. A is equationally inconsistent iff
A equationally implies the empty clause,

3 Surface Deduction

In surface deduction, a refutation of & set of input clauses
procedes by first transforming the input clauses 1o a flat
form and then refuting the result using resolution, fac-
toring and compression. The transformation subsumes
the equality axioms other than reflexivity. The rules of
factoring and compression subsume reflexivity.

Definition. Let ' be a clause and £ a term. An occur-
rence of £ on the left-hand side (right-hand side) of an
equality ¢ = 8 (8 =1} in ' iz a roo! (surface) occurrence
of # in . Every other cccurrence of { is an internal oc-
currence of i. The term ¢ is a root term of O iff it has
a root occorrence in . Surface and infernal terms are
defined analogously.

Definition. A clause C is flat iff

(i) every atom of & is of the form Plzy,...,2.),
#= flwyye..,2,) o0 2 =y, and



(ii) no surface variable of ' is a root or internal
variable of .

Definition. Let C be a Horn clause. An elementary
flattening of C' is obtained by either
(i) replacing some of the non-surface occurrences
of a non-variable term { by 2 new variable v and
adding the equality y = ¢ to the body,
or

(ii) replacing some of the surface occurrences of a
root or internal variable r of © by a new variable
v and adding the equality £ = y to the body.
An elementary flattening of the set of clauses A js ob-
tained by replacing a clause in .4 by an elementary flat-
tening of that clause.

Modifying a clause C by successive elementary flat-
tenings eventually results in a flat clause (a flattening of
') which cannot be flattened any further (Theorem 2
of [Cox and Pietrzykowski 1986]).

Definition. Let C be a clause. Then FLAT(C) denotes
a (arbitrary but fixed) flattening of C.

For any set of clausea A, FLAT{.A) is equationally
equivalent to A. In [Cox et al. 1991] it is shown that the
transformation FLAT subsumes the replacement axioms
but not transitivity and symmetry.

In order to subsume transitivity and symmetry, we
need another transformation.

Definition. Let C' be a clanse with an equality in its
head. Then C is symmetric iff C is of the form

s=u-r=ws=vy=uy=L M

for some terms s and  and set of atoms M, where z, v,
u and v do not occur in M, s or . The set of clauses A
is symmetrized iff every clanse ' of A with an equality
in its head is symmetric.

Definition. Let © be a Horn clause, If ¢ does not
have an equality in its head or if € is symmetric, then the
symmeirization SYM(C) of C'is C. If C is not symmetric
and of the form s = ¢ - M, then SYM(C) is given by

rSurrSo,s=oy=uy=1{M

Note that if A is a set of Horn clauses, then SYM({.A)
is equatiopally equivalent to A, and if A4 is flat, then
SYM({.A) is flat. In [Cox et al. 1991] it is shown that the
transformation SYM subsumes transitivity and symme-
try. In order to subsume replacement, transitivity and
symmetry, the transformations SYM and FLAT are com-
posed. :

Flattening and symmetsization followed by SLD-
resolution using resolution with £ = z :- as an additional
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deduction rule is refutation complete for logic program-
ming with equality. However, weak deductive complete-
ness is not satisfied [Cox et ol 1991]. In order to obtain
weak deductive completeness an additional transforma-
tion is required.

Definition. A positive [negative) roo! ocourrence of
the term ¢ in the clause £ is a root occurrence in the

head (body) of C.

Definition. The flat clause C is separated in the vari-
able z iff

(i) every literal of © has at most one occurrence of

. &y

(ii) € has at most one internal ocourrence of =, and

[iiﬂ if  has an internal cccurrence in CT then x has
a negative root sccurrence in O,

The clause O is separated iff C' is separated in all its
variables,

If Ais a set of separated flat Horn clavses, then
SYM{.A) is separated. Separated clauses can be obtained
from a given flat clause by using the transformation SEP:

Definition. Let C be a flat clause and z a variable.
The clause SEP({C) is the separated flat clause obtained
by applying the following transformation to € For every
variable z such that C is not separated in =, replace each
internal oceurrence of z by a new variable z; and add
the equalities z = 9,1y = 9,23 = %, ... to the body of ©
{where ¥ is & new surface variable).

The rules of factoring and compression used in surface
deduction are:

(i) Root factoring. The clavse O is a root facter of C
if C" is obtained by factoring two equalities of O
with the same root variable.

(i) Surface factoring. The clause C" is a surface factor
of O iff €' is obtained by factoring two equalities
of ' with the same surface term.

(iii} Reot compression. The clause C' is a root compres-
ston of O iff €7 is obtained by removing an equality
z = ! from the body of €, where = has only one
oceurrence in O,

{(iv}) Surfaoce compression. The clause C” is a surface
compression of C' iff £ is obtained by removing an
equality # = y from the body of 7, where y has

only one occurrence in £,

‘A compression 15 a root or surface compression. A com-
pression of a clause ' is a clanse C' obtained from ' by
& sequence of applications of compression rules.

The soundness of root and surface factoring and
jcompression (in the presence of equality) is shown
lin [Cox and Pietrzykowski 1986]. Observe that binary
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resolution, surface and root factoring and Compres-
sion preserve flatness. The relationship hetween fac
toring, compression and resolution with the reflexiv-
ity axiom is determined by the fallowing result {proved
implicitly in [Cox and Pietraykowski 1986] and explic-
itly in [Cox et al. 1991]; see also [Hoddinott and Elcock
1986]):

Theorem 3.1 Let ~C be a flat goal clause. If ="
is a flat goal clawse oblained from = C by a sequence
of binary resolutions with u < u =, then >’ can be
vblained from =C by a sequence of rool and surface
Jactorings and compressions,

Definition. Let A be a set of flat Horn clauses. The
flat goal clause ¢ is S-deducible from A if C can be
obtained from A by a sequence of binary resolutions,
surface and root factorings and compressions. Note that
wee can assume that the deduction is linear. 4 iz 5-
refutable iff the empty clavse is S-deducible from A,

To state the weak deductive completeness result for
fat, separated and symmetrized clauses, we need the
transformation defined next.

Definition. Let :- C be a flat goal clause. Then =~
is reduced iff = € has no surface variables and no two
equalities of - C have the same right-hand sides. A flat
reduced clause REDU( - C) is obtained from - C by
factoring equalities with identical right-hand sides un-
til all right-hand sides are distinct, and by removing
all remaining equalities with surface variables by surface
compression. Note that for every flat goal clause -,
REDU{ - ) is equationally equivalent to :- (7,

Theorem 3.2 [Cox ef ol 1991) Let A be a set of
Horn clauses and = C a goal clause. Then A egua-
tionally implies ~C iff there is a flat goal clause
=€ such that for some variable-pure substitution o,
- C'e C REDU(FLAT( ~C)) and =C' is S-deducible
from SYM(SEP(FLAT(A))).

As an application of this result, the following theorem
is proved in [Cox et al. 1991):

Theorem 3.3 Let = A and = B be goal clauses. Then
= A equationally implies = B iff there is a variable-pure
substitution o such that o compression of FLAT( = A)e
is included in REDU(FLAT( - B)).

Definition. Let -C be a goal clanse. An equa-
tiongl vesiduwm of - is a minimal subclause of
REDU{FLAT( - C)) which is equationally equivalent to
=0

Every equational residuum of = is equationally
equivalent to = (. The fact that every subclause of a
reduced clause is reduced implies that if - C" is a equa-
tiomal residwwm of =, then =" is reduced. The next
theorem shows that the equational residuum is unique.

Theorem 3.4 [Cox et al. 1991] Let - A* and = B’ be
equational residua of the goal clauses =~ A and = B re-
apectively, Then = A iz equationally equivalent fo =~ B
iff =A isa variant of - B,

4 Abduction using Surface De-
duction

An ecistential conjunction of facts iz a conjunction of
facts with all its free variahles quantified existentially.
The abduction problem for Horn clause logic with equal-
ity can be stated as follows:

Abduction Problem: An abduction problem is a pair
(A, O], where A is a theory of Horn clauses and O (the
observation] is an existential conjunction of facts. An
cxplanation of the abduction problem (4,0) is an ex-
istential conjunction of facls £ consistent with 4 such
that £ and A equationally imply O,

Let =0 and —E denote the disjunctions of the nega-
tions of the constituent facts of O and £ respectively.
Since E and A equationally imply O iff =0 and A equa-
tionally imply —FE, a selution to an abduction problem
can be obtained by deducing a clause ¢ from A4 and -,
and negating C to obtain E.

In general, it is desirable for an explanation E of
an abductive problem {4, &) to have certain additional
properties (see [Cox and Pietrzykowski 1987]). For ex-
ample, an explanation E should not contain any facts
not required to yield the observation from A, Thus if
L and £ are explanations of (A, 0) and E equationally
implies £, E' is preferred over E. (Here ‘preferred’ is to
be understood as ‘at least as good as’))

For abduction, a desirable property of a deduction
system is that for every explanation £ of an abductive
problem (A4, ), one can obtain an explanation preferred
over E. The weak completeness result of Theorem 3.2
implies that surface deduction with separated clauses has

ihis property.

Theoremn 4.1 Let {A,0) be an abductive problem.
Then for every erplanation £ of {A4,0), there iz an ez-
planation B preferved over E such thal B is §-deducibie
from SYM(SEP(FLAT(A))) U {SEP(FLAT(U{-0}))].

Proof. This follows by Theorem 3.2 and the fact that
=) is a goal clause, so that it does not need to be sym-
metrized. ]

Flattenings of a clause can be viewed as alternate
representations of the clause’s term structure and are
therefore essentially equivalent. Without loss of general-
ity we restrict our attention to explanations E such that
—E is flat {flut explanations).

If £ and £’ are explanations of (A, Q) such that E
equationally implies E' but is not equationally equiva-



lent to E', then E' is strictly preferred over E. Given
an explanation & of (A, () there are many equationaily
equivalent existential comjunctions of facts, all of which
are also explanations of (4,0). The preference crite-
ria introdueed so far do not distingnish among equation-
ally equivalent explanations. Following the intuition that
a “simpler” explanation should be preferred, we give a
stronger definition of preference:

Definition. Let £ and E' be flat explanations. Then
E' is strictly preferred over E iff either E equationally
implies E' but is not equivalent te B, or E is equation-
ally equivalent to E' and E' has fewer atoms.

Given these preference criteria, we have the following
theorem which determines the most preferred flat expla-
nation among equationally equivalent ones:

Theorem 4.2 For any explanation £, if E' iz the nega-
Hon of the equational residuum of ~F, then ' is the
unique st pmf:mdﬁa’t cxph:na.!,ﬁm amoeng ﬁ:;l: eJ:pIa-
nations equationally equivalent fo F.

Proof. Let - A be a flat clause equationally eguiva-
lent to —E. If - A is not reduced, then REDU{ == A)
has fewer atoms than - A and the corresponding expla-
nation is therefore strictly preferred. Assume that = A4
is reduced. [f the equational residuum of :- A is not
given by - A, then the eguational residuum of - A has
fewer atoms than - A, so that the corresponding expla-
nation is strictly preferred. The result now follows by the
unigueness theorem for equational residua, Theorem 3.4,

n

5 An Application

Examples from the domain of story comprehension and
motivation analysis which demonstrate the need for the
inclusion of equality in abductive reasoning are given
in [Charniak 1988]. Here we give an example from a
different domain.

Consider the following (imaginary, but realistic) sit-
uation. A researcher X experimentally determines the
value of & quantity associated with a physical object (e.g.
the mass of an isotope of an element) and sends us the
result. We have independently obtained a value for the
same quantity {by theory and/or experiment) and our
value differs from X's value. We believe our value to
be correct and we would like to explain the discrepancy.
We do not know the exact means by which X's value
was obtained, but we know what kinds of experimental
apparatus X might have used. One kind of apparatus
(type A) is notorious for a hard-to-control drift in the
settings which results in a systematic bias in the read-
ings. Thus we can explain the dizcrepancy between our
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and X's values by hypothesizing that X used apparatus
of type A with a systematic bias equal to the difference
between the two values,

The situation is formalized as follows: Let TA(z)
mean that z is an apparatus of type A. Let Vi{y) be the
true valve of quantity y, Vim(z,y) the value of quantity
y measured in experiment =, Alu) the apparatus used in
experiment u and B{z) the systematic bias of apparatus
z. The gquantity measured by X is ¢, and the experi-
ment performed by X is given the name e. With these
definitions, our knowledge T consists of the clauses

T1: Vi(g) =0:-

T2: Vm(z,,2z) =
TA(A(z,)).

T3: =0 +3 -

Vilzy) + BlAlz)) =

where knowledge about other types of apparatus and the-
orems about real numbers other than T3 have been omit-
ted, The observation O is given by

Q: Vmie,q) &= 2=
The first task is to obtain a flattening of T and the
negation of the observation:
T1: 7y =01, = Vi{a,),2; = q.
fr2: Ty = %5+ 25- TAzg), 7 = Blzs), 74 =
Vm(z, 23), 25 = Vi[x3), 23 = A(m).
T3 Iy =g 4z -39 = 0.
0. mon =2 =Vmin, o) o= =4,

The clavses fT1 and §0 are separated. Separated

clauses for T2 and fT'3 are given by

sfT2: 2y = zg 3 = TA(m), 75 = Bz;), 75 = 24,
2y =19, 74 = Vmi(zy, 35), 35 = VE{Ey), 2, =
Ty, T1o = Ty, Ty = Al ), 2) = 245, 2 = 245,

T8 ay=mtryi- po=x, 7, =7, 2, =0,

All elauses of T have equalities in their heads and
need to be symmetrized. The fully transformed set of
clauses is given by
T1* Ty =&y i~ Ty =Ty, Ty = Ty, Ty = Ty, Tg = 0,

T, = Vi(zg), 2, = ¢

T2" Tz = E1q " Tig = Tygy Ty = Tyy, Tig = Tygy
xm_ = 1‘5 + 1‘-5. 'TA{Ia}, IE = E{I-;}, .33 = Ia,
x; =1y, 7y = Vm(z,3,), 25 = Vi{zy,), 2, =
Ty, Tyg = Tg, Tz = A(L11), 27 = 2yg, 7)) = Ty

Fa = % au = = a2
T3" Iy = Tg - Tg = Ty, By = B, By = Ly Tg =
Ty F Ty, Ty =Ty, Ty =Ty, T, =0
A o ol — = =
o =y =2, = Vmiz,, 3a), 2 S £, T = 4.

The negation of the desired explanation can now be
deduced from (. In the deduciion below, the literals
involved in each step are underlined.
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o
res, with T2
surfl. facl. fol-

lowed by root
fact. and compr.

res, with T1

surf. fact., and

COMpE.

1

res. with T3

root fact., surf
fact. and compe.

root fact., surf

fact., compr.

res, with T1'

surf. fact., root
fact. and compr.

IF-

= 3y =2, 7y = Vmizy, 1), 22
£, Ty =4,

= By = Epg, Ip é.tﬁ, g = 2,
Tyg = Ty + Ty, TA(Te), 24 =
E{Ilﬂ]: Tg = Tqy Ty = L1y
Ty = Vmir, 5, 15 = Viza),
Ty = Ty Fga = Ty Ty =
A[%q]: Ty = Ty Eg = Tpp

T = le_::zz.l‘z_a‘l, Fy = € Ty == q.

= Ty = 2, Ty = Ty + T, TA(zg),
Ty = B(zy), Tg = Ty Tp = o,
.Tg=' Vt!;l?i;t, Ty = Fyzy T3 = Ly3s
g = AlTi), T3 = Ts Trg = T,
Ty = e, Ty =g

- 9 = 2, Ty9 = Tg + Ty, TA(z),
39 = Blzyo), Tg = 2y, Ty = 7y,
Ty = Taq, Tag = Taqy L9 = Vﬁ*’“u};
Tag ] D, I?u—iVﬂEn}, By = 4
Ty = Tyay Tyy = Ty Tg = ALEHL
Ty = Tyg, Tyg = Ty, Ty = €, Ty = q.

= s + 2o, T'A(z4),
Iy = 5{319}1 Tg = Ty, Tip = Ty
g = Ty Top = Toq, T = 0, Tgp =
Vi[zs), 2 = Alzy,), 2y = 3y,
By = Tys, Tp = €, Ty =4

=ory =2z

omy = 2 myy =Ry, Xy =
Tany Baz = Ty + oy Tag = Tag + Tayy
Tyy = Tam Taz = Tgg, Tpg =,
TA(ze), 28 = Blzyo), 7 = o,
Ty = Fypyy Fe = T Ean = Sgg
Tap = 0, T3p = Vi{za), g = A{z14),
Ty = Tyg Tyg = Ty, Ty = 6 T3 = 4

= o2 =2, Ty = Ty, Tgs = Tuy,

Ty = Taw, Tgz = Fag, 1A(Tg), T
B(zyg), 76 = 210, %10 = T11, Tg =
zy = Vizz), o5 = Alzyy), =
Ty, Tyq = Tyg, Ty = &, By = 4.

= zg = 2, TA(z), 2 = F(zy),
Ty = Ly, Tyg = Ty, Tg =0, 15 =
Vi{zs), 76 = Alzyy)y T2 = 1y
Tyy = Ty, XT3 = &, X3 = {.

=z = 2, TA(%e), 20 = Bz},
Ty = Iy, T = Ty, Ta Ty,
Tyg = Egy, Eagp =0, Typ = Vi{z),
Typ = g, 23 = Vi{zs), 2¢ = A7),
Ty = Tygy T14 = Lpsy Ty = &, Tg = 4.

= 2o = 2, TA(zo), 2 = B(zw),
T = 14 zmh= ESTE Tg = -““-"_14]'.
Ty = Igg, Tyy = Lyg, T3 = €, Ty = (.

=

reduction to the
min. residuum

= zg = Alzg), 23 = e, TA(zg),
tg = Bizg), 2, = 2.

The last clause 15 the negation of the desired expla-
nation. Note how two resolutions with T1' were used to
simulate symmetry.

6 Conclusion

From a theoretical perspective, surface deduction is very
appealing in its simplicity. We have seen how (at least in
theory), surface deduction can be applied in situations
such as abductive reasoning where deduction rather than
refutation is the primary goal.

The preference criteria for explanations given in Sec-
tion 4 are very weak, However, we believe that no matter
what preference criteria are used, RES{C) is at least as
good an explanation as C. One of the most important
problems in abductive reasoning is to determine stronger
preference criteria to avoid combinatorial explosion.
These issues are discessed in [Poole and Provan 1994].

From a practical point of view, one of the frequently
recognized problems with flattening the clauses of the
input theory is that one loses most of the advantages of
unification, particalarly if the input theory contains few
equalities. One can regain some of these advantages in
practice by interpreting the set of equalities in the body
of a clauge as a directed graph or hypergraph (with arcs
from the root variables to the surface terms) which de-
fines the set of possible definitions of the main terms
and variables of the clause, Such a directed graph gen-
cralizes the usual tree representation of terms. Unifi-
cation and more generally term rewriting can then be
replaced by {hyper)graph rewriting rules. To implernent
this ides, the deduction procedures mmst be substantially
emhanced. The types of graph rewriting rules and graph
representations needed require further research.

Many of the results used in this paper can be general-
ized to arbitrary clauses so that the restriction of abdue-
tive reasoning to Horn clause theories can be remaved.
These generalizations will be the topic of a forthcoming

paper.
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