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Abstract

If realistic systems are to be successfully modelled and
dipgnosed using model-based techniques, a more
expressive language than classical logie is required. In
this paper, we present a definition of diagnosis which
allows the use of 2 nonmonotonic construct, negation as
faiture, in the modelling language. This definition is
based on the generalizsed stable model semantics of
abduction.

Furthermore, we argue that, if negation as failure is per-
mitted in the modelling langoage, the distinction
between abducrive and consistency-based diagnosis is
no longer clear. Qur definition allows both forms of
diagnosis to be expressed in a single framework. It also
allows a single inference procedure to perform abduc-
tive or consistency-based diagnoses, as appropriate,

1 Infroduction

Many different definitions of diagnosis have been used
in an attempt to formalise and automate the diagnosis
process. In the so-called *logical” approach, two frame-
works, namely the consistency-based [Reiter 1987] and
abduetive [Cox and Pletrzykowski 1986], have attracted
a ot of attention, Typically, the modelling language
used in these frameworks is first order logic (or some
subset of it). In this paper we present 2 unified frame-
work for diagnosis which brings together these two
styles of diagnosis, as well as providing a non-monot-
onic modelling language.

We were primarily motivated by the need to incorporate
negation as failure, the non-monotonic construct in
logic programming, into the modelling language. We
first show the need for this construct through some
examples, and then argue that the incorporation of
negation as failure in the modelling language necessi-
tates the inclosion of both consistency-based and
abductive diagnosis within the same framework, We
then present our unified framework, which allows nega-
tion as failure in the modelling language and naturally
incorporates both abductive and consistency-based
diagnosis. We then show that in the special cases, our

approach reduces to pure consistency and pure abduc-
tive diagnosis, i.e. it is a generalisaton of both styles.

Ohar work 15 similar in spirit to the work of Console and
Torasso, [1990],[1991], but goes beyond it in many
ways. We will compare our approach to that of Console
and Torasso in a later section. Qur proposed framework
is based on the Generalised Stable Model semantics
[Kakas and Mancarella 1990:] of gencralised logic pro-
grams with abduction, sirengthening the link between
logic programming and diagnosis first explored in [Esh-
ghi 1990].

2 Consistency-based and abductive
approaches to diagnosis

In both consistency-based and abductive approaches, g
set of axioms S0 (called the system description) models
the systemn under investigation, and a set of abnorrality
assumptions Ab={ab,,aby,...ab,} represents the possible
underlying causes of failure. A set of stalements, Obs,
represents observations of the behaviour of the system
which are to be explained.

In the consistency-based approach, a diagnosis is a set
of abnormality assumptions, 4, such that

{1) SOuOBSuA L[ —aby] aby= Ab-A) is consistent,

The consistency-based approach focuses primarily on a
model of the system’s correst behaviour. When the
abnormality assumptions relate to the failore of the
companents of the system, it attemnpts to find a set of
normality and abnormality assuomptions which can be
assigned to the system’s components to give a theory
consistent with the observations.

In the abductive approach, a diagnosis is a set of abnor-
mality assumptions, A, such that
(2) SDua |- 0BS

SDut is consisient.

The abductive approach primarily models the behaviour
of a failing system, by using fault models in the syswem
description, S0. The diagnosis process consists of look-
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ing for a set of abnormality assumptions which, when
adopted, will logically predict the observed faulty

behaviour given the system description and the context
of the observation.

In both approaches, a diagnosis A s defined to be mini-
mal if there is no other disgnosis, A', which is a proper
subset of A,

3 The Diagnosis Problem

The system description used in model-based diagnosis
takes one of two forms. It is either a causal model, ora
model consisting of the system’s structure and the be-
havioor of individual components. In general, work on
abductive diagnosis has focused on the former, while
work on consistency-based diagnosis has focused on the
latter.

For the purposes of this paper, we adopt a specification
of a diagnosis problem based on those used in [deBleer
and Williams 1987] and [Reiter 1987], which uses a
component-based approach. However, the results hold
equally for a causal modei-based approach, and for this
reason, we adopt slightly more general language in the
definiton.

Definition:

A diagnosis problem consists of a wiple, <50, 085, C=
where; -

(i) The system description, S0, specifies the behaviour
of the system.

{ii) The observation set, OBS, specifies a set of observa-
tions of the system as unit clauses.

(iii) C consists of mnsmnts:o,. which represent causal
clusters within the system.

Causal clusters are groups of causes of abnormal system
behaviour which it makes sense to consider together,
Each cause, n, within the cluster, g, is modelled in 8D
with two clauses;

gffects_of canse n +abig, n}.

© ablg) «—able, n).

Furthermore, if so desired, we can define emergent prop-
erties of the system which ocour when none of the causes

o 0
I (_':ii‘;, {lé
1. d]

Figure 1: A pre-charged ling

in cluster g; are present, the “good behaviour model” of
this cluster;

good behaviowr_model «not abie).

In the component-based approach, ¢ represents a com-
ponent, and each cause in cluster ¢; represenis a possible
fault model of the component. Note that the effects of a
causc need not be defined deterministically. For exam-
ple, the ‘arbitrary behaviour’ mode of a component, pro-
posed in [deKleer and Williams 1989], is consistent with
any behaviour of the component, but predicts nothing.

The logical language adopted to represent SO can vary
with the definition of diagnosis adopted. In this paper,
we focus on two possible languages; classical logic, as
adopted by Reiter [1987], and horn clauses with nega-
tion as failure, a5 used in the logic programming com-
munity.

4 The need for negation as failure in the
system description

The desire 1o integrale consistency-based and abdoctive
diagnosis was motivated primarily by the need to in-
clude negation as failure in our models. The following
two examples illustrate this need:

RAM modelling

In order 10 model the behaviour of a random access
memory cell, we needed an axiom that says: the content
of a cell at time T is X if X was written to this cell at time
T, and no other write operation has been performed be-
tween Tand 7. The most siraightforward way of writing
this is as the clause

comtents{Cell, X, T} «  written{Cell, X, T,
T<T,
not over-written{Gell, T',T).

aver-written{Ceall, T, T) «— written(Cell X, T},
T=T"<T.

This is an instance of the ‘frame-problem’ being solved
through negation-as-failure, as explored in [Shanahan
1989], If we don't use negaton as failure, or some other
non-monotonic device, we need 1o have axioms which
allow us to derive —over-written{Cell, T'T) for all cells and
all time instants, which is very inefficient both in terms
of speed of inference and storage required.
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Pre-Charged Lines

A common technique used in the computer industry to
implement data buses is the pre-charged line. Devices
communicate with one another using transmitters and
receivers, all connected to a common line whose value
floats to 1 when no ransmitier is transmitting, (There are
n lines for an n-bit wide data bus. Here we concentrate
on one line).

Physically, a value of 1 corresponds to high voltage, and
a value of 0 to low voltage. In order to give the line its
pre-charged valoe, it is connected to the positive power
line by means of a pull-up resistor. Figure 1 gives a sche-
miatic of a typical pre-charged line.

To transmit a 0, & wansmirter on a line pulls the line to
low. Since lines are pre-charged, ransmitting a 1 does
not involve any action by the transmitter, (Obviously,
there is a bus protocol to determine which transmitter, if
any, is transmitting at any given dme. Here we ignore
protocol issues,)

The behaviour of pre-charged lines is best modelled by

a default reasoning mechanism. The default value of a

line is assumed to be 1 unless it can be proved to be 0.

Using negation-as-failure, we could represent this as:
racaived_value({Line,0) « driven_valug(Line,0).
received_value(ling1) « not diven_vale(Line,0).
driven_valus(Line,0) « connected(Line output{X}),

trasmits(X,0).
The alternative, avoiding the use of negation-as-failure,
would be to have an axiom such as:

—driven_value(Line,0) «—
Wi{connected{oulput{ X) Line) = <transmils{X,0)).
However, in order to prove ¥X{connected{output(x) -
Lingj— —transmits(X,0)), we would need closure axioms
exhavstively enumerating all the transmitters on the
line, which would be both cumbersome to write and
inefficient to reason with,

Full details of this modelling problem are given in [Esh-
ghi and Preast 1992],

5 Negation As Failure blurs the distinction
between abductive and consistency-based
diagnosis

Conceptually, the processes behind abductive and con-
sistency-based diagnoses are quite different. In consist-
ency-based diagnosis, one removes normality
assumptions untl the theory regaing consistency. In
abductive diagnosis, one adds abnormality assumptions
until the specified bad observations are provable in the
theory.

However, by moving 1o a nonmonotonic theory, we can
use the same process to perform both styles of diagnosis.
We use negation as failure to represent the good behay-
iowr of a cluster as its default behaviour;

behaviour « not ab(g)

In a situation where the system is malfunctioning, and in
the standard consistency-based approach we would de-
rive an inconsistency by adding normality assumptions,
we would gei an inconsistency without adding any as-
sumnptions. This is because the negation as failure results
in clusters defaulting to their 'good” behaviour model,
Furthermore, the theory can be restored to consistency
by adding abnormality assumptions, as in abduction,
rather than by removing normality assumpiion as in the
standard consistency-based approach.

It is exactly because of this cffect that an abductve
framework can be used to represent both consistency-
based and abductive diagnoses. A similar approach to
representing a component’s good behaviour as its de-
fanlt behaviowr was introduced in the context of the
Nonmonotonic ATMS, in [Dressler 19940].

If we are to use negation as failure in the system descrip-
tion, as we argued we need to do in many instances, it is
necessary o integrate abductive and consistency-based
approaches. This is because, in a logic with negation as
failure, consistency-based and abductive diagnoses are
the dual of each other. By passing through a negation,
you pass from a consistency-based problem to an abduc-
tive problem, or vice-versa. To see this, let vs consider
some simple examples;
a} Consistency-Based diagnosis
8D: obs « notg

g+ ablg)
OBS: —obs
In a consistency-based diagnosis, we attempt to restore
consistency by making assumptions 5o as to ‘nof-prove’
a certain proposition which contradicts with the integ-
tity constraints. In the case of the above example, we
wish to not-prove obs, However, to do this, we must

prove the negated goal, 9. Hence we want an sbducrive
diagnosis of the observation, g.

by} Abdupctive diagnosis
SD: obs « ol g

g« abic)
0BS: abs

In an abductive diagnosis, we wish o make assump-
tions 50 as to prove a certain proposition which is
required to be true by the integrity constraints, In the
above example, we wish to prove obs. However, to do
this, we must fail to prove the negated poal, g. Hence,
we want a consistency-based diagnosis for the observa-
tien —g.

Thus a diagnostic problem of one sort may have a diag-
nostic problem of the other sort embedded in it So,
when the modelling language includes negation as fail-
ure, abductive and consistency-based disgnosis cannot



be considered in isolation from cach other, Ttis this that
led us to formulate this integration.

6 The Generalised Stable Model Semantics
for Abduction

Varions semantics have been proposed for abduction,
both formally and informally, Originally, an abductive
explanation for an observation was informally defined
25 a set of assumables which, when added to a theory, al-
lowed proof of the observation. This was then formal-
ised to give a metalevel definition of abduction in [Esh-
ghi and Kowalski 1989].

Console er al. [1990] have used the completion seman-
fics to give a semantics (o abduction in hom clagse the-
ories. Recently, they have extended it to cover hierarchi-
cal logic programs [Console er al. 1991).

The semantics of abduction which we have chosen o
use, however, is that provided by Kakas and Mancarella
[1990a]. By extending the stable model semantics of
logic programs [Gelfond and Lifschitz 1988], they give
a semantics for abduetion which holds for arbitrary gen-
eral logic programs with integrity constraints.

Here, we briefly recall their definitions;

Definition 1
An abductive framework is a trple <P A IC> where

1) P is a set of clauses of the form H « Ly,...Ly kO
where H is an atom and L is a literal.

2) A iz a set of predicate symbols, the abducible predi-
cates. The abducibles, Ab, are then all ground atoms with
predicate symbols in A.

3) IC, the integrity constraints, is a set of closed formu-
lae.

Hence an abductive framework extends a logic program
1 include integrity consiraints and abducibles, The se-

mantics of this framework is based on the stable model
semantics for logic programs;

Definition 2

Let P be a logic program, and M a set of atoms from the
Herbrand base. Define Py to be the set of ground hom
clauses formed by taking grdund(P), in clausal form, and

deleting;
(i} each clause that has a negative literal | in its body,
and | e,

(ii) all negative literals—l in the body of clauses, where
la M.
M is & stable model! for P if M is the minimal model of
Pu-
This definition is extended to give a semantics o abduc-
tive frameworks.
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Definition 3

Let <P.A,IC= be an abductive framework, and 4 c atom-
s(A) be a set of abducibles. Then the set M(a) of ground
atoms is a generalised stable model (GSM) for <P A IC>
iff it is a stable model for the logic program PuA, itisa
maodel for the integrity constraints IC, and  A=A~M{A).

The above definition is an extension of that in [Kakas
and Mancarelia 1990a] 1o allow abducibles to appear in
the head of & clause. As a result of this, the set of abduc-
ibles chosen as generators can be smaller than A, the set
of abducibles tree in the generalised stable model.

A unit clavse, g, representing an observation, has an ab-
ductive explanation with hypothesis set A if there exists
a generalised stable model, Mi{a), in which q is true,

Equivalently, we can say that q has an abductive expla-
nation, 4, within the abductve framework <P, A,IC= if the
ahductive framework <P A IC+q> has a generalised sta-
ble model M{A). Having g in the integrity constraints im-
poses the condition that g must be true in the generalized
stable model, and hence must follow from the logic pro-
gram together with the set of abducibles chosen,

7 Generalised Stable Models and Diagnosis

The generalised stable model semantics for abduction
can be applied to diagnosis by mapping a diagnosis
problem, <50, OBS, C>, with multiple observations, onto
an abductive framework as follows;

«  Represent the system description, S0, as a logic
program with integrity constraints, <P,1C=. The
integrity constraints will uspally contain sen-
tences stating that observation points cannol
take multiple values at a given time.

+  Let the abducibles represent the canses within
the clusters, [d}{ci.njl cieC], hence A =

{ab{X,M) ].

Intuitively, given an observation set OBS, represented
by a set of unit clauses, we have a choice of how to usc
it. We either wish to predict it, giving an abductive diag-
nosis, or make assumptions to restore the theory to con-
sistency, giving & consistency-based diagnosis. By
adding OBS to the inlegrity constrainis, only models in
which the observations are true, and hence explained by
the system description together with selecied abduci-
bles, are legal generafised stable models. Hence we get
an abductive diagnosis, If, instead, we add OBS 1o the
logic program representing the system description, then
a set of assumptions can only be made if they are con-
sistent with the observations; i.e. the observations, sys-
tem description and assumptions ¢annot derive
anything which vielaies the integrity constrainis. This
will give us consistency-based diagnoses. Furthermore,
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we can partiion OBS into two sets, and predict some
observations, OBS,, while maintaining consistency with
others, 085, We do this by placing OBS, in the integ-
rity constraints, and 085, in the logic program.

This allows us to give a definition of unified diagnosis
as follows;

Definition 4

Let «50,085,,085,.C> be a diagnosis problem, whers;
5D iz a logic program with integrity consiraints, <P IC>.
OBS, is the set of observations to be predicted by diag-

NOSCE.

0BS, is the set of observations which diagnoses need to
be consistent with.

G is the set of cansal clusters in the system.
Then;

415 a GSM-diagnosis of <S0,085,,0B88,,C» iff there is
a generalised stable model, M{A), of the abductive
framework <PUDBE,AICUOBS >,

where A = [ab(C,N)] represents the set of possible root
causes of misbehaviour in S0.

To demonstrate this, we consider a simple example
from the medical domain, that of pericardial rampon-
ade. The heart consists of two parts, the myocardium is
the muscle which beats, while the pericardium is the
protective sac which surrounds this muscle. If this sac is
pierced, instantaneous pain occurs, which can subside
fairly quickly. However, blood slowly flows into the
pericardivm over a period of time, increasing the pres-
sure on the myocardiom. Later, the myocardium will
become 50 compressed that blood does not flow round
the arteries, even though the myocardium iself is func-
tioning perfectly,

The model of this phenomeneon is given below. For sim-
plicity, we treat time discretely, in units of hours.

nermal_cardiac_contraclion(T},
nol heart_compressed(T).

pulsa_ck(T)y +«

no_pulse(T} +« heart_compressad(T).
heart_compressed|T) «  ab{pericardium piarced(T7),
T=T=10.
normal_cardiac_contraction(T) «
not ab{myecardium, fgilure{T),
T'<T.
bad_ecg(Ty «  ab{myocardium, failure(T)).
We give the pericardium the possible failure cause
‘pierced” at a given tme, while the myocardium simply
suffers a ‘failure” of some sort. The latter is consistent
with any behavipur of the myocardium, but only pre-

dicts a bad ecg trace.

The above clauses form the logic program part of S0.In
addition, we need the integrity constraints, IC. These
simply state which observations conflict with each
other;

—{pulse_ok(T) & no_pulse(T)).
—{ecg_bad(T) & ecg_good(T)).

Assume we have the observation, no_pulse(12). Let us
congider the generalised stable models of <P A IC=.

If we place the observation in the logic program as a
unit clanse, any set of abdocibles ean be assumed as
long as they do not violate the integrity constraints - ie.
they must not generate & stable model in which pul-
se_ok(12} is true. If we assume nothing, the resulting
stable model contains pulse_ok(12) as true, resulting in a
conflict. There are two possible (minimal) ways to
restore consistency. We can assume abimyocardium fail-
ure(10)}!, and cease to contain normal_cardiac_contrac-
tion{12} in the stable model. Alternatively, we assume
abipericardium pierced(2})!, which predicts heart com-
pression at time 12. The resulting stable model will
therefore not contain pulse_ok(12), and so be a legiti-
mate gencralised stable model of <Pu{no_pul-
se{12)),A,lC=.

If, instead, we place the observation in the integrity
constraints, IC, we are restricted to stable models which
contain no_pulse(12). In this case, only by assuming
abipericardium,pierced(2)) do we generate a stable model
which contains no_pulze(12). As this also satisfies IC, it
is a legitimate GEM for <P A, ICu{no_pulse{12)}=.

Hence, by making a chofce of where to place the obser-
vation, we can generate elther consistency-based or
abductive diagnoses, Furthermore, if we have a second
ohservation, ecg_good(12), we can choose o treatitina
different way from the first. Let OBS; = {no_pulse(12)}
and OBS, = [ecg_good(12)]. In this case, the only (mini-
mal} GSM of <PUOBS, AICOBS,> is that generated
by abipericardium, pierced{2)). However, if we swap
OBS, and 0BS,, the only (minimal) GSM is that gener-
ated by ab{myocardium, failure{10)}.

Mote how the model uses negation-as-failure to handle
the frame problem. If we used classical negation
ingtead, it would be necessary to have extra clauses to
predict not_heart_compressed at all relevant times,
resulting in a larper, less understandable, and less effi-
cient model.

8 Abductive and consistency-based
diagnosis as special cases

If we restrict our attzntion to the waditional definitions
of diagnosis, we can show that our definition is equiva-
lent to these under certain conditions,

! Or, of course, at any other appropriate time instant.



8.1 Abductive Diagnoses as Generalised
Stable Models

If all the observations are to be predicted in the abduc-
tive sense, and the system description contains only
horn clauses, our definition of diagnosis reduces to the
standard definition of abduction given in section 1. This
is achieved as follows:

Given an abductive diagnosis problem <5D0BS,C=,
where SD is a hom-clause theory, divide the system
description into a set of definite clauses, P, and a set of
denials, D. Let A be the set of abducibles,

It is easy to show that abductive diagnoses of 5D
according to formula (2) correspond to generalised sta-
ble models of the framework <P A ICUOBS,>.

8.2 Consistency-Based Diagnoses as
Generalised Stable Models

For a certain class of theories, namely almost-horn the-
orics, we show that our definition of diagnosis is equiv-
alent to the raditional definition of consistency-based
diagnosis given in [Reiter 1987]. An almost-horn theory
is a theory in which negation is used only to represent
the negation of certain predicates. In.the context of our
theorem, these cormespond to the abnormality assump-
tions.

Definition 5

A clavse is said 10 be almosr-Horn with respect to A, if
when in disjunctive normal form, it contains at most
one positive literal with a predicate symbol not in A,
Theorem

Let <80, 0BS,.C> be a consistency-based diagnosis
problem, with 5D a theory which is almost-hom with
respect o A={abj.

Then define the logic program with integrity con-
straints, S0'=<P,IC=>, as follows;

Let 8 & atorns(A), and p, g & atoms(A).

1. For every clause of the form

D =yl 8By 1B, o dp IN SO, there is a
program clause

pe— not 81,001 8.0t 8,841, B8z 400 0 P

2. For every clause of the fdmm

vy, VgV V- VBl vy v, T S0 there is
an identical clause in IG.

Then;

O is a consistency-based diagnosis of <50, OBS..C»
according to formula (1)

= D is a GSM-diagnosis of <80°, @, OBS,.C>

The proof of this theorem is available in an extended
version of this paper, available from the authors.

"This theoremn shows that, if negation is used only to rep-
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resent the normality assumptions in the system, —ab,
then the nonmenoionic definition of diagnosis given by
us is equivalent 1o the monotonic definition given in
[Reiter 1987]. However, if negation is used elsewhere
in the theory, the two definitions diverge. The classical
consistency-based definition requires explicit represen-
tation of all negative information. The GSM-diagnosis,
however, will make the closed-world assumption, and
assume information is false unless it can be proved oth-
erwise.

9 Comparison with Console & Torasso [2]

Console & Torasso have defined a framework for a gen-
eral abduction problem. This framework allows & spec-
trum of diagnosis styles to be represented within ir,
including the pure consistency-based and abductive
styles described above.

They divide the observations into two sets. One set,
OBS,, is 1o be explained by the assumptions, while the
other set, OBS,, must be consistent with the assump-
tions. They then define two sets;

¥* = OBS,.
W= = | i) | Hy)e OBS,, xaty]

A diagnosis is then a set of abducibles which, when
added to the theory, allows prediction of all observa-
tions in ¥, and is consistent with the negative literals in
g

Qur definidon is more powerful in several ways.

+ It extends the defimition of Console and Toras-
so from horn-clause theories to general logic
programs with integrity constraints. This gives
a sophisticated and expressive language for
modelling, which includes negation as failure,

+ ‘The inclusion of the consistency-based obser-
vations in the object level, rather than their ne-
gations in the integrity consiraints, means that
these can be used easily during inference. This
can reduce the time to find a conflict, by using
‘backwards simulation’ of componems, In
some cases, such as the example documented in
[van Soest ef al. 1990] , centain diagnoses can-
not be found without access to the observations
in this way.

»  Within this framework, it is possible to define
minimal dizgnoses model-theoretically. We
will expand on this in section 10.

Placing the consistency-based observations at the object
level potentially gives us more efficient inference.
However, to do this in the context of joint diagnoses can
lead o problems.

It may be possible to conclude that an abductive obser-
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vation is true, based on the adding of a consistency-
based observation w the theory alone;

SD: obs1 — obs?

0BS;,: chs2
OBS,: obsi

By adding obs1 to the system description, we can con-
clude that oba2 is true. Whether this is legitimate
depends on how we interpret the consistency-based
observations. If we consider them true, but not neces-
sarily explainable, then this is legitimate. This is the
case in Reiter’s formalisation of diagnosis, and also in
the case of the setting factors of Reggia er al. [1983].
However, if we consider them not necessarily true,
merely not false, then this is unacceptable, In such cir-
camstances, it is necessary to restrict the model so that
consistency-based observations do not appear in the
body of clauses, or use the approach proposed by Con-
sole and Torasso.

10  Minimality

We now focus attention on component-based diagnosis,
and consider the problem of minimal diagnoses. We
wish to restrict our attention to those diagnoses which
contain a minimal number of failing components.

To do this, we introduce minimal generalised stable
models;

Definition;
A general stable model, M{a), for an abductive frame-

work,<P,A,IC>, is minimal if there is no other GSM,
Mia"), such that A'c A,

Hence, a minimal gencral stable model contaings a mini-
mal set of assumptions which allow the consequences of
the logic program P to satisfy the integrity constraints,
IC. Note that, becanse abductive frameworks are non-
menotonic, this does not imply that any superset of A, @,
will have a GSM, M{s),

If, in our diagnosis framework, we have a 1-1 corre-
spondence between a hypothesised failed component
and an abducible being assumed in the abductive frame-
work, then minimal general stable moedels will corre-
spond to minimal diagnoses. To do this, we must impose
two restrictions on the relationship between the frame-
works;

{i) There must be no abducible representing the correct
behaviour of a component. This must instead be a de-
fanlt behaviour which is used in the absence of abduci-
bles referring to the faulty behaviour of a component,

(if) It must be illegal to make more than one assumption
about a component’s behaviour at a time.

Mote that the second condition does not force fault
modes to be mutually exclusive in real-life, merely that

they must be mutually exclusive logically, This can eas-
ily be achieved by adding an integrity constraint forbid-
ding a component to have two modes;

false « ab(e,m;y ), ab(c,myp), mjp#my.

The framework provided by Console and Tarasso saris-
fies the second of these conditions, but not the first, Be-

. cause they work in & monotonic framework, it is not pos-

sible to represent the correct behaviour of a component
as the default behaviour; instead, it must be explicitly as-
sumed that a component behaves correctly.

As a result of this, they must specify a semantic minimi-
sation criterion; a diagnosis is minimal if it contains a
minimal set of abducibles corresponding to faulty be-
haviour. We, however, can specify a model theoretic cri-
lerion;

A diagnosis, A, is minimal if its corresponding GSM,
M(A), is a minimal GSM.

11 Calculating Diagnoses

By providing a uniform model-theoretic framework for
consistency-based, abductive and joint diagnoses, we
have also provided a method for a uniform implementa.
tion. We simply need an algorithm for generating the
minimal generalised stable models of an abductive
framework, and we can use this for performing a varety
of diagnosis tasks. '

Much work has been carried out on the generation of
stable models, and several efficient algorithms exist.
However, as general stable models are a newer innova-
tion, these resuits have yet to be fully exploited and
extended to the GSM case. Currently, the state of the art
in GSM generation is provided by Satoh and Iwayama
[1991]. This work, however, has the drawback that it
does not produce minimal GSMs.

Traditionally, in the abductive community, top-down
algorithms have been used which tend to generare mini-
mal solutions, as they avoid making irrelevant assump-
tions. (e.g. [Cox and Pietrzykowski 1986] [Kakas and
Mancarella 1990b]) However, non-minimal abductive
diagnoses are still acceptable in the model-theoretic
semantics, and can be generated by the algorithms.
Similarly, in the diagnosis community, generation of
minimal diagnoses has tended to be a consequence of
the algorithm selected (e.g. the ATMS in [deKleer and
Williams 1987]) rather than & model-theoretic restric-
teom.

Hivwever, Eshghi [1990] proposes an altemative
approach. He generates a theory in which minimal diag-
noses cormespond exactly w the stable models of the
theory. This means that non-minimal diagnoses are
excluded by the semantics, rather than the algorithm.
By extending these results beyond the almost-hom case,
we are able to transform an abductive framework into a



logic program. The stable models of this logic program
correspond exactly to the minimal generalised stable
madels of the abductive framework. This means that
minimality is browght into the theory as a necessary
property of each solution, rather than being a selection
critedion between solutions. This work is currently in
PrOETEss.

As a result of this, 2 wider variety of literature can be
used to select appropriate and efficient algorithms,
rather than being restricted to algorithms which have
been developed specifically for the task of diagnosis.

12 Conclusions

By moving to a nonmonotonic logical framework, it is
possible 1o bring abductive and consistency-based diag-
nosis together, and use the same inference method to
perform both, We have done this by using generalised
stable models to provide the semantics, which provides
us with a rich and expressive modelling language. It
also gives a link between diagnosis and logic program-
ming, allowing application of theoretical and practical
logic programming reselts o the domain of diagnosis.
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